• ISSN 2097-1893
  • CN 10-1855/P

地幔过渡带间断面结构地震学成像研究进展

俞春泉 李娟 杨凡 张炎

引用本文: 俞春泉,李娟,杨凡,张炎. 2023. 地幔过渡带间断面结构地震学成像研究进展. 地球与行星物理论评(中英文),54(3):318-338
Yu C Q, Li J, Yang F, Zhang Y. 2023. Advances in seismic imaging of mantle transition zone discontinuities. Reviews of Geophysics and Planetary Physics, 54(3): 318-338 (in Chinese)

地幔过渡带间断面结构地震学成像研究进展

doi: 10.19975/j.dqyxx.2022-034
基金项目: 国家自然科学基金资助项目(42174058,92155307,42074063,41774065);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0203);广东省地球物理高精度成像技术重点实验室(2022B1212010002)
详细信息
    通讯作者:

    俞春泉(1985-),男,副教授,主要从事地震学、地球内部结构成像研究. E-mail:yucq@sustech.edu.cn

  • 中图分类号: P315

Advances in seismic imaging of mantle transition zone discontinuities

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 42174058, 92155307, 42074063, 41774065), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. GML2019ZD0203), and Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology (Grant No. 2022B1212010002)
  • 摘要: 地幔过渡带位于410-km和660-km两个地震学间断面之间,是深入认识地球内部温度结构、物质组成以及动力学演化过程的关键区域. 地幔过渡带的上下界面分别对应橄榄石到瓦兹利石和林伍德石到布里奇曼石和铁方镁石的矿物相变. 本文总结了地幔过渡带间断面结构的主要地震学研究方法以及研究进展. 这些方法包括SS和PP前驱波方法、接收函数方法、ScS多次反射波方法、P'P'前驱波方法、三重震相波形模拟方法、背景噪声体波干涉成像方法等. 总体而言,地幔过渡带的厚度与地幔过渡带速度在大尺度结构上存在正相关性,表明两者都主要受控于温度结构,与橄榄石矿物相变预测一致. 然而,地震学观测得到的410-km和660-km间断面的绝对深度和几何形态则缺乏相关性,可能是由于地幔过渡带上下界面处的横向温度变化特征并不一致或者由于水含量和化学成分等差异所导致. 410-km和660-km间断面的强度(包括速度、密度和波阻抗跳跃值)和宽度主要受到地幔过渡带化学成分和水含量的影响. 一些地震学研究还探测到了地幔过渡带内部的520-km和560-km间断面,前者被认为由瓦兹利石到林伍德石的相变所导致,而后者可能与钙-钙钛矿从超硅石榴子石中出溶有关. 地幔过渡带附近的低速层可能与过渡带物质进入上下地幔发生脱水熔融存在一定联系. 尽管地幔过渡带研究取得了长足进展,但仍有许多重要科学问题悬而未决. 精确可靠的地幔过渡带地震学成像结果可以为这些问题提供关键信息,但同时也需要与矿物物理学、地球动力学、地球化学等学科交叉融合. 本文最后对未来的地幔过渡带地震学研究方向进行了展望.

     

  • 图  1  地球内部0~1000 km深度范围内(a)地震波速度和密度结构和(b)矿物体积分数. 地震波速度和密度结构基于AK135参考模型(Kennett et al., 1995). 矿物体积分数基于Pyrolite地幔岩模型(修改自Frost, 2008

    Figure  1.  (a) Wavespeed and density profiles and (b) volume fractions of minerals in the upper 1000 km of the Earth's interior. P and S wavespeeds and density are from the AK135 reference model (Kennett et al., 1995). Volume fractions of minerals are based on the Pyrolite model (modified from Frost, 2008)

    图  2  地幔过渡带间断面结构主要地震学成像方法射线路径示意图

    Figure  2.  Ray paths of major seismic phases used for imaging mantle transition zone discontinuities

    图  3  对比四个研究组基于SS前驱波方法得到的全球410-km和660-km间断面深度以及地幔过渡带厚度分布(Guo and Zhou, 2020; Houser et al., 2008; Lawrence and Shearer, 2008; Waszek et al., 2021). 为了更好地对比,所有结果都只保留了球谐函数角序数20阶以内的信号. 最后一行为S40RTS模型在地幔过渡带内平均S波速度异常值(Ritsema et al., 2011)与以上四个模型中410-km和660-km间断面深度以及地幔过渡带厚度在不同角序数下的相关系数

    Figure  3.  A comparison of 410-km and 660-km discontinuity depths and mantle transition zone thickness measured using SS precursors from four different studies (Guo and Zhou, 2020; Houser et al., 2008; Lawrence and Shearer, 2008; Waszek et al., 2021). For better comparison, all results are filtered to angular degrees ≤20. The last row shows the correlation coefficients at each angular degree between averaged mantle transition zone shear-wave velocity anomalies of the S40RTS model (Ritsema et al., 2011) and 410-km and 660-km discontinuity depths and mantle transition zone thickness of the above four models

    图  4  中国东北地区地幔过渡带结构. (a)410-km间断面深度分布图;(b)660-km间断面深度分布图;(c)地幔过渡带厚度分布图;(d)沿北纬42°的AA'剖面S波波速相对扰动(Tao et al., 2018) 和接收函数CCP叠加深度剖面. 图(a-c)中紫色实线表示俯冲太平洋板片等深线;图(c)中红色实线表示AA'剖面位置;图(d)中虚线表示410 km和660 km深度. GXAR和SLB分别代表大兴安岭和松辽盆地;ABG:阿巴嘎火山;AES:阿尔山火山;CBS:长白山火山;LG:龙岗火山;JPH:镜泊湖火山;WDLC:五大连池火山(图片修改自张炎等,2022

    Figure  4.  Mantle transition zone structures in the northeastern China. (a) Depth of the 410-km discontinuity; (b) Depth of the 660-km discontinuity; (c) Mantle transition zone thickness; and (d) Shear wave velocity perturbations along the AA' depth profile (Tao et al., 2018) and receiver function CCP stacks. Solid purple lines in (a-c) are the iso-depth lines of the subducting Pacific slab; the red line in (c) shows the location of the AA' profile; dashed lines in (d) mark 410 km and 660 km depths. GXAR: Great Xing’an Range; SLB: Songliao Basin; ABG: Abaga Volcano; AES: Aershan Volcano; CBS: Changbaishan Volcano; LG: Longgang Volcano; JPH: Jingpohu Volcano; WDLC: Wudalianchi Volcano (figure modified from Zhang et al., 2022)

  • [1] Adams R D. 1971. Reflections from discontinuities beneath antarctica[J]. Bulletin of the Seismological Society of America, 61(5): 1441–1451. DOI: 10.1785/BSSA0610051441.
    [2] Agrusta R, Goes S, Van Hunen J. 2017. Subducting-slab transition-zone interaction: Stagnation, penetration and mode Switches[J]. Earth and Planetary Science Letters, 464: 10–23. DOI: 10.1016/j.jpgl.2017.02.005.
    [3] Ai Y, Zheng T, Xu W, et al. 2003. A complex 660 km discontinuity beneath northeast China[J]. Earth and Planetary Science Letters, 212(1–2): 63–71. DOI: 10.1016/S0012-821X(03)00266-8.
    [4] Allègre C J, Turcotte D L. 1986. Implications of a two-component marble-cake mantle[J]. Nature, 323(6084): 123–127. DOI: 10.1038/323123a0.
    [5] Ammon C J. 1991. The isolation of receiver effects from teleseismic P waveforms[J]. Bulletin of the Seismological Society of America, 81(6): 2504. DOI: 10.1785/BSSA0810062504.
    [6] Anderson D L. 1979. The upper mantle transition region: Eclogite?[J]. Geophysical Research Letters, 6(6): 433–436. DOI: 10.1029/GL006i006p00433.
    [7] Anderson D L, Bass J D. 1984. Mineralogy and composition of the upper mantle[J]. Geophysical Research Letters, 11(7): 637–640. DOI: 10.1029/GL011i007p00637.
    [8] Anderson D L, Bass J D. 1986. Transition region of the Earth’s upper Mantle[J]. Nature, 320(6060): 321–328. DOI: 10.1038/320321a0.
    [9] Bass J D, Anderson D L. 1984. Composition of the upper mantle: Geophysical tests of two petrological Models[J]. Geophysical Research Letters, 11(3): 229–232. DOI: 10.1029/GL011i003p00229.
    [10] Benz H, Vidale J. 1993. Sharpness of upper-mantle discontinuities determined from high-frequency reflections[J]. Nature, 365: 147–150. DOI: 10.1038/365147a0.
    [11] Bercovici D, Karato S. 2003. Whole-mantle convection and the transition-zone water filter[J]. Nature, 425(6953): 39–44. DOI: 10.1038/nature01918.
    [12] Bijwaard H, Spakman W, Engdahl E R. 1998. Closing the gap between regional and global travel time tomography[J]. Journal of Geophysical Research: Solid Earth, 103(B12): 30055–30078. DOI: 10.1029/98JB02467.
    [13] Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography[J]. Journal of Geophysical Research: Solid Earth, 99(B8): 15853–15860. DOI: 10.1029/94JB00462.
    [14] Cao Q, Wang P, Van der Hilst R, et al. 2010. Imaging the upper mantle transition zone with a generalized Radon transform of SS precursors[J]. Physics of the Earth and Planetary Interiors, 180(1): 80–91. DOI: 10.1016/j.pepi.2010.02.006.
    [15] Chambers K, Deuss A, Woodhouse J. 2005a. Reflectivity of the 410-km discontinuity from PP and SS precursors[J]. Journal of Geophysical Research: Solid Earth, 110: B02301. DOI: 10.1029/2004JB003345.
    [16] Chambers K, Woodhouse J, Deuss A. 2005b. Topography of the 410-km discontinuity from PP and SS precursors[J]. Earth and Planetary Science Letters, 235(3–4): 610–622. DOI: 10.1016/j.jpgl.2005.05.014.
    [17] Chen L, Wen L, Zheng T. 2005. A wave equation migration method for receiver function imaging: 1. Theory[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11309. DOI: 10.1029/2005jb003665.
    [18] Chen M, Niu F, Liu Q, et al. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath east Asia: 1. Model construction and Comparisons[J]. Journal of Geophysical Research: Solid Earth, 120(3): 1762–1786. DOI: 10.1002/2014JB011638.
    [19] 陈棋福, 艾印双, 陈赟. 2019. 长白山火山区深部结构探测的研究进展与展望[J]. 中国科学: 地球科学: 49 (5): 778-795. doi: 10.1360/n072018-00040

    Chen Q F, Ai Y S, Chen Y. 2019. Overview of deep structures under the Changbaishan volcanic area in Northeast China[J].Science China Earth Sciences, 49 (5): 778-795 (in Chinese). DOI: 10.1360/n072018-00040
    [20] Chen W-P, Tseng T-L. 2007. Small 660-km seismic discontinuity beneath Tibet implies resting ground for detached lithosphere[J]. Journal of Geophysical Research, 112(B5): B05309. DOI: 10.1029/2006jb004607.
    [21] Chevrot S, Vinnik L, Montagner J-P. 1999. Global-scale analysis of the mantle Pds phases[J]. Journal of Geophysical Research: Solid Earth, 104(B9): 20203–20219. DOI: 10.1029/1999JB900087.
    [22] Chu R, Schmandt B, Helmberger D V. 2012. Upper mantle P velocity structure beneath the midwestern United States derived from triplicated waveforms[J]. Geochemistry, Geophysics, Geosystems, 13(2): Q0AK04. DOI: 10.1029/2011GC003818.
    [23] Chu R, Zhu L, Ding Z. 2019. Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms[J]. Earth and Planetary Physics, 3(5): 444–458. DOI: 10.26464/epp2019045.
    [24] Courtier A M, Revenaugh J. 2007. Deep upper-mantle melting beneath the Tasman and Coral Seas detected with multiple ScS reverberations[J]. Earth and Planetary Science Letters, 259(1): 66–76. DOI: 10.1016/j.jpgl.2007.04.027.
    [25] Deuss A, Woodhouse J. 2001. Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle[J]. Science, 294(5541): 354–357. DOI: 10.1126/science.1063524.
    [26] Deuss A, Redfern S A, Chambers K, et al. 2006. The nature of the 660-kilometer discontinuity in Earth’s mantle from global seismic observations of PP precursors[J]. Science, 311(5758): 198–201. DOI: 10.1126/science.1120020.
    [27] Deuss A. 2007. Seismic observations of transition-zone discontinuities beneath hotspot locations[J]. Geological Society of America Special Papers, 430: 121–136. DOI: 10.1130/2007.2430(07).
    [28] Deuss A. 2009. Global observations of mantle discontinuities using SS and PP precursors[J]. Surveys in Geophysics, 30(4–5): 301–326. DOI: 10.1007/s10712-009-9078-y.
    [29] Deuss A, Andrews J, Day E. 2013. Seismic Observations of Mantle Discontinuities and Their Mineralogical and Dynamical Interpretation[M]//Physics and Chemistry of the Deep Earth. John Wiley & Sons Ltd, 295–323. DOI: 10.1002/9781118529492.ch10.
    [30] Dueker K G, Sheehan A F. 1997. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track[J]. Journal of Geophysical Research: Solid Earth, 102(B4): 8313–8327. DOI: 10.1029/96JB03857.
    [31] Duffy T S, Anderson D L. 1989. Seismic velocities in mantle minerals and the mineralogy of the upper mantle[J]. Journal of Geophysical Research: Solid Earth, 94(B2): 1895–1912. DOI: 10.1029/JB094iB02p01895.
    [32] Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors, 25(4): 297–356. doi: 10.1016/0031-9201(81)90046-7
    [33] Engdahl E R, Flinn E A. 1969. Seismic waves reflected from discontinuities within Earth’s upper mantle[J]. Science, 163(3863): 177–179. DOI: 10.1126/science.163.3863.177.
    [34] Estabrook C H, Kind R. 1996. The nature of the 660-kilometer upper-mantle seismic discontinuity from precursors to the PP phase[J]. Science, 274(5290): 1179–1182. DOI: 10.1126/science.274.5290.1179.
    [35] Farra V, Vinnik L. 2000. Upper mantle stratification by P and S receiver functions[J]. Geophysical Journal International, 141(3): 699–712. DOI: 10.1046/j.1365-246x.2000.00118.x.
    [36] Fei H, Yamazaki D, Sakurai M, et al. 2017. A nearly water-saturated mantle transition zone inferred from mineral viscosity[J]. Science Advances, 3(6): e1603024. DOI: 10.1126/sciadv.1603024.
    [37] Feng J, Yao H, Poli P, et al. 2017. Depth variations of 410 km and 660 km discontinuities in eastern North China Craton revealed by ambient noise interferometry[J]. Geophysical Research Letters, 44(16): 8328–8335. DOI: 10.1002/2017GL074263.
    [38] Feng J, Yao H, Wang Y, et al. 2021a. Segregated oceanic crust trapped at the bottom mantle transition zone revealed from ambient noise interferometry[J]. Nature Communications, 12(1): 1–8. DOI: 10.1038/s41467-021-22853-2.
    [39] Feng J, Yao H, Chen L, et al. 2021b. Massive lithospheric delamination in southeastern Tibet facilitating continental extrusion[J]. National Science Review, 9(4): nwab174. DOI: 10.1093/nsr/nwab174.
    [40] Flanagan M P, Shearer P M. 1998. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors[J]. Journal of Geophysical Research: Solid Earth, 103(B2): 2673–2692. DOI: 10.1029/97JB03212.
    [41] Flanagan M P, Shearer P M. 1999. A map of topography on the 410-km discontinuity from PP precursors[J]. Geophysical Research Letters, 26(5): 549–552. DOI: 10.1029/1999GL900036.
    [42] French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots[J]. Nature, 525(7567): 95. DOI: 10.1038/nature14876.
    [43] Frost D J, Dolejš D. 2007. Experimental determination of the effect of H2O on the 410-km seismic discontinuity[J]. Earth and Planetary Science Letters, 256(1): 182–195. DOI: 10.1016/j.jpgl.2007.01.023.
    [44] Frost D J. 2008. The upper mantle and transition zone[J]. Elements, 4(3): 171–176. DOI: 10.2113/gselements.4.3.171.
    [45] Fukao Y, Obayashi M, Inoue H, et al. 1992. Subducting slabs stagnant in the mantle transition zone[J]. Journal of Geophysical Research: Solid Earth, 97(B4): 4809–4822. DOI: 10.1029/91JB02749.
    [46] Fukao Y, Obayashi M, Nakakuki T, et al. 2009. Stagnant slab: A review[J]. Annual Review of Earth and Planetary Sciences, 37: 19–46. DOI: 10.1146/annurev.earth.36.031207.124224.
    [47] Gao W, Matzel E, Grand S P. 2006. Upper mantle seismic structure beneath eastern Mexico determined from P and S waveform inversion and its implications[J]. Journal of Geophysical Research: Solid Earth, 111: B08307. DOI: 10.1029/2006JB004304.
    [48] Goes S, Agrusta R, Hunen J van, et al. 2017. Subduction-transition zone interaction: A Review[J]. Geosphere, 13(3): 644–664. DOI: 10.1130/GES01476.1.
    [49] Grand S P, Helmberger D V. 1984. Upper mantle shear structure of North America[J]. Geophysical Journal International, 76(2): 399–438. DOI: 10.1111/j.1365-246X.1984.tb05053.x.
    [50] Grand S P, Van der Hilst R D, Widiyantoro S. 1997. Global seismic tomography: A snapshot of convection in the Earth[J]. GSA Today, 7(4): 1–7.
    [51] Green H W, Houston H. 1995. The mechanics of deep earthquakes[J]. Annual Review of Earth and Planetary Sciences, 23: 169–214. DOI: 10.1146/annurev.ea.23.050195.001125.
    [52] Gu Y J, Dziewonski A M, Agee C B. 1998. Global de-correlation of the topography of transition zone discontinuities[J]. Earth and Planetary Science Letters, 157(1): 57–67. DOI: 10.1016/S0012-821X(98)00027-2.
    [53] Gu Y J, Dziewonski A M. 2002. Global variability of transition zone thickness[J]. Journal of Geophysical Research: Solid Earth, 107(B7): 2135. DOI: 10.1029/2001JB000489.
    [54] Gu Y J, Dziewoński A M, Ekström G. 2003. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities[J]. Geophysical Journal International, 154(2): 559–583. DOI: 10.1046/j.1365-246X.2003.01967.x.
    [55] Gu Y J, Okeler A, Schultz R. 2012. Tracking slabs beneath northwestern Pacific subduction zones[J]. Earth and Planetary Science Letters, 331–332: 269–280. DOI: 10.1016/j.jpgl.2012.03.023.
    [56] Guo Z, Zhou Y. 2020. Finite-frequency imaging of the global 410- and 660-km discontinuities using SS precursors[J]. Geophysical Journal International, 220(3): 1978–1994. DOI: 10.1093/gji/ggz546.
    [57] Hager B H, Clayton R W, Richards M A, et al. 1985. Lower mantle heterogeneity, dynamic topography and the geoid[J]. Nature, 313(6003): 541–545. DOI: 10.1038/313541a0.
    [58] Han G, Li J, Guo G, et al. 2021. Pervasive low-velocity layer atop the 410-km discontinuity beneath the northwest Pacific subduction zone: Implications for rheology and geodynamics[J]. Earth and Planetary Science Letters, 554: 116642. DOI: 10.1016/j.jpgl.2020.116642.
    [59] Helffrich G. 2000. Topography of the transition zone seismic discontinuities[J]. Reviews of Geophysics, 38(1): 141–158. DOI: 10.1029/1999RG000060.
    [60] Helffrich G R, Wood B J. 2001. The Earth’s mantle[J]. Nature, 412(6846): 501–507. DOI: 10.1038/35087500.
    [61] Helmberger D V, Engen G R. 1974. Upper mantle shear structure[J]. Journal of Geophysical Research, 79(26): 4017–4028. DOI: 10.1029/JB079i026p04017.
    [62] Hirose K. 2002. Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle[J]. Journal of Geophysical Research: Solid Earth, 107(B4): 2078. DOI: 10.1029/2001JB000597.
    [63] Hirschmann M M. 2006. Water, melting, and the deep Earth H2O cycle[J]. Annual Review of Earth and Planetary Sciences, 34(1): 629–653. DOI: 10.1146/annurev.earth.34.031405.125211.
    [64] Hofmann A W, Hart S R. 1978. An assessment of local and regional isotopic equilibrium in the mantle[J]. Earth and Planetary Science Letters, 38(1): 44–62. DOI: 10.1016/0012-821X(78)90125-5.
    [65] Houser C, Masters G, Flanagan M, et al. 2008. Determination and analysis of long-wavelength transition zone structure using SS precursors[J]. Geophysical Journal International, 174(1): 178–194. DOI: 10.1111/j.1365-246X.2008.03719.x.
    [66] Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. DOI: 10.1029/2005jb004066.
    [67] Huang Q, Schmerr N, Waszek L, et al. 2019. Constraints on seismic anisotropy in the mantle transition zone from long-period SS precursors[J]. Journal of Geophysical Research: Solid Earth, 124(7): 6779–6800. DOI: 10.1029/2019JB017307.
    [68] Isacks B, Molnar P. 1969. Mantle earthquake mechanisms and the sinking of the lithosphere[J]. Nature, 223(5211): 1121–1124. DOI: 10.1038/2231121a0.
    [69] Ita J, Stixrude L. 1992. Petrology, elasticity, and composition of the mantle transition zone[J]. Journal of Geophysical Research: Solid Earth, 97(B5): 6849–6866. DOI: 10.1029/92JB00068.
    [70] Ito E, Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications[J]. Journal of Geophysical Research: Solid Earth, 94(B8): 10637–10646. DOI: 10.1029/JB094iB08p10637.
    [71] Jeffreys H, Bullen K. 1940. Seismological Tables, Brit. Assoc[M]. London: British Association Seismological Press.
    [72] Johnson L R. 1967. Array measurements of P velocities in the upper mantle[J]. Journal of Geophysical Research, 72(24): 6309–6325. DOI: 10.1029/JZ072i024p06309.
    [73] Kárason H, Van der Hilst R D. 2000. Constraints on Mantle Convection from Seismic Tomography[M]//The History and Dynamics of Global Plate Motions. American Geophysical Union (AGU), 277–288. DOI: 10.1029/GM121p0277.
    [74] Karato S. 2011. Water distribution across the mantle transition zone and its implications for global material circulation[J]. Earth and Planetary Science Letters, 301(3–4): 413–423. DOI: 10.1016/j.jpgl.2010.11.038.
    [75] Karato S, Karki B, Park J. 2020. Deep mantle melting, global water circulation and its implications for the stability of the ocean mass[J]. Progress in Earth and Planetary Science, 7(1): 76. DOI: 10.1186/s40645-020-00379-3.
    [76] Katsura T, Ito E. 1989. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel[J]. Journal of Geophysical Research: Solid Earth, 94(B11): 15663–15670. DOI: 10.1029/JB094iB11p15663.
    [77] Katsura T, Yamada H, Nishikawa O, et al. 2004. Olivine-wadsleyite transition in the system(Mg, Fe)2SiO4[J]. Journal of Geophysical Research, 109(B2): 105–122. DOI: 10.1029/2003JB002438.
    [78] Kennett B, Engdahl E. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 105(2): 429–465. DOI: 10.1111/j.1365-246X.1991.tb06724.x.
    [79] Kennett B, Engdahl E, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 122(1): 108–124. DOI: 10.1111/j.1365-246X.1995.tb03540.x.
    [80] Kind R, Li X. 2007. Deep Earth Structure-transition Zone and Mantle Discontinuities[M]//Treatise on Geophysics: Seismology and the Structure of the Earth. 1: 591–618.
    [81] Kohlstedt D, Keppler H, Rubie D. 1996. Solubility of water in the α, β and γ phases of(Mg, Fe)2SiO4[J]. Contributions to Mineralogy and Petrology, 123(4): 345–357. DOI: 10.1007/s004100050161.
    [82] Langston C A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves[J]. Journal of Geophysical Research: Solid Earth, 84(B9): 4749–4762. DOI: 10.1029/JB084iB09p04749.
    [83] Lawrence J F, Shearer P M. 2006. Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms[J]. Geochemistry, Geophysics, Geosystems, 7: 10012. DOI: 10.1029/2006gc001339.
    [84] Lawrence J F, Shearer P M. 2008. Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels[J]. Geophysical Journal International, 174(1): 143–158. DOI: 10.1111/j.1365-246X.2007.03673.x.
    [85] Lei J, Zhao D. 2005. P-wave tomography and origin of the Changbai intraplate volcano in northeast Asia[J]. Tectonophysics, 397(3–4): 281–295. DOI: 10.1016/j.tecto.2004.12.009.
    [86] Lei J, Xie F, Fan Q, et al. 2013. Seismic imaging of the deep structure under the Chinese volcanoes: An overview[J]. Physics of the Earth and Planetary Interiors, 224: 104–123. DOI: 10.1016/j.pepi.2013.08.008.
    [87] 雷建设, 赵大鹏, 徐义刚, 等, 2018. 长白山火山下方地幔转换带中滞留的俯冲太平洋板块存在空缺吗?[J]. 岩石学报, 34(1): 13-22

    Lei J S, Zhao D P, Xu Y G, et al. 2018. Is there a gap in the stagnant Pacific slab in the mantle transition zone under the Changbaishan volcano?[J]. Acta Petrologica Sinica, 34(1): 13-22(in Chinese).
    [88] Lei W, Ruan Y, Bozdağ E, et al. 2020. Global adjoint tomography—model GLAD-M25[J]. Geophysical Journal International, 223(1): 1–21. DOI: 10.1093/gji/ggaa253.
    [89] Lessing S, Thomas C, Saki M, et al. 2015. On the difficulties of detecting PP precursors[J]. Geophysical Journal International, 201(3): 1666–1681. DOI: 10.1093/gji/ggv105.
    [90] Li C, Van der Hilst R D, Engdahl E R, et al. 2008. A new global model for P wave speed variations in Earth’s mantle[J]. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. DOI: 10.1029/2007GC001806.
    [91] Li G, Bai L, Zhou Y, et al. 2017. Velocity structure of the mantle transition zone beneath the southeastern margin of the Tibetan Plateau[J]. Tectonophysics, 721: 349–360. DOI: 10.1016/j.tecto.2017.08.009.
    [92] 李国辉, 白玲, 周元泽, 等, 2018. 地幔过渡带顶部低速层地震学研究进展[J]. 地球物理学进展, 33(4): 1366-1373 doi: 10.6038/pg2018BB0293

    Li G H, Bai L, Zhou Y Z, et al. 2018. Seismological study of the low-velocity layer atop the mantle transition zone[J]. Progress in Geophysics, 33(4): 1366-1373(in Chinese). DOI: 10.6038/pg2018BB0293.
    [93] Li G, Gao Y, Zhou Y, et al. 2022. A Low-velocity layer atop the mantle transition zone beneath the western Central Asian Orogenic Belt: Upper mantle melting induced by ancient slab subduction[J]. Earth and Planetary Science Letters, 578: 117287. DOI: 10.1016/j.jpgl.2021.117287.
    [94] Li J, Chen Q-F, Vanacore E, et al. 2008. Topography of the 660-km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab[J]. Geophysical Research Letters, 35: L01302. DOI: 10.1029/2007GL031658.
    [95] Li J, Wang Xin, Wang Xiujiao, et al. 2013. P and SH velocity structure in the upper mantle beneath northeast China: Evidence for a stagnant slab in hydrous mantle transition zone[J]. Earth and Planetary Science Letters, 367: 71–81. DOI: 10.1016/j.jpgl.2013.02.026.
    [96] Li J, Tosi N, Maierova P, Yuen D A. 2016. Evidence from caustics waveform modelling for long slab thickening above the 660-km discontinuity under northeast Asia: Dynamical implication[J]. Geophysical Monograph-American Geophysical Union, 211: 5-18,DOI: 10.1002/9781118888865.ch1.
    [97] 李江海, 刘仲兰, 2019. 地幔内板片俯冲运动模式及其大地构造意义—俯冲的屏障与穿越机制[J]. 地质论评, 65(02): 453-463 doi: 10.16509/j.georeview.2019.02.015

    Li J H, Liu Z L. 2019. Subduction patterns within mantle and its tectonic significance – Subduction barrier and crossing mechanism[J]. Geological Review, 65(02): 453-463(in Chinese). DOI: 10.16509/j.georeview.2019.02.015.
    [98] Li S, Huang J, Liu Z, et al. 2019. Study on the mantle discontinuity structures beneath northeast China with time–frequency phase-weighted stacks of ambient noise correlations[J]. Geophysical Journal International, 218(3): 1490–1501. DOI: 10.1093/gji/ggz235.
    [99] Li X, Yuan X. 2003. Receiver functions in northeast China–implications for slab penetration into the lower mantle in northwest Pacific subduction zone[J]. Earth and Planetary Science Letters, 216(4): 679–691. DOI: 10.1016/S0012-821X(03)00555-7.
    [100] Liu Z, Niu F, Chen Y J, et al. 2015. Receiver function images of the mantle transition zone beneath NE China: New constraints on intraplate volcanism, deep subduction and their potential link[J]. Earth and Planetary Science Letters, 412: 101–111. DOI: 10.1016/j.jpgl.2014.12.019.
    [101] Liu Z, Park J, Karato S. 2016. Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone[J]. Geophysical Research Letters, 43(6): 2480–2487. DOI: 10.1002/2015GL067097.
    [102] Lyubetskaya T, Korenaga J. 2007. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results[J]. Journal of Geophysical Research: Solid Earth, 112(B3): B03211. DOI: 10.1029/2005JB004223.
    [103] Ma J, Tian Y, Liu C, et al. 2018. P-wave tomography of northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics[J]. Physics of the Earth and Planetary Interiors, 274: 105–126. DOI: 10.1016/j.pepi.2017.11.003.
    [104] Maguire R, Ritsema J, Goes S. 2018. Evidence of subduction-related thermal and compositional heterogeneity below the United States from transition zone receiver functions[J]. Geophysical Research Letters, 45(17): 8913–8922. DOI: 10.1029/2018GL078378.
    [105] 毛竹, 李新阳, 2016. 水对地幔矿物弹性性质的影响及其地球物理意义[J]. 中国科学: 地球科学, 46(04): 411-429 doi: 10.1360/N072015-00365

    Mao Z, Li X Y. 2016. Effect of hydration on the elasticity of mantle minerals and its geophysical implications[J]. Science China Earth Sciences, 46(04): 411-429(in Chinese). DOI: 10.1360/N072015-00365.
    [106] McDonough W F, Sun S-S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3): 223–253. DOI: 10.1016/0009-2541(94)00140-4.
    [107] Muir J M R, Zhang F, Brodholt J P. 2021. The effect of water on the post-spinel transition and evidence for extreme water contents at the bottom of the transition zone[J]. Earth and Planetary Science Letters, 565: 116909. DOI: 10.1016/j.jpgl.2021.116909.
    [108] Nakanishi I. 1986. Seismic reflections from the upper mantle discontinuities beneath the Mid-Atlantic Ridge observed by a seismic array in Hokkaido Region, Japan[J]. Geophysical Research Letters, 13(13): 1458–1461. DOI: 10.1029/GL013i013p01458.
    [109] Niazi M, Anderson D L. 1965. Upper mantle structure of western North America from apparent velocities of P waves[J]. Journal of Geophysical Research, 70(18): 4633–4640. DOI: 10.1029/JZ070i018p04633.
    [110] Niu F, Kawakatsu H. 1995. Direct evidence for the undulation of the 660-km discontinuity beneath Tonga: Comparison of Japan and California array data[J]. Geophysical research letters, 22(5): 531–534. DOI: 10.1029/94GL03332.
    [111] Niu F, Kawakatsu H. 1996. Complex structure of mantle dDiscontinuities at the tip of the subducting slab beneath northeast China. A pPreliminary investigation of broadband receiver functions. [J]. Journal of Physics of the Earth, 44(6): 701–711. DOI: 10.4294/jpe1952.44.701.
    [112] Niu F, Inoue H, Suetsugu D, et al. 2000. Seismic evidence for a thinner mantle transition zone beneath the south Pacific superswell[J]. Geophysical Research Letters, 27(13): 1981–1984. DOI: 10.1029/1999GL011280.
    [113] Ohtani E. 2005. Water in the mantle[J]. Elements, 1(1): 25–30. DOI: 10.2113/gselements.1.1.25.
    [114] Palme H, O’Neill H S C. 2003. Cosmochemical estimates of mantle composition[J]. Treatise on Geochemistry, 2: 568.
    [115] Pearson D G, Brenker F E, Nestola F, et al. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 507(7491): 221–224. DOI: 10.1038/nature13080.
    [116] Poli P, Campillo M, Pedersen H. 2012. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise[J]. Science, 338(6110): 1063–1065. DOI: 10.1126/science.1228194.
    [117] Replumaz A, Karason H, Van der Hilst R D, et al. 2004. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography[J]. Earth and Planetary Science Letters, 221(1–4): 103–115. DOI: 10.1016/S0012-821X(04)00070-6.
    [118] Revenaugh J, Jordan T H. 1991. Mantle layering from ScS reverberations: 2. The transition zone[J]. Journal of Geophysical Research: Solid Earth, 96(B12): 19763–19780. DOI: 10.1029/91jb01486.
    [119] Revenaugh J, Sipkin S. 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity[J]. Nature, 369(6480): 474–476. DOI: 10.1038/369474a0.
    [120] Rigden S M, Gwanmesia G D, Gerald J D F, et al. 1991. Spinel elasticity and seismic structure of the transition zone of the mantle[J]. Nature, 354(6349): 143–145. DOI: 10.1038/354143a0.
    [121] Ringwood A. 1962a. A model for the upper mantle[J]. Journal of Geophysical Research, 67(2): 857–867. DOI: 10.1029/JZ067i002p00857.
    [122] Ringwood A. 1962b. A model for the upper mantle: 2. [J]. Journal of Geophysical Research, 67(11): 4473–4478. DOI: 10.1029/JZ067i011p04473.
    [123] Ringwood A E. 1975. Composition and Petrology of the Earth's Mantle[M]. New York: McGraw-Hill.
    [124] Ritsema J, Deuss A, Van Heijst H, et al. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophysical Journal International, 184(3): 1223–1236. DOI: 10.1111/j.1365-246X.2010.04884.x.
    [125] Saikia A, Frost D J, Rubie D C. 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle[J]. Science, 319(5869): 1515–1518. DOI: 10.1126/science.1152818.
    [126] Schaeffer A J, Bostock M G. 2010. A low-velocity zone atop the transition zone in northwestern Canada[J]. Journal of Geophysical Research: Solid Earth, 115(B6): B06302. DOI: 10.1029/2009JB006856.
    [127] Schmandt B, Dueker K G, Hansen S M, et al. 2011. A sporadic low-velocity layer atop the western U. S. mantle transition zone and short-wavelength variations in transition zone discontinuities[J]. Geochemistry, Geophysics, Geosystems, 12(8): Q08014. DOI: 10.1029/2011GC003668.
    [128] Schmandt B, Jacobsen S D, Becker T W, et al. 2014. Dehydration melting at the top of the lower mantle[J]. Science, 344(6189): 1265–1268. DOI: 10.1126/science.1253358.
    [129] Schmerr N, Garnero E. 2006. Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors[J]. Journal of Geophysical Research, 111(B8): B08305. DOI: 10.1029/2005JB004197.
    [130] Schmerr N, Garnero E J. 2007. Upper mantle discontinuity topography from thermal and chemical heterogeneity[J]. Science, 318(5850): 623–626. DOI: 10.1126/science.1145962.
    [131] Schultz R, Gu Y J. 2013. Multiresolution imaging of mantle reflectivity structure using SS and P′P′ precursors[J]. Geophysical Journal International, 195(1): 668–683. DOI: 10.1093/gji/ggt266.
    [132] Shang X, Hoop M V, Hilst R D. 2012. Beyond receiver functions: Passive source reverse time migration and inverse scattering of converted waves[J]. Geophysical Research Letters, 39(15): L15308. DOI: 10.1029/2012GL052289.
    [133] Shearer P M. 1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity[J]. Nature, 344(6262): 121. DOI: 10.1038/344121a0.
    [134] Shearer P M. 1991. Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases[J]. Journal of Geophysical Research, 96(B11): 18147–18182. DOI: 10.1029/91JB01592.
    [135] Shearer P M, Masters T G. 1992. Global mapping of topography on the 660-km discontinuity[J]. Nature, 355(6363): 791–796. DOI: 10.1038/355791a0.
    [136] Shearer P M. 1996. Transition zone velocity gradients and the 520-km discontinuity[J]. Journal of Geophysical Research: Solid Earth, 101(B2): 3053–3066. DOI: 10.1029/95JB02812.
    [137] Shearer P M, Flanagan M P. 1999. Seismic velocity and density jumps across the 410-and 660-kilometer discontinuities[J]. Science, 285(5433): 1545–1548. DOI: 10.1126/science.285.5433.1545.
    [138] Shearer P M, Flanagan M P, Hedlin M A. 1999. Experiments in migration processing of SS precursor data to image upper mantle discontinuity structure[J]. Journal of Geophysical Research, 104: 7229–7242. DOI: 10.1029/1998JB900119.
    [139] Shearer P M. 2000. Upper mantle seismic discontinuities[J]. Geophysical Monograph-American Geophysical Union, 117: 115–131. DOI: 10.1029/GM117p0115.
    [140] Shearer P M, Buehler J. 2019. Imaging upper-mantle structure under USArray using long-period reflection seismology[J]. Journal of Geophysical Research: Solid Earth, 124(9): 9638–9652. DOI: 10.1029/2019JB017326.
    [141] Smyth J R, Jacobsen S D. 2006. Nominally anhydrous minerals and Earth’s deep water cycle[J]. Geophysical Monograph-American Geophysical Union, 168: 1. DOI: 10.1029/168GM02.
    [142] Song T-R A, Helmberger Don V, Grand S P. 2004. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States[J]. Nature, 427(6974): 530–533. DOI: 10.1038/nature02231.
    [143] Stixrude L, Lithgow-Bertelloni C. 2012. Geophysics of chemical heterogeneity in the mantle[J]. Annual Review of Earth and Planetary Sciences, 40(1): 569–595. DOI: 10.1146/annurev.earth.36.031207.124244.
    [144] Stolper E, Walker D, Hager B H, et al. 1981. Melt segregation from partially molten source regions: The importance of melt density and source region size[J]. Journal of Geophysical Research: Solid Earth, 86(B7): 6261–6271. DOI: 10.1029/JB086iB07p06261.
    [145] Tajima F, Grand S P. 1995. Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone[J]. Geophysical Research Letters, 22(23): 3139–3142. DOI: 10.1029/95GL03314.
    [146] Tajima F, Grand S P. 1998. Variation of transition zone high-velocity anomalies and depression of 660 km discontinuity associated with subduction zones from the southern Kuriles to Izu-Bonin and Ryukyu[J]. Journal of Geophysical Research: Solid Earth, 103(B7): 15015–15036. DOI: 10.1029/98JB00752.
    [147] Tang Y, Obayashi M, Niu F, et al. 2014. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling[J]. Nature Geoscience, 7(6): 470–475. DOI: 10.1038/ngeo2166.
    [148] Tao K, Grand S P, Niu F. 2018. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography[J]. Geochemistry, Geophysics, Geosystems, 19(8): 2732–2763. DOI: 10.1029/2018GC007460.
    [149] Tauzin B, Debayle E, Wittlinger G. 2008. The mantle transition zone as seen by global Pds phases: No clear evidence for a thin transition zone beneath hotspots[J]. Journal of Geophysical Research: Solid Earth, 113: B08309. DOI: 10.1029/2007jb005364.
    [150] Tauzin B, Debayle E, Wittlinger G. 2010. Seismic evidence for a global Low-velocity layer within the Earth’s upper mantle[J]. Nature Geoscience, 3(10): 718–721. DOI: 10.1038/ngeo969.
    [151] Tauzin B, Kim S, Kennett B L N. 2017. Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: Thermal or compositional origin?[J]. Earth and Planetary Science Letters, 477: 1–13. DOI: 10.1016/j.jpgl.2017.08.006.
    [152] Thio V, Cobden L, Trampert J. 2016. Seismic signature of a hydrous mantle transition zone[J]. Physics of the Earth and Planetary Interiors, 250: 46–63. DOI: 10.1016/j.pepi.2015.11.005.
    [153] Thomas C, Billen M I. 2009. Mantle transition zone structure along a profile in the SW Pacific: Thermal and compositional variations[J]. Geophysical Journal International, 176(1): 113–125. DOI: 10.1111/j.1365-246X.2008.03934.x.
    [154] Thompson A B. 1992. Water in the Earth’s upper mantle[J]. Nature, 358(6384): 295. DOI: 10.1038/358295a0.
    [155] Thompson D A, Hammond J O S, Kendall J-M, et al. 2015. Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction[J]. Geochemistry, Geophysics, Geosystems, 16(3): 834–846. DOI: 10.1002/2014GC005648.
    [156] Tian D, Lv M, Wei S S, et al. 2020. Global variations of Earth’s 520- and 560-km discontinuities[J]. Earth and Planetary Science Letters, 552: 116600. DOI: 10.1016/j.jpgl.2020.116600.
    [157] Tian Y, Zhu H, Zhao D, et al. 2016. Mantle transition zone structure beneath the Changbai volcano: Insight into deep slab dehydration and hot upwelling near the 410 km discontinuity[J]. Journal of Geophysical Research: Solid Earth, 121(8): 5794–5808. DOI: 10.1002/2016JB012959.
    [158] 田有, 马锦程, 刘财, 等, 2019. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报, 62(3): 1071-1082 doi: 10.6038/cjg2019M0061

    Tian Y, Ma J C, Liu C, et al. 2019. Effects of subduction of the western Pacific plate on tectonic evolution of Northeast China and geodynamic implications[J]. Chinese Journal of Geophysics. 62(3): 1071-1082(in Chinese). DOI: 10.6038/cjg2019M0061.
    [159] Tseng T, Chen W. 2008. Discordant contrasts of P- and S-wave speeds across the 660-km discontinuity beneath Tibet: A case for hydrous remnant of sub-continental lithosphere[J]. Earth and Planetary Science Letters, 268(3–4): 450–462. DOI: 10.1016/j.jpgl.2008.01.038.
    [160] Van der Hilst R, Engdahl E, Spakman W, et al. 1991. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs[J]. Nature, 353: 37–42. DOI: 10.1038/353037a0.
    [161] Van der Hilst R, Widiyantoro S, Engdahl E. 1997. Evidence for deep mantle circulation from global tomography[J]. Nature, 386: 578–584. DOI: 10.1038/386578a0.
    [162] Van der Meijde M. 2003. Seismic evidence for water deep in Earth’s upper mantle[J]. Science, 300(5625): 1556–1558. DOI: 10.1126/science.1083636.
    [163] Van Keken P E, Hauri E H, Ballentine C J. 2002. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity[J]. Annual Review of Earth and Planetary Sciences, 30(1): 493–525. DOI: 10.1146/annurev.earth.30.091201.141236.
    [164] Vidale J E, Benz H M. 1992. Upper-mantle seismic discontinuities and the thermal structure of subduction zones[J]. Nature, 356(6371): 678–683. DOI: 10.1038/356678a0.
    [165] Vinnik L, Farra V. 2007. Low S velocity atop the 410-km discontinuity and mantle plumes[J]. Earth and Planetary Science Letters, 262(3): 398–412. DOI: 10.1016/j.jpgl.2007.07.051.
    [166] Walck M C. 1984. The P-wave upper mantle structure beneath an active spreading centre: the Gulf of California[J]. Geophysical Journal International, 76(3): 697–723. DOI: 10.1111/j.1365-246X.1984.tb01918.x.
    [167] Wang B, Niu F. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J]. Journal of Geophysical Research, 115(B6): B06308. DOI: 10.1029/2009JB006608.
    [168] Wang X, Li J, Chen Q-F. 2017. Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple-ScS waves: Upper mantle structure beneath Japan Sea[J]. Journal of Geophysical Research: Solid Earth, 122(2): 1264–1283. DOI: 10.1002/2016JB013357.
    [169] Wang X, Chen Q-F, Niu F, et al. 2020. Distinct slab interfaces imaged within the mantle transition Zone[J]. Nature Geoscience, 13(12): 822–827. DOI: 10.1038/s41561-020-00653-5.
    [170] Wang Y, Wen L X, Weidner D, He Y M. 2006. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia[J]. Journal of Geophysical Research: Solid Earth, 111: B07305.
    [171] Waszek L, Tauzin B, Schmerr N C, et al. 2021. A poorly mixed mantle transition zone and its thermal state inferred from seismic waves[J]. Nature Geoscience, 14(12): 949–955. DOI: 10.1038/s41561-021-00850-w.
    [172] Wei S S, Shearer P M. 2017. A sporadic Low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean[J]. Journal of Geophysical Research: Solid Earth, 122(7): 5144–5159. DOI: 10.1002/2017JB014100.
    [173] Weidner D J, Wang Y. 1998. Chemical- and Clapeyron-induced buoyancy at the 660 km discontinuity[J]. Journal of Geophysical Research: Solid Earth, 103(B4): 7431–7441. DOI: 10.1029/97JB03511.
    [174] Weidner D J, Wang Y. 2000. Phase transformations: Implications for mantle structure[J]. Geophysical Monograph-American Geophysical Union, 117: 215–235. DOI: 10.1029/GM117p0215.
    [175] Whitcomb J H, Anderson D L. 1970. Reflection of P′P′ seismic waves from discontinuities in the mantle[J]. Journal of Geophysical Research, 75(29): 5713–5728. DOI: 10.1029/JB075i029p05713.
    [176] Wood B. 1995. The effect of H2O on the 410-kilometer seismic discontinuity[J]. Science, 268(5207): 74–76. DOI: 10.1126/science.268.5207.74.
    [177] Wu F-Y, Sun D-Y, Ge W-C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1–30. DOI: 10.1016/j.jseaes.2010.11.014.
    [178] Wu W, Ni S, Irving J C. 2019. Inferring Earth’s discontinuous chemical layering from the 660-kilometer boundary topography[J]. Science, 363(6428): 736–740. DOI: 10.1126/science.aav0822.
    [179] Xu F, Vidale J E, Earle P S. 2003. Survey of precursors to P′P′: Fine structure of mantle discontinuities[J]. Journal of Geophysical Research: Solid Earth, 108(B1): 2024. DOI: 10.1029/2001JB000817.
    [180] 徐强, 赵俊猛, 2008. 接收函数方法的研究综述[J]. 地球物理学进展, 23(6): 1709-1716

    Xu Q, Zhao J M. 2008. A review of the receiver function method[J]. Progress in Geophysics. 23(6): 1709-1716(in Chinese).
    [181] Xu W, Lithgow-Bertelloni C, Stixrude L, et al. 2008. The effect of bulk composition and temperature on mantle seismic structure[J]. Earth and Planetary Science Letters, 275(1): 70–79. DOI: 10.1016/j.jpgl.2008.08.012.
    [182] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620-1646 doi: 10.3799/dqkx.2019.036

    Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt[J]. Earth Science, 44(5): 1620-1646(in Chinese). DOI: 10.3799/dqkx.2019.036.
    [183] 杨凡, 张涵, 李娟, 等, 2021. 利用接收函数散射核方法探测中国东北地区地幔转换带界面三维形态[J]. 地球物理学报, 64(12): 4406-4424 doi: 10.6038/cjg2021P0213

    Yang F, Zhang H, Li J, et al. 2021. Topography of mantle transition zone discontinuities beneath Northeast China imaged by receiver function with Ps scattering kernel[J]. Chinese Journal of Geophysics. 64(12): 4406-4424(in Chinese). DOI: 10.6038/cjg2021P0213.
    [184] Ye L, Li J, Tseng T-L, Yao Z. 2011. A stagnant slab in a water-bearing mantle transition zone beneath northeast China: implications from regional SH waveform modelling[J]. Geophysical Journal International, 186: 706–710.
    [185] Yu C, Day E A, De Hoop M V, et al. 2017. Mapping mantle transition zone discontinuities beneath the central Pacific with array processing of SS precursors[J]. Journal of Geophysical Research: Solid Earth, 122(12): 10364-10378. DOI: 10.1002/2017JB014327.
    [186] Yu C, Day E A, Hoop M V de, et al. 2018. Compositional heterogeneity near the base of the mantle transition zone beneath Hawaii[J]. Nature Communications, 9(1): 1266. DOI: 10.1038/s41467-018-03654-6.
    [187] Yu C, Goes S, Day E A, et al. 2019. Thermal and chemical properties of the global mantle transition zone from PP and SS precursors[C]// AGU Fall Meeting Abstracts, 2019: DI31B-0005.
    [188] Zhang R, Gao Z, Wu Q, et al. 2016. Seismic images of the mantle transition zone beneath northeast China and the Sino-Korean craton from P-wave receiver functions[J]. Tectonophysics, 675: 159–167. DOI: 10.1016/j.tecto.2016.03.002.
    [189] 张炎, 钮凤林, 宁杰远. 2022. 基于程函方程与三维速度模型的中国东北地区地幔过渡带接收函数研究[J]. 地球物理学报(录用).

    Zhang Y, Niu F L, Ning J Y. 2022. Mantle transition zone beneath northeast China imaged by 3-D migration of receiver function data[J]. Chinese Journal of Geophysics, (Accepted) (in Chinese). DOI: 10.6038/cjg2022P0596
    [190] Zhao D, Lei J, Tang R. 2004. Origin of the Changbai intraplate volcanism in northeast China: Evidence from seismic tomography[J]. Chinese Science Bulletin, 49(13): 1401–1408. DOI: 10.1360/04wd0125.
    [191] Zheng Y, Lay T, Flanagan M P, et al. 2007. Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge[J]. Science, 316(5826): 855–859. DOI: 10.1126/science.1138074.
    [192] Zheng Z, Ventosa S, Romanowicz B. 2015. High resolution upper mantle discontinuity images across the Pacific Ocean from SS precursors using local slant stack filters[J]. Geophysical Journal International, 202(1): 175–189. DOI: 10.1093/gji/ggv118.
    [193] 周春银, 金振民, 章军锋. 2010. 地幔转换带: 地球深部研究的重要方向[J]. 地学前缘, 17(3): 90-113.

    Zhou C Y, Jin Z M, Zhang J F. 2010. Mantle transition zone: An important field in the studies of Earth's deep interior[J]. Earth Science Frontiers. 17(3): 90-113(in Chinese).
    [194] Zhou J-B, Wilde S A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt[J]. Gondwana Research, 23(4): 1365–1377. DOI: 10.1016/j.gr.2012.05.012.
  • 加载中
图(4)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  150
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 录用日期:  2022-06-28
  • 修回日期:  2022-06-26
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回