• ISSN 2097-1893
  • CN 10-1855/P
祝贺君,刘沁雅,杨继东. 2023. 地震学全波形反演进展. 地球与行星物理论评(中英文),54(3):287-317. doi: 10.19975/j.dqyxx.2022-031
引用本文: 祝贺君,刘沁雅,杨继东. 2023. 地震学全波形反演进展. 地球与行星物理论评(中英文),54(3):287-317. doi: 10.19975/j.dqyxx.2022-031
Zhu H J, Liu Q Y, Yang J D. 2023. Recent progress on full waveform inversion. Reviews of Geophysics and Planetary Physics, 54(3): 287-317 (in Chinese). doi: 10.19975/j.dqyxx.2022-031
Citation: Zhu H J, Liu Q Y, Yang J D. 2023. Recent progress on full waveform inversion. Reviews of Geophysics and Planetary Physics, 54(3): 287-317 (in Chinese). doi: 10.19975/j.dqyxx.2022-031

地震学全波形反演进展

Recent progress on full waveform inversion

  • 摘要: 全波形反演是一种基于声波/弹性/黏弹性波动方程来反演三维地球模型的高分辨率成像方法. 目前该方法已经被广泛应用于油气勘探、地壳与上地幔结构以及地幔对流的研究当中. 使用该方法,可以建立一个统一的理论和算法框架来反演地球内部的多个地震学参数模型,主要包括P波和S波速度、各向异性、黏滞性衰减、密度以及反射系数等. 通过联合解释这些地震学多参数结果,可以更好地约束地球内部的温度变化、物质构成、地幔对流以及水和挥发成分的分布. 目前,关于全波形反演的研究前沿主要包括目标函数的选取、多参数联合反演、模型正则化约束、分辨率和不确定性分析,以及其在新型地震数据,例如背景噪声和线性密集台阵中的应用. 此外,为了更好地解释反演所得到的地震学多参数模型以及探讨相关的地球科学问题,需要多学科之间的交叉合作,包括结合地震学以及岩石矿物实验和地球动力学模拟等的结果. 相关的成果对更好地认识油气储层构造、盆地结构、断层分布以及地幔对流具有重要的科学意义.

     

    Abstract: Full waveform inversion is an acoustic/elastic/anelastic wave equation-based high accuracy seismic imaging method for studying the Earth's interior structure. To date, it has been widely used in exploration seismology, studies on crustal and mantle structures at both regional and global scales. With this approach, we are able to build a unified theory and algorithm platform to constrain multi-parameter seismic models for the Earth's interior, including P and S wave velocities, anisotropy, attenuation, density and reflectivity, etc. By jointly interpreting these seismic parameters, we hope to better constrain variations in temperature and composition, mantle convection and distribution of water and volatiles. Recent developments include selection of optimal misfit functions, multi-parameter inversion, model regularization, resolution and uncertainty quantification, as well as its applications to special types of datasets, such as ambient-noise recordings and teleseismic scattered waves recorded by dense linear arrays. Furthermore, in order to better interpret inverted multi-parameters and investigate related problems in Earth sciences, we need collaboration among different disciplines, such as synthesizing results from seismology, mineral physics and geodynamic modeling. These results enable us to better understand reservoirs, basin structures, fault distribution and mantle convection.

     

/

返回文章
返回