• ISSN 2097-1893
  • CN 10-1855/P

接收函数界面和波速成像研究进展与展望

陈凌 王旭 王新 危自根 张建勇

引用本文: 陈凌,王旭,王新,危自根,张建勇. 2022. 接收函数界面和波速成像研究进展与展望. 地球与行星物理论评,53(6):680-701
Chen L, Wang X, Wang X, Wei Z G, Zhang J Y. 2022. Advances and perspectives for receiver function imaging of the Earth's internal discontinuities and velocity structures. Reviews of Geophysics and Planetary Physics, 53(6): 680-701 (in Chinese)

接收函数界面和波速成像研究进展与展望

doi: 10.19975/j.dqyxx.2022-029
基金项目: 国家自然科学基金资助项目(42288201,42004041);中国科学院战略性先导科技专项(A类)项目子课题(XDA20070302)
详细信息
    通讯作者:

    陈凌(1971-),女,研究员,主要从事地震成像方法、壳幔结构和性质以及大陆演化的研究. E-mail:lchen@mail.iggcas.ac.cn

  • 中图分类号: P315

Advances and perspectives for receiver function imaging of the Earth's internal discontinuities and velocity structures

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 42288201 and 42004041) and the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA20070302)
  • 摘要: 地球内部界面结构、性质与成因研究是认识地球圈层结构与物理化学性质、探索板块构造及地球系统动力运行机制和过程的重要内容. 接收函数是针对地球内部界面研究而提出、发展并广泛应用的一种地震学方法,目前已经成为探测地壳—上地幔、岩石圈—软流圈、地幔过渡带等分层结构、物质组成、热状态及变形行为等基本问题的有效手段. 自1960年代接收函数方法提出以来,其相关研究成果涉及从理论到应用等众多方面,尤其是近20年以来计算能力与理论研究的快速推进使接收函数成像技术迈入蓬勃发展的新时期. 本文简要回顾接收函数方法的发展历程,在介绍其原理基础上,分别对接收函数的反褶积提取技术、接收函数界面结构成像和波速结构成像三个方面的方法发展与应用研究进行梳理,聚焦于近20年来的最新进展、存在的问题与可能的解决思路. 最后基于地震学发展趋势,从方法和应用两个角度探讨接收函数研究的未来发展方向.

     

  • 图  1  P波和S波接收函数示意图. (a,b)Ps转换波及其多次波震相传播路径与理论P-RF示例;(c,d)Sp转换波及其多次波震相传播路径与理论S-RF示例

    Figure  1.  Schematic diagrams showing the P-wave and S-wave receiver functions (P-RF and S-RF). (a, b) Ray paths of Ps conversion and multiples and a theoretical P-RF time series; (c, d) Ray-paths of Sp conversion and multiples and a theoretical S-RF time series

    图  2  不同反褶积方法提取的P波接收函数对比. (a,c)分别为一大兴安岭山地台站单个事件和32个事件叠加的接收函数;(b,d)分别为一松辽盆地台站单个事件和49个事件叠加的接收函数

    Figure  2.  Comparison of P-RFs calculated by various deconvolution methods. (a, c) Single-event and 32-events-averaged P-RFs for a station located on the bedrock in the Daxinganling area; (b, d) Single-event and 49-events-averaged P-RFs for a station located in the Songliao Basin

    图  3  基于密集台阵的相干接收函数算法与实际应用(修改自Wang et al., 2021a). (a)算法示意图. 间距较小的相邻台站下方结构往往具有一致性,因此可以通过多地震、相邻台站联合反演有效抑制地下非相干噪声和局部散射,提高反褶积的稳定性. 右图为包含5个相邻台站子台网的相干接收函数. 紫色虚线表示相干接收函数震相,每个震相由相对到时t、慢度s 和振幅a三个参数表示. (b)应用于台间距约250 m、观测时间1个月的密集台阵资料,相干接收函数(可靠度大于68%的震相)与三种常用方法计算的“单台站—单地震”接收函数对比,其中黑色虚线为根据成像结果识别的盆地沉积—基底界面. 由于反褶积方法的非唯一性及有限观测时间造成的叠加不足,不同常用方法获得的盆地结构存在差异

    Figure  3.  Schematic illustration of the array-based coherent receiver function (CRF) algorithm and its application (modified from Wang et al., 2021a). (a) Schematic illustration of the CRF algorithm. Due to the close station spacing, the sub-surface structures at nearby stations commonly share similar features. Thus, the deconvolution at a single station can involve the constraints from the nearby stations and multiple earthquakes to effectively suppress noncoherent noise and local scatterings, to improve the reliability of RF estimation. The right panel shows the CRF for a sub-network including five neighboring stations. Purple dashed lines indicate CRF phases, each of which is represented by three parameters: relative arrival time, slowness, and amplitude. (b) Comparison of the performance of CRF (phases with reliability >68%) with the traditional "single-station-single-event" RF deconvolution methods for a dense array with a station spacing of ~250 m and an observation period of one month. Black dashed lines are inferred sediment-basement interfaces based on the imaging results. Due to the non-uniqueness of the deconvolution and the insufficiency of the data for stacking due to the limited observation period, the basin structures obtained by the three different conventional methods differ considerably from each other

    图  4  理论径向接收函数及其主成分分析(修改自张建勇等,2019). (a,b)分别为各向同性单一倾斜界面模型(加25%噪声)径向接收函数原始波形及第二主成分重构结果;(c,d)分别为对称轴水平各向异性模型(加25%噪声)径向接收函数原始波形及第二主成分重构结果. (e,f)分别为倾斜界面与对称轴水平各向异性共存、后者占主导的模型径向接收函第二、三主成分重构结果,振幅均放大5倍;(g,h)分别为对称轴倾斜各向异性模型径向接收函数第二、三主成分重构结果,振幅均放大5倍. 图中红色表示正极性信号

    Figure  4.  Principal component analysis of theoretical radial P-RFs (modified from Zhang et al., 2019). (a, b) Synthetic P-RF waveforms with 25% noise added and the reconstructions by the second principal component for an isotropic dipping discontinuity model; (c, d) Synthetic P-RF waveforms with 25% noise added and the reconstructions by the second principal component for an anisotropic model with a horizontal symmetry axis; (e, f) Reconstructed radial P-RFs by the second and third principal components, respectively, for a complex model with the coexistence of a dipping discontinuity and a dominant anisotropy structure with a horizontal symmetry axis (amplitudes are amplified by a factor of 5); (g, h) Reconstructed radial P-RFs by the second and the third principal components, respectively, for an anisotropic model with a dipping symmetry axis (amplitudes are amplified by a factor of 5). The waveforms with positive polarity are red-coded

    图  5  接收函数共转换点叠加(CCP)成像(Zhu and Kanamori, 2000)和体波散射核偏移成像(Hansen and Schmandt, 2017)原理差异图. CCP叠加方法基于水平层状介质假设,将接收函数按固定射线路径(黑色虚线)反投影到空间域进行叠加成像(如红色五角星为成像点);而散射波偏移成像则考虑地下可能的散射点(分布于图中彩色散射核区域),通过绕射波归位来获得高精度的地下结构成像. (a)Ps转换波散射核;(b)PpPs多次波散射核,其振幅反映对应散射点处的结构变化(修改自Hansen and Schmandt, 2017

    Figure  5.  Diagrams showing the differences between common conversion point (CCP) stacking (Zhu and Kanamori, 2000) and scattering kernel migration (Hansen and Schmandt, 2017). The CCP stacking method is based on the assumption of horizontal layered media, in which the RFs are back-projected along the ray paths (black dashed line) and stacked at the conversion point (e.g., the red star is the imaging point). Scattered wave migration, however, considers possible subsurface scattering points (distributed in the colored scattering kernel region), and can thus image subsurface structures with high precision. (a) Scattering kernels of Ps conversions; (b) Scattering kernels of multiples. The amplitudes reflect the structural changes at the corresponding scattering points required to match the observed scattered phases (modified from Hansen and Schmandt, 2017)

    图  6  接收函数CCP叠加成像(a,c)与偏移成像(b,d)结果对比. (a,b)为理论模型成像结果(修改自Abe and Brown, 2002),其中黑色虚线代表理论模型界面; (c,d)为华北东部剖面结构图像(修改自Chen et al., 2006a),其中~30 km深度处的蓝色信号为Moho面,~60~80 km处的红色信号为LAB. (b,d)分别为Kirchhoff叠前偏移和波动方程叠后偏移图像. 与不考虑散射和绕射的CCP叠加图像(a,c)相比,偏移图像(b,d)具有更高的信噪比,更有效恢复结构的横向变化特征

    Figure  6.  Comparison of P-RF CCP stacking (a, c) and migration (b, d) images. (a, b) P-RF imaging results for a theoretical stair-step model, where the black dashed lines represent the locations of input seismic discontinuities (modified from Abe and Brown, 2002); (c, d) P-RF images along a profile across the eastern part of North China (modified from Chen et al., 2006a), where the blue signal at ~30 km depth marks the Moho discontinuity and the red one at ~60~80 km represents the LAB. (b, d) are obtained from Kirchhoff pre-stack migration and wave equation post-stacking migration, respectively. Compared with CCP stacking images (a, c) without considering scattering and diffraction, the migrated images (b, d) exhibit higher signal-to-noise ratios and thus can more effectively recover the lateral structural variations

    图  7  贝叶斯跨维度联合反演示例(a-f)以及模型层数(g)和噪声水平概率分布(h,i)(修改自Bodin et al., 2012). 图(a,c,e)中红线为真实模型,背景为后验模型概率分布. 图(b,d,f)为不同深度界面的后验概率分布. 图(g,h,i)中浅蓝色、深蓝色区域和红线分别代表均匀先验分布、后验分布和真实模型

    Figure  7.  Examples of Bayesian transdimentional inversion (a-f) and the probability distributions of layer number (g) and noise level (h, i) ( modified from Bodin et al., 2012). The red line in (a, c, e) marks the input model, and the background shows the posterior probability distribution for the inverted models. (b, d, f) are posterior probability distributions for the presence of discontinuities at depth. The light blue and dark blue histograms and the red lines in (g, h, i) represent the uniform prior distribution, the posterior distribution, and the true model, respectively

    图  8  随频率变化的P波水平—垂直振幅比(PHVR, a-c)和S波垂直—水平振幅比(SVHR, d-f)对S波速度、P波速度和密度的深度敏感核,体波振幅比(g)与反演速度结构(h-i)示例(修改自Wang et al., 2021b). 图(g)中,浅红线和深绿线分别代表了第一步反演和第二步反演500个最优模型平均结果对应的预测;图(h,i)中浅红线代表了第一步反演结果,背景色代表了第二步反演500个最优模型的概率分布

    Figure  8.  Frequency-dependent sensitivity kernels of P-wave horizontal-vertical amplitude ratio (PHVR, a-c) and S-wave vertical-horizontal amplitude ratio (SVHR, d-f) to S-wave velocity, P-wave velocity and density, and an example showing the body-wave amplitude ratios (g) and inverted structures (h-i) (modified from Wang et al., 2021b). In (g), the light red and dark green lines represent the predictions by the average of the 500 best-fit models from the first-step and second-step inversions, respectively; the light red line in (h, i) represents the results after the first-step inversion, and the background color represents the probability distribution of the 500 best-fit models after the second-step inversion

    表  1  P波接收函数和S波接收函数的基本参数、方法及应用特征对比

    Table  1.   Comparison of basic parameters, method and application characteristics of P-wave and S-wave receiver functions

    P波接收函数S波接收函数
    震相 Ps, PpPs, PpSs/PsPs Sp
    震中距 30°~90° 55°~85°
    频率 ~0.1 Hz至1 Hz以上 通常<0.5 Hz
    横向(垂向)分辨率 km量级(依赖频率和深度) 10 km量级(依赖频率和深度)
    主要结构敏感参数 界面处S波速度变化、
    界面厚度
    界面处S波速度变化、
    界面厚度
    研究对象 壳幔界面,特别是Moho、410-km和660-km界面 岩石圈—软流圈界面,特别是LAB、MLD
    下载: 导出CSV
  • [1] Abe S, Brown L D. 2002. CCP Stacking and Migration of Teleseismic P-SV Converted Wave[M]//SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 1061-1064.
    [2] Abt D L, Fischer K M, French S W, et al. 2010. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions[J]. Journal of Geophysical Research: Solid Earth, 115: B09301.
    [3] Ai Y, Zheng T. 2003. The upper mantle discontinuity structure beneath eastern China[J]. Geophysical Research Letters, 30(21): 267-283.
    [4] Aki K, Richards P G. 2002. Quantitative Seismology (Second Ed.)[M] Sausilito, California: University Science Books, ISBN 0-935702- 96–2.
    [5] Ammon C J, Randall G E, Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. Journal of Geophysical Research: Solid Earth, 95(B10): 15303-15318. doi: 10.1029/JB095iB10p15303
    [6] Ammon C J. 1991. The isolation of receiver effects from teleseismic P waveforms[J]. Bulletin-Seismological Society of America, 81(6): 2504-2510. doi: 10.1785/BSSA0810062504
    [7] Bianchi I, Park J, Piana Agostinetti N, et al. 2010. Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12317. doi: 10.1029/2009JB007061
    [8] Bissig F, Khan A, Tauzin B, et al. 2021. Multifrequency inversion of Ps and Sp receiver functions: Methodology and application to USArray data[J]. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020350.
    [9] Bodin T, Sambridge M, Tkalcic H, et al. 2012. Transdimensional inversion of receiver functions and surface wave dispersion[J]. Journal of Geophysical Research, 117: B02301.
    [10] Bostock M G. 1997. Anisotropic upper-mantle stratigraphy and architecture of the Slave craton[J]. Nature, 390: 392-395. doi: 10.1038/37102
    [11] Bostock M G. 1999. Seismic waves converted from velocity gradient anomalies in the Earth’s upper mantle[J]. Geophysical Journal International, 138(3): 747-756. doi: 10.1046/j.1365-246x.1999.00902.x
    [12] Bostock M G, Rondenay S. 1999. Migration of scattered teleseismic body waves[J]. Geophysical journal international, 137(3): 732-746. doi: 10.1046/j.1365-246x.1999.00813.x
    [13] Bostock M G, Rondenay S, Shragge J. 2001. Multiparameter two-dimensional inversion of scattered teleseismic body waves 1. Theory for oblique incidence[J]. Journal of Geophysical Research: Solid Earth, 106(B12): 30771-30782. doi: 10.1029/2001JB000330
    [14] Cai Y, Wu J, Rietbrock A, et al. 2021. S wave velocity structure of the crust and upper mantle beneath Shanxi Rift, Central North China Craton and its tectonic iImplications[J]. Tectonics, 40(4): e2020TC006239.
    [15] Chang S J, Baag C E, Langston C A. 2004. Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm[J]. Bulletin of the Seismological Society of America, 94(2): 691-704. doi: 10.1785/0120030110
    [16] Chen L, Wen L, Zheng T. 2005a. A wave equation migration method for receiver function imaging: 1. Theory[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11309.
    [17] Chen L, Wen L, Zheng T. 2005b. A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11310.
    [18] Chen L, Zheng T, Xu W. 2006a. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration[J]. Journal of Geophysical Research: Solid Earth, 111(B9): B09312.
    [19] Chen L, Zheng T, Xu W. 2006b. Receiver function migration image of the deep structure in the Bohai Bay Basin, eastern China[J]. Geophysical Research Letter, 33(20): L20307. doi: 10.1029/2006GL027593
    [20] Chen L. 2009. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J]. Physics of the Earth and Planetary Interiors, 173: 216-227. doi: 10.1016/j.pepi.2008.11.011
    [21] Chen L, Ai Y. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration[J]. Journal of Geophysical Research: Solid Earth, 114(B6): B06307.
    [22] Chen L, Jiang M, Yang J, et al. 2014. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton[J]. Geology, 42(3): 223-226. doi: 10.1130/G35010.1
    [23] Cheng C, Bodin T, Allen R M. 2016. Three-dimensional pre-stack depth migration of receiver functions with the fast marching method: A Kirchhoff approach[J]. Geophysical Journal International, 205(2): 819-829. doi: 10.1093/gji/ggw062
    [24] Chong J, Chu R, Ni S, et al. 2018. Receiver function HV ratio: a new measurement for reducing non-uniqueness of receiver function waveform inversion[J]. Geophysical Journal International, 212(2): 1475-1485. doi: 10.1093/gji/ggx464
    [25] Christensen N I. 1996. Poisson's ratio and crustal seismology[J]. Journal of Geophysical Research: Solid Earth, 101(B2): 3139-3156. doi: 10.1029/95JB03446
    [26] Dahlen F A, Hung S H, Nolet G. 2000. Fréchet kernels for finite-frequency traveltimes—I. Theory[J]. Geophysical Journal International, 141(1): 157-174. doi: 10.1046/j.1365-246X.2000.00070.x
    [27] Dueker K G, Sheehan A F. 1997. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track[J]. Journal of Geophysical Research: Solid Earth, 102(B4): 8313-8327. doi: 10.1029/96JB03857
    [28] Duess A. 2009. Global observations of mantle discontinuities using SS and PP Precursors[J]. Surveys in Geophysics, 30: 301-326. doi: 10.1007/s10712-009-9078-y
    [29] Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model[J]. Physics of the earth and planetary interiors, 25(4): 297-356. doi: 10.1016/0031-9201(81)90046-7
    [30] 房立华, 吴建平. 2009. 倾斜界面和各向异性介质对接收函数的影响[J]. 地球物理学进展, 24(1): 42-50

    Fang L H, Wu J P. 2009. Effects of dipping boundaries and anisotropic media on receiver functions[J]. Progress in Geophysics, 21(4): 42-50 (in Chinese).
    [31] Farra V, Vinnik L. 2000. Upper mantle stratification by P and S receiver functions[J]. Geophysical Journal Internationa, 141(3): 699-712. doi: 10.1046/j.1365-246x.2000.00118.x
    [32] Feng J, Yao H, Chen L, et al. 2022. Massive lithospheric delamination in southeastern Tibet facilitating continental extrusion[J]. National Science Review, 9(4): nwab174. doi: 10.1093/nsr/nwab174
    [33] 冯铭业, 陈凌, 王旭, 等. 2021. 巽他大陆及其邻区的地壳结构及其构造意义: 来自远震接收函数的约束[J]. 地球物理学报, 64(12): 4364-4377 doi: 10.6038/cjg2021O0356

    Feng M Y, Chen L, Wang X, et al. 2021. Crustal structure and its tectonic implications in Sundaland and adjacent areas: Constraints from tele-seismic receiver functions[J]. Chinese Journal of Geophysics, 64(12): 4364-4377 (in Chinese). doi: 10.6038/cjg2021O0356
    [34] Frederiksen A W, Bostock M G. 2000. Modelling teleseismic waves in dipping anisotropic structures[J]. Geophysical Journal International, 141(2): 401-412. doi: 10.1046/j.1365-246x.2000.00090.x
    [35] French S W, Fischer K M, Syracuse E M, et al. 2009. Crustal structure beneath the Florida-to-Edmonton broadband seismometer array[J]. Geophysical Research Letters, 36(8): L08309.
    [36] Gao R, Lu Z, Klemperer S L, et al. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 9(7): 555-560. doi: 10.1038/ngeo2730
    [37] García-Pérez T, Ferreira A M G, Yáñez G, et al. 2021. Effects of topography and basins on seismic wave amplification: the northern Chile coastal cliff and intramountainous basins[J]. Geophysical Journal International, 227(2): 1143-1167. doi: 10.1093/gji/ggab259
    [38] Gurrola H, Baker G E, Minster J B. 1995. Simultaneous time-domain deconvolution with application to the computation of receiver functions[J]. Geophysical Journal International, 120(3): 537-543. doi: 10.1111/j.1365-246X.1995.tb01837.x
    [39] Hannemann K, Krüger F, Dahm T, et al. 2016. Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor[J]. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(3): 1796-1817. doi: 10.1093/gji/ggw342
    [40] Hansen S M, Schmandt B. 2017. P and S wave receiver function imaging of subduction with scattering kernels[J]. Geochemistry, Geophysics, Geosystems, 18(12): 4487-4502.
    [41] He R, Shang X, Yu C, et al. 2014. A unified map of Moho depth and VP/VS ratio of continental China by receiver function analysis[J]. Geophysical Journal International, 199(3): 1910-1918. doi: 10.1093/gji/ggu365
    [42] He Y, Chen Q-F, Chen L, et al. 2022. Distinct lithospheric structure in the Xing'an-Mongolian Orogenic Belt[J]. Geophysical Research Letter, 49(8): e2021GL097283.
    [43] Ji S, Wang Q, Salisbury M H. 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio[J]. Tectonophysics, 463(1-4): 15-30. doi: 10.1016/j.tecto.2008.09.007
    [44] Jiang X, Zhu L, Hu S, et al. 2019. Three-dimensional reverse-time migration of teleseismic receiver functions using the phase-shift-plus-interpolation method[J]. Geophysical Journal International, 217(2): 1047-1057. doi: 10.1093/gji/ggz066
    [45] Jiang X, Hu S, Yang H. 2021. Depth extent and VP/VS ratio of the Chenghai Fault Zone, Yunnan, China constrained from dense-array-based teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB022190.
    [46] Julià J, Ammon C J, Herrmann R B, et al. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophysical Journal International, 143(1): 99-112. doi: 10.1046/j.1365-246x.2000.00217.x
    [47] Julià J. 2007. Constraining velocity and density contrasts across the crust—mantle boundary with receiver function amplitudes[J]. Geophysical Journal International, 171(1): 286-301. doi: 10.1111/j.1365-2966.2007.03502.x
    [48] Kieling K, Roessler D, Krueger F. 2011. Receiver function study in northern Sumatra and the Malaysian peninsula[J]. Journal of Seismology, 15(2): 235-259. doi: 10.1007/s10950-010-9222-7
    [49] Kolb J M, Lekić V. 2014. Receiver function deconvolution using transdimensional hierarchical Bayesian inference[J]. Geophysical Journal International, 197(3): 1719-1735. doi: 10.1093/gji/ggu079
    [50] Krüger F. 1994. Sediment structure at GRF from polarization analysis of P waves of nuclear explosions[J]. Bulletin of the Seismological Society of America, 84(1): 149-170.
    [51] Lai Y, Chen L, Wang T, Zhan Z W. 2019. Mantle transition zone structure beneath northeast Asia from 2D triplicated waveform modeling: Implication for a segmented stagnant slab[J]. Journal of Geophysical Research: Solid Earth, 124(2): 1871-1888. doi: 10.1029/2018JB016642
    [52] Lan H, Chen L, Chevrot S, et al. 2022. Structure of the western Jaz Murian forearc basin, southeast Iran, revealed by autocorrelation and polarization analysis of teleseismic P and S waves[J]. Journal of Geophysical Research: Solid Earth, 127(4): e2021JB023456.
    [53] Langston C A. 1979. Structure under Mount Rainer, Washington, inferred from teleseismic body waves[J]. Journal of Geophysical Research: Solid Earth, 84 (B9): 4749-4762. doi: 10.1029/JB084iB09p04749
    [54] Lawrence J F, Wiens D A. 2004. Combined receiver-function and surface wave phase-velocity inversion using a niching genetic algorithm: Application to Patagonia[J]. Bulletin of the Seismological Society of America, 94(3): 977-987. doi: 10.1785/0120030172
    [55] Lawrence J F, Shearer P M. 2006. Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms[J]. Geochemistry, Geophysics, Geosystems, 7(10): Q10012.
    [56] Levander A, Niu F, Symes W W. 2005. Imaging teleseismic P to S scattered waves using the Kirchhoff integral[J]. Seismic Earth: Array Analysis of Broadband Seismograms, 157: 149-169.
    [57] Levin V, Park J. 1997a. Crustal anisotropy in the Ural Mountains foredeep from teleseismic receiver functions[J]. Geophysical Research Letters, 24(11): 1283-1286. doi: 10.1029/97GL51321
    [58] Levin V, Park J. 1997b. P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation[J]. Geophysical Journal International, 131(2): 253-266. doi: 10.1111/j.1365-246X.1997.tb01220.x
    [59] Li J, Chen Q F, Vanacore E, Niu F L. 2008. Topography of the 660-km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab[J]. Geophysical Research Letters, 35(1): L01302.
    [60] Li J, Shen Y, Zhang W. 2018. Three-dimensional passive-source reverse-time migration of converted waves: the method[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1419-1434. doi: 10.1002/2017JB014817
    [61] Li J, Song X, Wang P, et al. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3782-3801. doi: 10.1029/2018JB016356
    [62] Ligorria J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the seismological Society of America, 89(5): 1395-1400. doi: 10.1785/BSSA0890051395
    [63] Liu H, Niu F. 2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data[J]. Geophysical Journal International, 188(1): 144-164. doi: 10.1111/j.1365-246X.2011.05249.x
    [64] Liu K, Levander A. 2013. Three-dimensional Kirchhoff-approximate generalized Radon transform imaging using teleseismic P-to-S scattered waves[J]. Geophysical Journal International, 192(3): 1196-1216. doi: 10.1093/gji/ggs073
    [65] 刘启元, Rainer Kind, 李顺成. 1996. 接收函数复谱比的最大或然性估计及非线性反演[J]. 地球物理学报, 39(4): 500-511.

    Liu Q Y, Kind R, Li S C. 1996. Maximal likelihood estimation and nonlinear inversion of the complex receiver function spectrum ratio[J]. Acta Geophysica Sinica, 39: 511-520 (in Chinese).
    [66] 刘启元, Rainer Kind. 2004. 分离三分量远震接收函数的多道最大或然性反褶积方法[J]. 地震地质, 26(3): 416-425 doi: 10.3969/j.issn.0253-4967.2004.03.006

    Liu Q Y, Kind R. 2004. Multi-channel maximal likelihood deconvolution method for isolating 3-component teleseismic receiver function[J]. Seismology and Geology, 26(3): 416-425 (in Chinese). doi: 10.3969/j.issn.0253-4967.2004.03.006
    [67] 刘启元, 李昱, 陈九辉, 等. 2010. 基于贝叶斯理论的接收函数与环境噪声联合反演[J]. 地球物理学报, 53(11): 2603-2612

    Liu Q Y, Li Y, Chen J H, et al. 2010. Joint inversion of receiver function and ambient noise based on Bayesian theory[J]. Chinese Journal of Geophysics, 53(11): 2603-2612 (in Chinese).
    [68] Liu Q Y, Van Der Hilst R D, Li Y, et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 7(5): 361-365. doi: 10.1038/ngeo2130
    [69] Lombardi D, Braunmiller J, Kissling E, et al. 2008. Moho depth and Poisson’s ratio in the western-central Alps from receiver functions[J]. Geophysical Journal International, 173(1): 249-264. doi: 10.1111/j.1365-246X.2007.03706.x
    [70] 罗艳, 崇加军, 倪四道等. 2008. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报, 51(4): 1135-1145 doi: 10.3321/j.issn:0001-5733.2008.04.022

    Luo Y, Chong J J, Ni S D, et al. 2008. Moho depth and sedimentary thickness in the capital region[J]. Chinese Journal of Geophysics, 51(4): 1135-1145 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.04.022
    [71] Mark H F, Collins J A, Lizarralde D, et al. 2021. Constraints on the depth, thickness, and strength of the G discontinuity in the central pacific from s receiver functions[J]. Journal of Geophysical Research: Solid Earth, 126(4): e2019JB019256.
    [72] Mercier J P, Bostock M G, Audet P, et al. 2008. The teleseismic signature of fossil subduction: Northwestern Canada[J]. Journal of Geophysical Research, 113: B04308. doi: 10.1029/2007JB005127.
    [73] Millet F, Bodin T, Rondenay S. 2019. Multimode 3-D Kirchhoff migration of receiver functions at continental scale[J]. Journal of Geophysical Research: Solid Earth, 124(8): 8953-8980. doi: 10.1029/2018JB017288
    [74] Monteiller V, Chevrot S, Komatitsch D, et al. 2013. A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model[J]. Geophysical Journal International, 192(1): 230-247. doi: 10.1093/gji/ggs006
    [75] Nagaya M, Oda H, Akazawa H, et al. 2008. Receiver functions of seismic waves in layered anisotropic media: Application to the estimate of seismic anisotropy[J]. Bulletin of the Seismological Society of America, 98(6): 2990-3006. doi: 10.1785/0120080130
    [76] Ni S, Li Z, Somerville P. 2014. Estimating subsurface shear velocity with radial to vertical ratio of local P waves[J]. Seismological Research Letters, 85(1): 82-90. doi: 10.1785/0220130128
    [77] Niu F, Bravo T, Pavlis G, et al. 2007. Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela[J]. Journal of Geophysical Research: Solid Earth, 112(B11) B11308. doi: 10.1029/2006JB004802
    [78] Nuttli O, Whitmore J D. 1961. An observational determination of the variation of the angle of incidence of P waves with epicentral distance[J]. Bulletin of the Seismological Society of America, 51(2): 269-276. doi: 10.1785/BSSA0510020269
    [79] Owens T J, Zandt G, Taylor S R. 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms[J]. Journal of Geophysical Research: Solid Earth, 89(B9): 7783-7795. doi: 10.1029/JB089iB09p07783
    [80] Owens T J, Taylor S R, Zandt G. 1987. Crustal structure at regional seismic test network stations determined from inversion of broadband teleseismic P waveforms[J]. Bulletin of the Seismological Society of America, 77(2): 631-662.
    [81] Özalaybey S, Savage M K, Sheehan A F, et al. 1997. Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves[J]. Bulletin of the Seismological Society of America, 87(1): 183-199.
    [82] Park J, Levin V. 2000. Receiver functions from multiple-taper spectral correlation estimates[J]. Bulletin of the Seismological Society of America, 90(6): 1507-1520. doi: 10.1785/0119990122
    [83] Park S, Ishii M. 2018. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis[J]. Geophysical Journal International, 213(3): 1559-1571. doi: 10.1093/gji/ggy072
    [84] Park S, Tsai V C, Ishii M. 2019. Frequency-dependent P wave polarization and its subwavelength near-surface depth sensitivity[J]. Geophysical Research Letters, 46(24): 14377-14384. doi: 10.1029/2019GL084892
    [85] Pavlis G L. 2003. Imaging the earth with passive seismic arrays[J]. The Leading Edge, 22(3): 224-231. doi: 10.1190/1.1564527
    [86] 彭恒初, 胡家富, 杨海燕, 等. 2012. 接收函数反演地壳S波速度结构的有效约束方法[J]. 地球物理学报, 55(4): 1168-1178 doi: 10.6038/j.issn.0001-5733.2012.04.013

    Peng H C, Hu J F, Yang H Y, et al. 2012. An effective technique to constrain the non-uniqueness of receiver function inversion[J]. Chinese Journal of Geophysics, 55(4): 1168-1178 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.04.013
    [87] Phinney R A. 1964. Structure of the Earth’s crust from spectral behavior of long period body waves[J]. Journal of Geophysical Research, 69: 2997-3017. doi: 10.1029/JZ069i014p02997
    [88] Poli P, Campillo M, Pedersen H, LAPNET Working Group. 2012. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise[J]. Science, 338(6110): 1063-1065. doi: 10.1126/science.1228194
    [89] Poliannikov O V, Rondenay S, Chen L. 2012. Interferometric imaging of the underside of a subducting crust[J]. Geophysical Journal International, 189(1): 681-690. doi: 10.1111/j.1365-246X.2012.05389.x
    [90] Poppeliers C, Pavlis G L. 2003a. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory[J]. Journal of Geophysical Research: Solid Earth, 108(B2): 2112.
    [91] Poppeliers C, Pavlis G L. 2003b. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 2. Stacking multiple events[J]. Journal of Geophysical Research: Solid Earth, 108(B5): 2267.
    [92] 钱银苹, 沈旭章, 李翠芹, 等. 2018. 利用接收函数方法确定青藏高原东北缘近地表S波速度[J]. 地球物理学报, 61: 3951-3963 doi: 10.6038/cjg2018L0755

    Qian Y P, Shen X Z, Li C Q, et al. 2018. Constraining the sub-surface S-wave velocity of the northeastern margin of Tibetan Plateau with receiver functions[J]. Chinese Journal of Geophysics, 61: 3951-3963 (in Chinese). doi: 10.6038/cjg2018L0755
    [93] Revenaugh J, Jordan T H. 1991. Mantle layering from ScS reverberations: 2. The transition zone[J]. Journal of Geophysical Research: Solid Earth, 96(B12): 19763-19780. doi: 10.1029/91JB01486
    [94] Ryberg T, Weber M. 2000. Receiver function arrays: a reflection seismic approach[J]. Geophysical Journal International, 141(1): 1-11. doi: 10.1046/j.1365-246X.2000.00077.x
    [95] Rychert C A, Rondenay S, Fischer K M. 2007. P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08314.
    [96] Sambridge M. 1999a. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space[J]. Geophysical journal international, 138(2): 479-494. doi: 10.1046/j.1365-246X.1999.00876.x
    [97] Sambridge M. 1999b. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble[J]. Geophysical Journal International, 138(3): 727-746. doi: 10.1046/j.1365-246x.1999.00900.x
    [98] Savage M K. 1998. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand[J]. Journal of Geophysical Research: Solid Earth, 103(B7): 15069-15087.
    [99] Schmerr N. 2012. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary[J]. Science, 335(6075): 1480-1483. doi: 10.1126/science.1215433
    [100] Schulte-Pelkum V, Mahan K H. 2014. A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray[J]. Earth and Planetary Science Letters, 402: 221-233. doi: 10.1016/j.jpgl.2014.01.050
    [101] Shang X, de Hoop M V, van der Hilst R D. 2012. Beyond receiver functions: Passive source reverse time migration and inverse scattering of converted waves[J]. Geophysical Research Letters, 39(15): L15308
    [102] Shang X, de Hoop M V, van der Hilst R D. 2017. Common conversion point stacking of receiver functions versus passive-source reverse time migration and wavefield regularization[J]. Geophysical Journal International, 209(2): 923-934. doi: 10.1093/gji/ggx069
    [103] Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 31(7): L07614.
    [104] Shearer P M. 1999. Experiments in migration processing of SS precursor data to image upper mantle discontinuity structure [J]. Journal of Geophysical Research: Solid Earth, 104(B4): 7229-7242. doi: 10.1029/1998JB900119
    [105] Sheehan A F, Shearer P M, Gilbert H J, et al. 2000. Seismic migration processing of P-SV converted phases for mantle discontinuity structure beneath the Snake River plain, western United States[J]. Journal of Geophysical Research: Solid Earth, 105(B8): 19055-19065. doi: 10.1029/2000JB900112
    [106] Shen W, Ritzwoller M H, Schulte-Pelkum V, et al. 2013. Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach[J]. Geophysical Journal International, 192(2): 807-836. doi: 10.1093/gji/ggs050
    [107] Shen Z, Zhan Z. 2020. Metastable olivine wedge beneath the Japan Sea imaged by seismic interferometry[J]. Geophysical Research Letters, 47(6): e2019GL085665.
    [108] Shi L, Guo L, Ma Y, et al. 2018. Estimating crustal thickness and VP/VS ratio with joint constraints of receiver function and gravity data[J]. Geophysical Journal International, 213(2): 1334-1344. doi: 10.1093/gji/ggy062
    [109] Shibutani T, Sambridge M, Kennett B. 1996. Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia[J]. Geophysical Research Letters, 23(14): 1829-1832. doi: 10.1029/96GL01671
    [110] 司少坤, 田小波, 张洪双, 等. 2014. 接收函数提取的多正弦窗方法[J]. 地球物理学报, 57(3): 789-799 doi: 10.6038/cjg20140309

    Si S K, Tian X B, Zhang H S, et al. 2014. Multiple sinusoidal tapers method to estimate receiver function[J]. Chinese Journal of Geophysics, 57(3): 789-799 (in Chinese). doi: 10.6038/cjg20140309
    [111] Song T R A, Helmberger D V, Grand S P. 2004. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States[J]. Nature, 427(6974): 530-533. doi: 10.1038/nature02231
    [112] Sun Y, Niu F, Liu H, et al. 2012. Crustal structure and deformation of the SE Tibetan Plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 349: 186-197.
    [113] Svenningsen L, Jacobsen B H. 2007. Absolute S-velocity estimation from receiver functions[J]. Geophysical Journal International, 170(3): 1089-1094. doi: 10.1111/j.1365-246X.2006.03505.x
    [114] 谭萍, 陈赟, 孙维昭, 等. 2018. 一种改进的适应于倾斜 Moho 面的 H-κ-θ 叠加方法及应用[J]. 地球物理学报, 61(9): 3689-3700 doi: 10.6038/cjg2018M0032

    Tan P, Chen Y, Sun W Z, et al. 2018. An improved H-κ-θ stacking method to determine the crustal thickness and bulk VP/VS ratios in the case of a slant Moho interface[J]. Chinese Journal of Geophysics, 61(9): 3689-3700 (in Chinese). doi: 10.6038/cjg2018M0032
    [115] 滕吉文. 2001. 地球内部物质, 能量交换与资源和灾害[J]. 地学前缘, 8(3): 1-8 doi: 10.3321/j.issn:1005-2321.2001.03.001

    Teng J W. 2001. The exchange of substance and energy, different sphere coupling and deep dynamical process within the Earth[J]. Earth Science Frontiers, 8(3): 1-8 (in Chinese). doi: 10.3321/j.issn:1005-2321.2001.03.001
    [116] 滕吉文. 2008. 当代地球物理学研究的核心科学问题和发展导向[J]. 地球物理学进展, 23(3): 637-640

    Teng J W. 2008. The core scientific problems and development direction for the contemporary geophysical research[J]. Progress in Geophysics, 23(3): 637-640 (in Chinese).
    [117] 田宝峰, 李娟, 王卫民, 等. 2008. 华北太行山区地壳各向异性的接收函数证据[J]. 地球物理学报, 51(5): 1459-1467 doi: 10.3321/j.issn:0001-5733.2008.05.019

    Tian B F, Li J, Wang W M, et al. 2008. Crustal anisotropy of Taihangshan mountain range in north China inferred from receiver functions[J]. Chinese Journal of Geophysics, 51(5): 1459-1467 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.05.019
    [118] Tkalčić H, Phạm T-S, Wang S. 2020. The Earth's coda correlation wavefield: Rise of the new paradigm and recent advances[J]. Earth-Science Reviews, 208: 103285. doi: 10.1016/j.earscirev.2020.103285
    [119] Van der Meijde M, Marone F, Giardini D, et al. 2003. Seismic evidence for water deep in Earth's upper mantle[J]. Science, 300(5625): 1556-1558. doi: 10.1126/science.1083636
    [120] Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle[J]. Physics of the Earth and planetary interiors, 15(1): 39-45. doi: 10.1016/0031-9201(77)90008-5
    [121] Vinnik L P, Reigber C, Aleshin I M, et al. 2004. Receiver function tomography of the central Tien Shan[J]. Earth and Planetary Science Letters, 225(1-2): 131-146. doi: 10.1016/j.jpgl.2004.05.039
    [122] Vinnik L P, Aleshin I M, Kaban M K, et al. 2006. Crust and mantle of the Tien Shan from data of the receiver function tomography[J]. Izvestiya Physics of the Solid Earth, 42(8): 639-651. doi: 10.1134/S1069351306080027
    [123] Wang C, Tauzin B, Pham T-S, Tkalčić H. 2020. On the efficiency of P-wave coda autocorrelation in recovering crustal structure: Examples from dense arrays in the eastern United States[J]. Journal of Geophysical Research: Solid Earth, 125(12): e2020JB020270.
    [124] Wang C Y, Sandvol E, Zhu L, et al. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications[J]. Earth and Planetary Science Letters, 387: 198-211. doi: 10.1016/j.jpgl.2013.11.033
    [125] Wang P, Wang L, Mi N, et al. 2010. Crustal thickness and average VP/VS ratio variations in southwest Yunnan, China, from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 115(B11): B11308. doi: 10.1029/2009JB006651
    [126] 王琼, 高原, 钮凤林, 陈运泰. 2016. 利用接收函数计算地壳各向异性的可靠性分析及倾斜界面的影响[J]. 地震, 36(2): 14-25 doi: 10.3969/j.issn.1000-3274.2016.02.002

    Wang Q, Gao Y, Niu F L. , Chen Y T. 2016. Reliability analysis of crustal anisotropy from receiver functions and effect of dipping interface[J]. Earthquake, 36 (2): 14-25 (in Chinese). doi: 10.3969/j.issn.1000-3274.2016.02.002
    [127] Wang T, Song X, Xia H H. 2015. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda[J]. Nature Geoscience, 8: 224-227. doi: 10.1038/ngeo2354
    [128] Wang W, Wu J, Fang L, et al. 2014. S wave velocity structure in southwest China from surface wave tomography and receiver functions[J]. Journal of Geophysical Research: Solid Earth, 119(2): 1061-1078. doi: 10.1002/2013JB010317.
    [129] Wang X, Chen L, Ai Y, et al. 2018. Crustal structure and deformation beneath eastern and northeastern Tibet revealed by P-wave receiver functions[J]. Earth and Planetary Science Letters, 497: 69-79. doi: 10.1016/j.jpgl.2018.06.007
    [130] 王旭, 陈凌, 凌媛, 等. 2019. 基于接收函数直达P波振幅研究地壳浅层S波速度结构新方法及在青藏高原东北缘的应用[J]. 中国科学: 地球科学, 49(11): 1788-1800.

    Wang X, Chen L, Ling Y, et al. 2019. A new method to constrain shallow crustal S-wave velocities based on direct P-wave amplitudes in receiver functions and its application in northeastern Tibet[J]. Science China Earth Sciences, 62(11): 1819-1831 (in Chinese).
    [131] Wang X, Wei S, Wang Y, et al. 2019. A 3-D shear wave velocity model for Myanmar region[J]. Journal of Geophysical Research: Solid Earth, 124(1): 504-526. doi: 10.1029/2018JB016622
    [132] Wang X, Zhan Z, Zhong M, et al. 2021a. Urban basin structure imaging based on dense arrays and bayesian array-based coherent receiver functions[J]. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022279.
    [133] Wang X, Chen L, Yao H. 2021b. A new body-wave amplitude ratio-based method for imaging shallow crustal structure and its application in the Sichuan Basin, southwestern China[J]. Geophysical Research Letters, 48(18): e2021GL095186.
    [134] 危自根, 储日升, 陈凌, 等. 2016. 复杂地壳接收函数H-κ叠加—以安纳托利亚板块为例[J]. 地球物理学报, 59(11): 4048-4062 doi: 10.6038/cjg20161110

    Wei Z G, Chu R S, Chen L, et al. 2016. Analysis of H-κ stacking of receiver functions beneath crust with complex structure: Taking the Anatolia Plate as an example[J]. Chinese Journal of Geophysics, 59(11): 4048-4062 (in Chinese). doi: 10.6038/cjg20161110
    [135] Wei Z, Chu R, Chen L, et al. 2020. The structure of the sedimentary cover and crystalline crust in the Sichuan Basin and its tectonic implications[J]. Geophysical Journal International, 223(3): 1879-1887. doi: 10.1093/gji/ggaa420
    [136] 危自根, 储日升, 李志伟, 等. 2021.基于近震高频接收函数研究中国四川西山村滑坡的泊松比和S波速度[J]. 中国科学:地球科学, 51(7): 1181-1192.

    Wei Z G, Chu R S, Li Z W, et al. 2021. Poisson’s ratios and S-wave velocities of the Xishancun landslide, Sichuan, China, inferred from high-frequency receiver functions of local earthquakes[J]. Science China Earth Sciences, 64(7): 1195-1206.
    [137] White D J, Musacchio G, Helmstaedt H H, et al. 2003. Images of a lower-crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province[J]. Geology, 31(11): 997-1000. doi: 10.1130/G20014.1
    [138] Wiechert E. 1907. ÜberErdbebenwellen. Part I: Theoretischesüber die Ausbreitung der Erdbebenwellen (About earthquake waves. Part I: Theory of the propagation of earthquake waves)[J]. Nachrichten von der Königlichen Gesellschaft der Wissenschaftenzu Göttingen, Mathematisch- physikalischeKlasse, 1907: 415–529.
    [139] Wirth E A, Long M D. 2014. A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States — A relic of craton formation[J]. Geology, 42(10): 851-854. doi: 10.1130/G35804.1
    [140] 吴建平, 明跃红, 贺传松. 2001. 遗传算法中的光滑约束反演及其在青藏高原面波研究中的应用[J]. 地震学报, 23(1): 45-54 doi: 10.3321/j.issn:0253-3782.2001.01.006

    Wu J P, Ming Y H, Zeng R S. 2001. Smooth constraint inversion technique in genetic algorithms and its application to surface wave study in the Tibetan Plateau[J]. Acta Seismologica Sinica. 23(1): 45-54 (in Chinese). doi: 10.3321/j.issn:0253-3782.2001.01.006
    [141] 吴庆举, 田小波, 张乃铃, 等. 2003. 计算台站接收函数的最大熵谱反褶积方法[J]. 地震学报, 25(4): 382-389.

    Wu Q J, Tian X B, Zhang N L, et al. 2003. Receiver function estimated by maximum entropy deconvolution[J]. Acta Seismologica Sinica, 16(4): 404-412 (in Chinese).
    [142] Wu Q J, Li Y, Zhang R, et al. 2007. Wavelet modelling of broad-band receiver functions[J]. Geophysical Journal International, 170(2): 534-544. doi: 10.1111/j.1365-246X.2007.03467.x
    [143] 吴庆举, 李永华, 张瑞青, 等. 2007a. 用多道反褶积方法测定台站接收函数[J]. 地球物理学报, 50(3): 791-796

    Wu Q J, Li Y H, Zhang R Q, et al. 2007a. Receiver Function Estimated by Multi-channel Deconvolution[J]. Chinese Journal of Geophysics, 50(3): 791-796 (in Chinese).
    [144] 吴庆举, 李永华, 张瑞青, 等. 2007b. 接收函数的克希霍夫 2D 偏移方法[J]. 地球物理学报, 50(2): 539-545 doi: 10.1002/cjg2.1064

    Wu Q J, Li Y H, Zhang R Q, et al. 2007b. 2D Kirchhoff migration for receiver function[J]. Chinese Journal of Geophysics, 50(2): 539-545 (in Chinese). doi: 10.1002/cjg2.1064
    [145] Wu Z M, Chen L, Talebian M, et al. 2021. Lateral structural variation of the lithosphere-asthenosphere system in the northeastern to eastern Iranian Plateau and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 126(1): e2020JB020256.
    [146] Xiao X, Cheng S, Wu J, et al. 2021. Shallow seismic structure beneath the continental China revealed by P wave polarization, Rayleigh wave ellipticity and receiver function[J]. Geophysical Journal International. 225(2): 998-1019. doi: 10.1093/gji/ggab022
    [147] 徐义刚, 陈俊, 等. 2022. 深地科学前沿科学问题战略研究(2021-2035)[M]. 国家自然科学基金委员会、中国科学院(出版中).

    Xu Y G, Chen J, et al. 2022. Frontiers in Deep Earth Study (2021-2035)[M]. National Natural Science Foundation of China and Chinese Academy of Sciences (in press).
    [148] 杨妍, 姚华建, 张萍, 等. 2018. 用接收函数方法研究华北克拉通中部造山带及其邻域地壳方位各向异性[J]. 中国科学: 地球科学, 48(7): 912-923.

    Yang Y, Yao H, Zhang P, et al. 2018. Crustal azimuthal anisotropy in the trans-North China orogen and adjacent regions from receiver functions[J]. Science China Earth Sciences, 61(7): 903-913.
    [149] Yao J Y, Wu S C, Li T J, et al. 2022. Imaging the upper 10 km crustal shear-wave velocity structure of central Myanmar via a joint inversion of P-wave polarizations and receiver functions[J]. Seismological Research Letters. 93 (3): 1710-1720. doi: 10.1785/0220210292
    [150] Yeck W L, Sheehan A F, Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bulletin of the Seismological Society of America, 103(3): 2142-2150. doi: 10.1785/0120120290
    [151] Yildirim S, Cemgil A T, Aktar M, et al. 2010. A Bayesian deconvolution approach for receiver function analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 48(12): 4151-4163. doi: 10.1109/TGRS.2010.2050327
    [152] Yu Y, Song J, Liu K H, et al. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. Journal of Geophysical Research: Solid Earth, 120(5): 3208-3218. doi: 10.1002/2014JB011610
    [153] Yuan H. 2015. Secular change in Archaean crust formation recorded in Western Australia[J]. Nature Geoscience, 8(10): 808-813. doi: 10.1038/ngeo2521
    [154] 查小惠, 孙长青, 李聪. 2013. 倾斜界面和各向异性地层对 H-κ 搜索结果的影响[J]. 地球物理学进展, 28(1): 121-131 doi: 10.6038/pg20130113

    Zha X H, Sun C Q, Li C. 2013. The effects of dipping interface and anisotropic layer on the result of H-κ method[J]. Progress in Geophysics, 2013, 28(1): 121-131 (in Chinese). doi: 10.6038/pg20130113
    [155] Zhan Z, Ni S, Helmberger D V, Clayton R W. 2010. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise[J]. Geophysical Journal International, 182(1): 408-420.
    [156] Zhang H, Schmandt B. 2019. Application of Ps scattering kernels to imaging the mantle transition zone with receiver functions[J]. Journal of Geophysical Research: Solid Earth, 124(1): 709-728. doi: 10.1029/2018JB016274
    [157] 张洪双, 田小波, 滕吉文. 2009. 接收函数方法估计Moho倾斜地区的地壳速度比[J]. 地球物理学报, 52(5): 1243-1252 doi: 10.3969/j.issn.0001-5733.2009.05.013

    Zhang H S, Tian X B, Teng J W. 2009. Estimation of crustal VP/VS with dipping Moho from receiver functions[J]. Chinese Journal of Geophysics, 52(5): 1243-1252 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.05.013
    [158] 张建勇, 陈凌, 王旭. 2019. 基于接收函数主成分分析法的地壳结构研究[J]. 中国科学: 地球科学, 49(5): 822-837.

    Zhang J Y, Chen L, Wang X. 2019. Crustal structure study based on principal component analysis of receiver functions[J]. Science China Earth Sciences, 62(7): 1110-1124 (in Chinese).
    [159] Zhang P, Yao H. 2017. Stepwise joint inversion of surface wave dispersion, Rayleigh wave ZH ratio, and receiver function data for 1D crustal shear wave velocity structure[J]. Earthquake Science, 30(5): 229-238.
    [160] Zhang P, Yao H, Chen L, et al. 2019. Moho depth variations from receiver function imaging in the northeastern North China Craton and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 124(2): 1852-1870. doi: 10.1029/2018JB016122
    [161] Zhang Q, Chen Y, Zhang F, Chen Y. 2022. Improving receiver function imaging with high-resolution Radon transform[J]. Geophysical Journal International, 230(2): 1292-1304. doi: 10.1093/gji/ggac116
    [162] Zhang Y, Huang J. 2019. Structure of the sediment and crust in the northeast North China Craton from improved sequential H-κ stacking method[J]. Open Geosciences, 11(1): 682-696. doi: 10.1515/geo-2019-0054
    [163] Zhao L S, Sen M K, Stoffa P, et al. 1996. Application of very fast simulated annealing to the determination of the crustal structure beneath Tibet[J]. Geophysical Journal International, 125(2): 355-370. doi: 10.1111/j.1365-246X.1996.tb00004.x
    [164] Zheng T Y, Zhao L, Chen L. 2005. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin[J]. Physics of the Earth and Planetary Interiors, 152(3): 129-143. doi: 10.1016/j.pepi.2005.06.011
    [165] Zheng T, Chen L, Zhao L, et al. 2006. Crust–mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust[J]. Physics of the Earth and Planetary Interiors, 159(1-2): 43-58. doi: 10.1016/j.pepi.2006.05.004
    [166] Zheng T Y, He Y M, Zhu Y. 2022. A new approach for inversion of receiver function for crustal structure in the depth domain[J]. Earth and Planetary Physics, 6(1): 83-95.
    [167] Zhong M, Zhan Z. 2020. An array-based receiver function deconvolution method: methodology and application[J]. Geophysical Journal International, 222(1): 1-14. doi: 10.1093/gji/ggaa113
    [168] Zhu L, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 105(B2): 2969-2980. doi: 10.1029/1999JB900322
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  177
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-05-20
  • 修回日期:  2022-05-20
  • 网络出版日期:  2022-06-02
  • 刊出日期:  2022-07-11

目录

    /

    返回文章
    返回