• ISSN 2097-1893
  • CN 10-1855/P


戴启立 闪昊 孟昆 包雪阳

引用本文: 戴启立,闪昊,孟昆,包雪阳. 2022. 地震学衰减层析成像进展. 地球与行星物理论评,53(6):702-720
Dai A, Shan H, Meng K, Bao X Y. 2022. Review of progress in seismic attenuation tomography. Reviews of Geophysics and Planetary Physics, 53(6): 702-720 (in Chinese)


doi: 10.19975/j.dqyxx.2022-028
基金项目: 国家自然科学基金资助项目(41976046,42174063,92155307);南方海洋与工程广东省实验室(广州)人才团队引进重大专项资助项目(GML2019ZD0203);广东省地球物理高精度成像技术重点实验室资助项目(2022B1212010002)

    戴启立(1996-),男,博士研究生,主要从事地震波衰减和全波形成像的研究. E-mail:corner_frequency@cug.edu.cn


    包雪阳(1979-),男,助理教授(副研究员),主要从事地球物理成像反演的理论与应用研究. E-mail:baoxy@sustech.edu.cn

  • 中图分类号: P315

Review of progress in seismic attenuation tomography

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41976046, 42174063, 92155307), the Key Special Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong (Guangzhou) (Grant No. GML2019ZD0203), and Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology (Grant No. 2022B1212010002)
  • 摘要: 全球和区域地震波衰减模型揭示了地球内部滞弹性的非均匀结构,为解释地球内部温度、熔体和挥发分分布、分析地球动力学过程和地震震源机制等提供了新的启示. 近年来,地震学衰减层析成像在面波及背景噪声衰减成像、体波衰减成像、区域震相及尾波衰减成像、全波形衰减成像的理论与应用方面均取得了实质性进展. 在此基础上本文列举了一些地震学衰减层析成像研究中正在开拓和发展的方向.


  • [1] Abers G A, Fischer K M, Hirth G, et al. 2014. Reconciling mantle attenuationerature relationships from seismology, petrology, and laboratory measurements[J]. Geochemistry, Geophysics, Geosystems, 15(9): 3521-3542.
    [2] Abers G A, van Keken P E, Wilson C R. 2020. Deep decoupling in subduction zones: Observations and temperature limits[J]. Geosphere, 16(6): 1408-1424. doi: 10.1130/GES02278.1
    [3] Adam C, King S D, Caddick M J. 2021. Mantle temperature and density anomalies: The influence of thermodynamic formulation, melt, and anelasticity[J]. Physics of the Earth and Planetary Interiors, 319: 106772. doi: 10.1016/j.pepi.2021.106772
    [4] Adenis A, Debayle E, Ricard Y. 2017a. Attenuation tomography of the upper mantle[J]. Geophysical Research Letters, 44(15): 7715-7724. doi: 10.1002/2017GL073751
    [5] Adenis A, Debayle E, Ricard Y. 2017b. Seismic evidence for broad attenuation anomalies in the asthenosphere beneath the Pacific Ocean[J]. Geophysical Journal International, 209(3): 1677-1698. doi: 10.1093/gji/ggx117
    [6] Aizawa Y, Barnhoorn A, Faul U H, et al. 2007. Seismic properties of Anita Bay Dunite: An exploratory study of the influence of water[J]. Journal of Petrology, 49(4): 841-855. doi: 10.1093/petrology/egn007
    [7] Aki K, Chouet B. 1975. Origin of coda waves: source, attenuation, and scattering effects[J]. Journal of Geophysical Research, 80: 3322-3342. doi: 10.1029/JB080i023p03322
    [8] Allen R M, Nolet G, Morgan W J, et al. 1999. The thin hot plume beneath Iceland[J]. Geophysical Journal International, 137(1): 51-63. doi: 10.1046/j.1365-246x.1999.00753.x
    [9] Allmark C, Curtis A, Galetti E, et al. 2018. Seismic attenuation from ambient noise across the North Sea Ekofisk Permanent Array[J]. Journal of Geophysical Research: Solid Earth, 123: 8691-8710. doi: 10.1029/2017JB015419
    [10] Aubert J, Amit H, Hulot G, et al. 2008. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity[J]. Nature, 454(7205): 758–761. doi: 10.1038/nature07109
    [11] Bao X, Sandvol E, Ni J, et al. 2011a. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions[J]. Geophysical Research Letters, 38: L16304.
    [12] Bao X, Sandvol E, Zor E, et al. 2011b. Pg attenuation tomography within the northern Middle East[J]. Bulletin of the Seismological Society of America, 101(4): 1496-1506. doi: 10.1785/0120100316
    [13] Bao X, Sandvol E, Chen Y J, et al. 2012. Azimuthal anisotropy of Lg attenuation in eastern Tibetan Plateau[J]. Journal of Geophysical Research, 117: B10309.
    [14] Bao X, Dalton C A, Jin G, et al. 2016a. Imaging Rayleigh wave attenuation with USArray[J]. Geophysical Journal International, 206(1): 241-259. doi: 10.1093/gji/ggw151
    [15] Bao X, Dalton C A, Ritsema J. 2016b. Effects of elastic focusing on global models of Rayleigh wave attenuation[J]. Geophysical Journal International, 207(2): 1062-1079. doi: 10.1093/gji/ggw322
    [16] Bao X, Guo L, Shen Y. 2021. Compositional variation in the crust of Peninsular ranges and surrounding regions, southern California, revealed by full-wave seismic and gravity joint inversion[J]. Journal of Geophysical Research: Solid Earth, 126: e2021JB022723.
    [17] Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x
    [18] Bezada M J. 2017. Insights into the lithospheric architecture of Iberia and Morocco from teleseismic body-wave attenuation[J]. Earth and Planetary Science Letters, 478: 14-26. doi: 10.1016/j.jpgl.2017.08.029
    [19] Bezada M J, Byrnes J S, Eilon Z C. 2019. On the robustness of attenuation measurements on teleseismic P waves: Insights from micro-array analysis of the 2017 North Korean nuclear test[J]. Geophysical Journal International, 218(1): 573-585. doi: 10.1093/gji/ggz169
    [20] Bhattacharyya J, Shearer P, Masters G. 1993. Inner core attenuation from short-period Pkp(Bc) versus Pkp(Df) waveforms[J]. Geophysical Journal International, 114(1): 1-11. doi: 10.1111/j.1365-246X.1993.tb01461.x
    [21] Bhattacharyya J, Masters G, Shearer P. 1996. Global lateral variations of shear wave attenuation in the upper mantle[J]. Journal of Geophysical Research, 101(B10): 22273-22289. doi: 10.1029/96JB01782
    [22] Bickel S H, Natarajan R R. 1985. Plane-wave Q deconvolution[J]. Geophysics, 50(9): 1426-1539. doi: 10.1190/1.1442011
    [23] Boatwright J, Seekins L. 2011 Regional spectral analysis of three moderate earthquakes in northeastern North America[J]. Bulletin of the Seismological Society of America, 101(4): 1769–1782.
    [24] Bodin T, Sambridge M, Rawlinson N, et al. 2012a. Transdimensional tomography with unknown data noise[J]. Geophysical Journal International, 189(3): 1536-1556. doi: 10.1111/j.1365-246X.2012.05414.x
    [25] Bodin T, Sambridge M, Tkalćić H, et al. 2012b. Transdimensional inversion of receiver functions and surface wave dispersion[J]. Journal of Geophysical Research, 117: B02301.
    [26] Borgeaud A F E, Deschamps F. 2021. Seismic attenuation and S-velocity structures in D′′ beneath central America using 1-D full-waveform inversion[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB021356.
    [27] Boschi L, Magrini F, Cammarano F, et al. 2019. On seismic ambient noise cross-correlation and surface-wave attenuation[J]. Geophysical Journal International, 219(3): 1568-1589.
    [28] Bowden D C, Tsai V C, Lin F-C. 2015. Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA[J]. Geophysical Research Letters, 42: 1360-1367. doi: 10.1002/2014GL062662
    [29] Bowden D C, Tsai V C, Lin F-C. 2017. Amplification and attenuation across USArray using ambient noise wavefront tracking[J]. Journal of Geophysical Research: Solid Earth, 122: 10, 086-10, 101. doi: 10.1002/2017JB014804
    [30] Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 75(26): 4997-5009. doi: 10.1029/JB075i026p04997
    [31] Bukchin B G, Yanovskaya T B, Montagner J P, et al. 2006. Surface wave focusing effects: Numerical modeling and statistical observations[J]. Physics of the Earth and Planetary Interiors, 155(3-4): 191-200. doi: 10.1016/j.pepi.2005.10.010
    [32] Byrnes J S, Bezada M J, Long M D, et al. 2019. Thin lithosphere beneath the central Appalachian Mountains: Constraints from seismic attenuation beneath the MAGIC array[J]. Earth and Planetary Science Letters, 519: 297-307. doi: 10.1016/j.jpgl.2019.04.045
    [33] Byrnes J S, Bezada M J. 2020. Dynamic upwelling beneath the Salton Trough imaged with teleseismic attenuation tomography[J]. Journal of Geophysical Research: Solid Earth, 125: e2020JB020347.
    [34] Carcione J M, Farina B, Poletto F, et al. 2020. Seismic attenuation in partially molten rocks[J]. Physics of the Earth and Planetary Interiors, 309: 106568. doi: 10.1016/j.pepi.2020.106568
    [35] 陈佳, 胡家富, 杨海燕, 等. 2012. 利用面波研究云南地区壳幔S波品质因子结构[J]. 中国科学: 地球科学, 42(3): 320-330.

    Chen J, Hu J F, Yang H Y, et al. 2012. S-wave Q structure of the crust and upper mantle beneath Yunnan from surface waves[J]. Science China Earth Sciences, 55(5): 858-868 (in Chinese).
    [36] Chen Y, Xie J. 2017. Resolution, uncertainty and data predictability of tomographic Lg attenuation models-application to southeastern China[J]. Geophysical Journal International, 210(1): 166-183. doi: 10.1093/gji/ggx147
    [37] Chen Y, Gu Y J, Mohammed F, et al. 2021. Crustal attenuation beneath western North America: Implications for slab subduction, terrane accretion and arc magmatism of the Cascades[J]. Earth and Planetary Science Letters, 560: 116783. doi: 10.1016/j.jpgl.2021.116783
    [38] Chun K-Y, West G F, Kokoski R J, et al. 1987. A novel technique for measuring Lg attenuation results from eastern Canada between 1 to 10 Hz[J], Bulletin of the Seismological Society of America, 77: 398-419.
    [39] Cline II C J, Faul U H, David E C, et al. 2018. Redox-influenced seismic properties of upper-mantle olivine[J]. Nature, 555(7696): 355-358. doi: 10.1038/nature25764
    [40] Cormier V F, Xu L, Choy G L. 1998. Seismic attenuation of the inner core: Viscoelastic or stratigraphic?[J]. Geophysical Research Letters, 25(21): 4019-4022. doi: 10.1029/1998GL900074
    [41] Cupillard P, Capdeville Y. 2010. On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: A numerical approach[J]. Geophysical Journal International, 181(3): 1687-1700.
    [42] Dahlen F A, Zhou Y. 2006. Surface-wave group-delay and attenuation kernels[J]. Geophysical Journal International, 165(2): 545-554. doi: 10.1111/j.1365-246X.2006.02913.x
    [43] Dai A, Tang C-C, Liu L, et al. 2020. Seismic attenuation tomography in southwestern China: Insight into the evolution of crustal flow in the Tibetan Plateau[J]. Tectonophysics, 792: 228589. doi: 10.1016/j.tecto.2020.228589
    [44] Dalton C A, Ekström G. 2006. Global models of surface wave attenuation[J]. Journal of Geophysical Research, 111: B05317.
    [45] Dalton C A, Ekström G, Dziewonski A M. 2008. The global attenuation structure of the upper mantle[J]. Journal of Geophysical Research, 113: B09303.
    [46] Dalton C A, Ekström G, Dziewonski A M. 2009. Global seismological shear velocity and attenuation: A comparison with experimental observations[J]. Earth and Planetary Science Letters, 284(1-2): 65-75. doi: 10.1016/j.jpgl.2009.04.009
    [47] Dalton C A, Hjörleifsdóttir V, Ekström G. 2013. A comparison of approaches to the prediction of surface wave amplitude[J]. Geophysical Journal International, 196(1): 386-404.
    [48] Dalton C A, Bao X, Ma Z. 2017. The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation[J]. Earth and Planetary Science Letters, 457: 250-262. doi: 10.1016/j.jpgl.2016.10.014
    [49] Dannberg J, Eilon Z C, Faul U, et al. 2017. The importance of grain size to mantle dynamics and seismological observations[J]. Geochemistry, Geophysics, Geosystems, 18(8): 3034-3061.
    [50] Debayle E, Ricard Y. 2012. A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements[J]. Journal of Geophysical Research, 117: B10308.
    [51] Debayle E, Bodin T, Durand S, et al. 2020. Seismic evidence for partial melt below tectonic plates[J]. Nature, 586(7830): 555-559. doi: 10.1038/s41586-020-2809-4
    [52] Deng Y, Byrnes J S, Bezada M J. 2021. New insights into the heterogeneity of the lithosphere-asthenosphere system beneath south China from teleseismic body-wave attenuation[J]. Geophysical Research Letters, 48: e2020GL091654.
    [53] Durek J J, Ekström G. 1996. A radial model of anelasticity consistent with long-period surface-wave attenuation[J]. Bulletin of the Seismological Society of America, 86(1A): 144-158.
    [54] Durek J J, Ekström G. 1997. Investigating discrepancies among measurements of traveling and standing wave attenuation[J]. Journal of Geophysical Research, 102(B11): 24529-24544. doi: 10.1029/97JB02160
    [55] Dutta G, Schuster G T. 2016. Wave-equation Q tomography[J]. Geophysics, 81(6): R471-R484. doi: 10.1190/geo2016-0081.1
    [56] Dziewonski A M, Gilbert F. 1971. Solidity of the inner core of the Earth inferred from normal mode observations[J]. Nature, 234(5330): 465-466. doi: 10.1038/234465a0
    [57] Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors, 25(4): 297-356. doi: 10.1016/0031-9201(81)90046-7
    [58] Eberhart-Phillips D, Chadwick M. 2002. Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand[J]. Journal of Geophysical Research, 107(B2): 2033. doi: 10.1029/2000JB000046
    [59] Eberhart-Phillips D, Chadwick M, Bannister S. 2008. Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes[J]. Journal of Geophysical Research, 113: B05308.
    [60] Eberhart-Phillips D, Bannister S, Ellis S. 2014. Imaging P and S attenuation in the termination region of the Hikurangi subduction zone, New Zealand[J]. Geophysical Journal International, 198(1): 516-536. doi: 10.1093/gji/ggu151
    [61] Eberhart-Phillips D. 2016. Northern California seismic attenuation: 3D Q P and Q S models[J]. Bulletin of the Seismological Society of America, 106(6): 2558-2573. doi: 10.1785/0120160060
    [62] Eddy C L, Ekström G. 2014. Local amplification of Rayleigh waves in the continental United States observed on the USArray[J]. Earth and Planetary Science Letters, 402: 50-57. doi: 10.1016/j.jpgl.2014.01.013
    [63] Edwards B, Rietbrock A, Bommer J J, et al. 2008. The acquisition of source, path, and site effects from microearthquake recordings using Q tomography: Application to the United Kingdom[J]. Bulletin of the Seismological Society of America, 98(4): 1915–1935. doi: 10.1785/0120070127
    [64] Eilon Z C, Abers G A. 2017. High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt[J]. Science Advances, 3(5): e1602829. doi: 10.1126/sciadv.1602829
    [65] Eilon Z C, Fischer K M, Dalton C A. 2018. An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves[J]. Geophysical Journal International, 214(1): 232-253. doi: 10.1093/gji/ggy137
    [66] Ekström G. 2011. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25-250 s[J]. Geophysical Journal International, 187: 1668-1686. doi: 10.1111/j.1365-246X.2011.05225.x
    [67] Fabien-Ouellet G, Gloaguen E, Giroux B. 2017. Time domain viscoelastic full waveform inversion[J]. Geophysical Journal International, 209(3): 1718-1734. doi: 10.1093/gji/ggx110
    [68] Farla R J M, Jackson I, Fitz Gerald J D, et al. 2012. Dislocation damping and anisotropic seismic wave attenuation in Earth’s upper Mantle[J]. Science, 336(6079): 332-335. doi: 10.1126/science.1218318
    [69] Farrell A K, McNutt S R, Thompson G. 2017. Seismic attenuation, time delays, and raypath bending of teleseisms beneath Uturuncu volcano, Bolivia[J]. Geosphere, 13(3): 699-722. doi: 10.1130/GES01354.1
    [70] Faul U H, Fitz Gerald J D, Jackson I. 2004. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications[J]. Journal of Geophysical Research, 109: B06202.
    [71] Faul U H, Jackson I. 2005. The seismological signature of temperature and grain size variations in the upper mantle[J]. Earth and Planetary Science Letters, 234(1-2): 119-134. doi: 10.1016/j.jpgl.2005.02.008
    [72] Feng L, Ritzwoller M H. 2017. The effect of sedimentary basins on surface waves that pass through them[J]. Geophysical Journal International, 211(1): 572-592. doi: 10.1093/gji/ggx313
    [73] Fichtner A, van Driel M. 2014. Models and Fréchet kernels for frequency-(in)dependent Q[J]. Geophysical Journal International, 198(3): 1878-1889. doi: 10.1093/gji/ggu228
    [74] Gallegos A, Xie J. 2020. A multichannel deconvolution method to retrieve source-time functions: Application to the regional Lg wave[J]. Geophysical Journal International, 223(1): 323-347. doi: 10.1093/gji/ggaa303
    [75] Gao H, Shen Y. 2014. Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc[J]. Earth and Planetary Science Letters, 390: 222-233. doi: 10.1016/j.jpgl.2014.01.012
    [76] Gkogkas K, Lin F-C, Allam A A, et al. 2021. Shallow damage zone structure of the wasatch fault in Salt Lake city from ambient-noise double beamforming with a temporary linear array[J]. Seismological Research Letters, 92(4): 2453-2463. doi: 10.1785/0220200404
    [77] Gribb T T, Cooper R F. 1998. Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology[J]. Journal of Geophysical Research, 103(B11): 27267-27279. doi: 10.1029/98JB02786
    [78] Gung Y, Romanowicz B. 2004. Q tomography of the upper mantle using three-component long-period waveforms[J]. Geophysical Journal International, 157(2): 813-830. doi: 10.1111/j.1365-246X.2004.02265.x
    [79] Guo H, Thurber C. 2022. Temporal changes in seismic velocity and attenuation at The Geysers geothermal field, California, from double-difference tomography[J]. Journal of Geophysical Research: Solid Earth, 127: e2021JB022938.
    [80] Hammond W C, Humphreys E D. 2000a. Upper mantle seismic wave velocity: Effects of realistic partial melt geometries[J]. Journal of Geophysical Research, 105(B5): 10975-10986. doi: 10.1029/2000JB900041
    [81] Hammond W C, Humphreys E D. 2000b. Upper mantle seismic wave attenuation: Effects of realistic partial melt distribution[J]. Journal of Geophysical Research, 105(B5): 10987-10999. doi: 10.1029/2000JB900042
    [82] Havlin C, Holtzman B K, Hopper E. 2021. Inference of thermodynamic state in the asthenosphere from anelastic properties, with applications to North American upper mantle[J]. Physics of the Earth and Planetary Interiors, 314: 106639. doi: 10.1016/j.pepi.2020.106639
    [83] Hu H, Zheng Y. 2020. Stochastic inversion of Gaussian random media using transverse coherence functions for reflected waves: Theory and method[J]. Journal of Geophysical Research: Solid Earth, 125: e2020JB020385.
    [84] Hu J, Qian J, Song J, et al. 2021. Eulerian partial-differential-equation methods for complex-valued eikonals in attenuating media[J]. Geophysics, 86(4): T179-T192. doi: 10.1190/geo2020-0659.1
    [85] Hwang Y K, Ritsema J, Goes S. 2009. Spatial variations of P wave attenuation in the mantle beneath North America[J]. Journal of Geophysical Research, 114: B06312.
    [86] Hwang Y K, Ritsema J, Goes S. 2011. Global variation of body-wave attenuation in the upper mantle from teleseismic P wave and S wave spectra[J]. Geophysical Research Letters, 38: L06308.
    [87] Ichinose G, Woods M, Dwyer J. 2014. Mantle attenuation estimated from regional and teleseismic P-waves of deep earthquakes and surface explosions[J]. Pure and Applied Geophysics, 171(3-5): 485-506. doi: 10.1007/s00024-012-0632-z
    [88] Ivan M, Marza V, de Farias Caixeta D, et al. 2006. Uppermost inner core attenuation from PKP data observed at some South American seismological stations[J]. Geophysical Journal International, 164(2): 441-448. doi: 10.1111/j.1365-246X.2006.02847.x
    [89] Jackson D D, Anderson D L. 1970. Physical mechanisms of seismic-wave attenuation[J]. Reviews of Geophysics, 8(1): 1-63. doi: 10.1029/RG008i001p00001
    [90] Jackson I, Faul U H. 2010. Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application[J]. Physics of the Earth and Planetary Interiors, 183(1-2): 151-163. doi: 10.1016/j.pepi.2010.09.005
    [91] Jackson I, Faul U H, Skelton R. 2014. Elastically accommodated grain-boundary sliding: New insights from experiment and modeling[J]. Physics of the Earth and Planetary Interiors, 228: 203-210. doi: 10.1016/j.pepi.2013.11.014
    [92] Jang H, Kim Y H, Lim H, et al. 2019. Seismic attenuation structure of southern Peruvian subduction system[J]. Tectonophysics, 771: 228203. doi: 10.1016/j.tecto.2019.228203
    [93] Janiszewski H A, Gaherty J B, Abers G A, et al. 2019. Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone[J]. Geophysical Journal International, 217(3): 1929-1948. doi: 10.1093/gji/ggz051
    [94] Jiang X, Song X, Xia H H, Weaver R L. 2021. On the generation and decay of the long-period coda energy of large earthquakes[J]. Earthquake Science, 34(2): 103-113. doi: 10.29382/eqs-2021-0012
    [95] 蒋星达, 张伟, 杨辉. 2022. 地球物理反演问题中的贝叶斯方法研究[J]. 地球与行星物理论评, 53(2): 159-171

    Jiang X D, Zhang W, Yang H. 2022. The research on Bayesian inference for geophysical inversion[J]. Reviews of Geophysics and Planetary Physics, 53(2): 159-171 (in Chinese).
    [96] Jin G, Gaherty J B. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation[J]. Geophysical Journal International, 201(3): 1383-1398. doi: 10.1093/gji/ggv079
    [97] Kamei R, Pratt R G. 2013. Inversion strategies for visco-acoustic waveform inversion[J]. Geophysical Journal International, 194(2): 859-884. doi: 10.1093/gji/ggt109
    [98] Kanamori H, Anderson D L. 1977. Importance of physical dispersion in surface wave and free oscillation problems: Review[J]. Reviews of Geophysics, 15(1): 105-112. doi: 10.1029/RG015i001p00105
    [99] Karaoğlu H, Romanowicz B. 2018a. Global seismic attenuation imaging using full-waveform inversion: A comparative assessment of different choices of misfit functionals[J]. Geophysical Journal International, 212(2): 807-826. doi: 10.1093/gji/ggx442
    [100] Karaoğlu H, Romanowicz B. 2018b. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method[J]. Geophysical Journal International, 213(3): 1536-1558. doi: 10.1093/gji/ggy030
    [101] Karato S, Spetzler H A. 1990. Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle[J]. Reviews of Geophysics, 28(4): 399-421. doi: 10.1029/RG028i004p00399
    [102] Karato S. 1993. Importance of anelasticity in the interpretation of seismic tomography[J]. Geophysical Research Letters, 20(15): 1623-1626. doi: 10.1029/93GL01767
    [103] Karato S, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle[J]. Earth and Planetary Science Letters, 157(3-4): 193-207. doi: 10.1016/S0012-821X(98)00034-X
    [104] Karato S. 2003. Mapping water content in the upper mantle[J]. Geophysical Monograph Series, 138: 135-152.
    [105] Knopoff L. 1964. Q[J]. Reviews of Geophysics, 2(4): 625-660. doi: 10.1029/RG002i004p00625
    [106] Kohli A, Wolfson-Schwehr M, Prigent C, et al. 2021. Oceanic transform fault seismicity and slip mode influenced by seawater infiltration[J]. Nature Geoscience, 14(8): 606-611. doi: 10.1038/s41561-021-00778-1
    [107] Komatitsch D, Tromp J. 2002. Spectral-element simulations of global seismic wave propagation. Part I: Validation[J]. Geophysical Journal International, 149(2): 390-412. doi: 10.1046/j.1365-246X.2002.01653.x
    [108] Kumar A, Fernàndez M, Jiménez-Munt I, et al. 2020. LitMod2D_2.0: An improved integrated geophysical-petrological modeling tool for the physical interpretation of upper mantle anomalies[J]. Geochemistry, Geophysics, Geosystems, 21: e2019GC008777.
    [109] Larson E W F, Tromp J, Ekström G. 1998. Effects of slight anisotropy on surface waves[J]. Geophysical Journal International, 132(3): 654-666. doi: 10.1046/j.1365-246X.1998.00452.x
    [110] Laske G, Masters G, Ma Z, et al. 2013. Update on CRUST1.0-a 1-degree global model of Earth's crust[J]. Geophysics Research Abstracts, 15, Abstract EGU2013-2658.
    [111] Lawrence J F, Prieto G A. 2011. Attenuation tomography of the western United States from ambient seismic noise[J]. Journal of Geophysical Research: Solid Earth, 116: B06302.
    [112] Lawrence J F, Denolle M, Seats K J, et al. 2013. A numeric evaluation of attenuation from ambient noise correlation functions[J]. Journal of Geophysical Research: Solid Earth, 118(12): 6134-6145. doi: 10.1002/2012JB009513
    [113] Lay T, Kanamori H. 1985. Geometric effects of global lateral heterogeneity on long-period surface wave propagation[J]. Journal of Geophysical Research, 90(B1): 605-621. doi: 10.1029/JB090iB01p00605
    [114] Lekić V, Matas J, Panning M, et al. 2009. Measurement and implications of frequency dependence of attenuation[J]. Earth and Planetary Science Letters, 282(1-4): 285-293. doi: 10.1016/j.jpgl.2009.03.030
    [115] Leng K, Nissen-Meyer T, van Driel M, et al. 2019. AxiSEM3D: Broad-band seismic wavefields in 3-D global earth models with undulating discontinuities[J]. Geophysical Journal International, 217(3): 2125-2146. doi: 10.1093/gji/ggz092
    [116] Li J, Dutta G, Schuster G. 2017. Wave-equation QS inversion of skeletonized surface waves[J]. Geophysical Journal International, 209(2): 979-991. doi: 10.1093/gji/ggx051
    [117] 李金, 周龙泉, 王慧琳, 等. 2017. 利用S波高频衰减对天山中东段地区地壳Q值成像[J]. 中国地震, 33(2): 229-238.

    Li J, Zhou L, Wang H, et al. 2017. Tomograpgy for Q of eastern section of the Tianshan area from high-frequency attenuation of S-waves[J]. Earthquake Research in China, 32(2): 28-39 (in Chinese) .
    [118] Li J, Weaver R L, Yoritomo J Y, et al. 2020. Application of temporal reweighting to ambient noise cross-correlation for improved seismic Green’s function[J]. Geophysical Journal International, 221(1): 265-272. doi: 10.1093/gji/ggaa001
    [119] Lin F-C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 173(1): 281-298. doi: 10.1111/j.1365-246X.2008.03720.x
    [120] Lin F-C, Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. Geophysical Journal International, 186(3): 1104-1120. doi: 10.1111/j.1365-246X.2011.05070.x
    [121] Lin F-C, Tsai V C, Ritzwoller M H. 2012. The local amplification of surface waves: A new observable to constrain elastic velocities, density, and anelastic attenuation[J]. Journal of Geophysical Research, 117: B06302.
    [122] Lin G. 2014. Three-dimensional compressional wave attenuation tomography for the crust and upper-most mantle of northern and central California[J]. Journal of Geophysical Research: Solid Earth, 119: 3462–3477, doi: 10.1002/2013JB010621
    [123] Lin G, Shearer P M. 2021. Spatiotemporal variations of focal mechanism and In Situ VP/VS ratio during the 2018 Kīlauea eruption[J]. Geophysical Research Letters, 48: e2021GL094636.
    [124] 刘翰林, 吴庆举. 2021. 大兴安岭诺敏河火山群远震P波衰减研究[J]. 地球物理学报, 64(1): 157-169 doi: 10.6038/cjg2021O0072

    Liu H L, Wu Q J. 2021. Study of teleseismic P-wave attenuation beneath the Nuomin River Volcanoes[J]. Chinese Journal of Geophysics, 64(1): 157-169 (in Chinese). doi: 10.6038/cjg2021O0072
    [125] Liu H, J S Byrnes, M Bezada et al. 2022. Variable depths of magma genesis in the north China craton and central Asian orogenic belt inferred from teleseismic P wave attenuation [J]. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB022439.
    [126] Liu H-P, Anderson D L, Kanamori H. 1976. Velocity dispersion due to anelasticity; implications for seismology and mantle composition[J]. Geophysical Journal International, 47(1): 41-58. doi: 10.1111/j.1365-246X.1976.tb01261.x
    [127] 刘建华, 胥颐, 郝天珧. 2004. 地震波衰减的物理机制研究[J]. 地球物理学进展, 19(1): 1-7 doi: 10.3969/j.issn.1004-2903.2004.01.001

    Liu J H, Xu Y, Hao T T. 2004. Study on physical mechanism of the seismic wave attenuation[J]. Progress in Geophyics, 19(1): 1-7 (in Chinese). doi: 10.3969/j.issn.1004-2903.2004.01.001
    [128] Liu L, Yang Z, Yuan H et al. 2022. Stability of a mixed-valence hydrous iron-rich oxide: Implications for water storage and dynamics in the deep lower mantle[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB024288
    [129] Liu X, Ben-Zion Y, Zigone D. 2015. Extracting seismic attenuation coefficients from cross-correlations of ambient noise at linear triplets of stations[J]. Geophysical Journal International, 203(2): 1149-1163. doi: 10.1093/gji/ggv357
    [130] Liu Y, Pei S. 2021. Lower crustal attenuation in northeastern Tibetan Plateau from ML amplitude[J]. Earthquake Science, 34(4): 378-386.
    [131] 栾威, 申文斌, 丁浩. 2021. 地球自由振荡弹性简正模研究进展与展望[J]. 地球与行星物理论评, 52(3): 308-325

    Luan W, Shen W B, Ding H. 2021. Progress and prospect of studies on elastic normal modes of Earth's free oscillation[J]. Reviews of Geophysics and Planetary Physics, 52(3): 308-325 (in Chinese).
    [132] Lyakhovsky V, Shalev E, Kurzon I, et al. 2021. Effective seismic wave velocities and attenuation in partially molten rocks[J]. Earth and Planetary Science Letters, 572: 117117. doi: 10.1016/j.jpgl.2021.117117
    [133] 马宏生, 汪素云, 裴顺平, 等. 2007. 川滇及周边地区地壳横波衰减的成像研究[J]. 地球物理学报, 50(2): 465-471 doi: 10.3321/j.issn:0001-5733.2007.02.018

    Ma H S, Wang S Y, Pei S P, et al. 2007. Q0 tomography of S wave attenuation in Sichuan-Yunnan and adjacent regions[J]. Chinese Journal of Geophysics, 50(2): 465-471 (in Chinese). doi: 10.3321/j.issn:0001-5733.2007.02.018
    [134] Ma Z, Masters G, Mancinelli N. 2016. Two-dimensional global Rayleigh wave attenuation model by accounting for finite-frequency focusing and defocusing effect[J]. Geophysical Journal International, 204(1): 631-649. doi: 10.1093/gji/ggv480
    [135] Ma Z, Dalton C A, Russell J B, et al. 2020. Shear attenuation and anelastic mechanisms in the central Pacific upper mantle[J]. Earth and Planetary Science Letters, 536: 116148. doi: 10.1016/j.jpgl.2020.116148
    [136] Magrini F, Boschi L. 2021. Surface-wave attenuation from seismic ambient noise: Numerical validation and application[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB019865.
    [137] Magrini F, Boschi L, Gualtieri L, et al. 2021. Rayleigh-wave attenuation across the conterminous United States in the microseism frequency band[J]. Scientific Reports, 11: 10149. doi: 10.1038/s41598-021-89497-6
    [138] Malinverno A, Briggs V A. 2004. Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes[J]. Geophysics, 69(4): 1005-1016. doi: 10.1190/1.1778243
    [139] Martínez M D, Lana X, Guinto E R. 2010. Shear-wave attenuation tomography of the lithosphere-asthenosphere system beneath the Mediterranean region[J]. Tectonophysics, 481: 51-67. doi: 10.1016/j.tecto.2008.11.008
    [140] Mavko G, Nur A. 1975. Melt squirt in the asthenosphere[J]. Journal of Geophysical Research, 80(11): 1444-1448. doi: 10.1029/JB080i011p01444
    [141] McCarthy C, Takei Y, Hiraga T. 2011. Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials[J]. Journal of Geophysical Research, 116: B09207.
    [142] Meng H, Ben-Zion Y, Johnson C W. 2021. Analysis of seismic signals generated by Vehicle Traffic with application to derivation of subsurface Q-values[J]. Seismological Research Letters, 92(4): 2354-2363. doi: 10.1785/0220200457
    [143] Mitchell B J. 1995. Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation[J]. Reviews of Geophysics, 33(4): 441. doi: 10.1029/95RG02074
    [144] Mitchell B J, Cong L, Ekström G. 2008. A continent-wide map of 1-Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution[J]. Journal of Geophysical Research, 113: B04303.
    [145] Moczo P, Kristek J. 2005. On the rheological models used for time-domain methods of seismic wave propagation[J]. Geophysical Research Letters, 32: L01306.
    [146] Monnereau M, Calvet M, Margerin L, et al. 2010. Lopsided growth of Earth's inner core[J]. Science, 328(5981): 1014–1017. doi: 10.1126/science.1186212
    [147] Morozov I B. 2013. Frequency dependence of long-period t*[J]. Journal of Seismology, 17(2): 265-280. doi: 10.1007/s10950-012-9315-6
    [148] Nakajima J, Uchida N. 2018. Repeated drainage from megathrusts during episodic slow slip[J]. Nature Geoscience, 11(5): 351-356. doi: 10.1038/s41561-018-0090-z
    [149] Niazi M, Johnson L R. 1992. Q in the inner core[J]. Physics of the Earth and Planetary Interiors, 74(1-2): 55-62. doi: 10.1016/0031-9201(92)90067-6
    [150] Pan W, Wang Y. 2020. On the influence of different misfit functions for attenuation estimation in viscoelastic full-waveform inversion: Synthetic study[J]. Geophysical Journal International, 221(2): 1292-1319. doi: 10.1093/gji/ggaa089
    [151] Pei S, Chen J Y. 2010. The updated crustal attenuation in north China using ML amplitude tomography[J]. Earthquake Science, 23: 541-548. doi: 10.1007/s11589-010-0753-3
    [152] Petersson N A, Sjögreen B. 2012. Stable and efficient modeling of anelastic attenuation in seismic wave propagation[J]. Communications in Computational Physics, 12(1): 193-225. doi: 10.4208/cicp.201010.090611a
    [153] Priestley K, McKenzie D. 2013. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle[J]. Earth and Planetary Science Letters, 381: 78-91. doi: 10.1016/j.jpgl.2013.08.022
    [154] Prieto G A, Lawrence J F, Beroza G C. 2009. Anelastic Earth structure from the coherency of the ambient seismic field[J]. Journal of Geophysical Research, 114(B7): B07303.
    [155] Qin J, Sun X, Fan A. 2019. Variations of velocity and attenuation anisotropy structures in the uppermost inner core beneath the central Pacific region[J]. Geophysical Research Letters, 46(21): 11811-11819. doi: 10.1029/2019GL084258
    [156] 秦加岭, 孙新蕾, 张鹏, 范安. 2020. 地球内核顶部300km速度和衰减各向异性的区域变化[J]. 地球物理学报, 63(6): 2199-2209 doi: 10.6038/cjg2020N0209

    Qin J, Sun X, Zhang P, et al. 2020. Regional variations of velocity and attenuation anisotropy at the top 300 km of the inner core[J]. Chinese Journal of Geophysics, 63(6): 2199-2209(in Chinese). doi: 10.6038/cjg2020N0209
    [157] Resovsky J, Trampert J, van der Hilst R D. 2005. Error bars for the global seismic Q profile[J]. Earth and Planetary Science Letters, 230(3-4): 413-423. doi: 10.1016/j.jpgl.2004.12.008
    [158] Ringler A T, Anthony R E, Dalton C A, et al. 2021. Rayleigh-wave amplitude uncertainty across the global seismographic network and potential implications for global tomography[J]. Bulletin of the Seismological Society of America, 111(3): 1273-1292. doi: 10.1785/0120200255
    [159] Ritsema J, Deuss A, van Heijst H J, et al. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophysical Journal International, 184(3): 1223-1236. doi: 10.1111/j.1365-246X.2010.04884.x
    [160] Rohrbach E, Liu L, Wang L. 2013. Variations in seismic velocity and attenuation associated with seismogenesis: A numerical verification using ambient noise[J]. Tectonophysics, 584: 54-63. doi: 10.1016/j.tecto.2012.09.004
    [161] Romanowicz B. 1990. The upper mantle degree 2: Constraints and inferences from global mantle wave attenuation measurements[J]. Journal of Geophysical Research, 95(B7): 11051. doi: 10.1029/JB095iB07p11051
    [162] Romanowicz B. 1995. A global tomographic model of shear attenuation in the upper mantle[J]. Journal of Geophysical Research, 100(B7): 12375-12394. doi: 10.1029/95JB00957
    [163] Romanowicz B, Mitchell B J. 2008. 9th Workshop on Three-dimensional Modelling of Seismic Waves Generation, Propagation and Their Inversion Deep Earth Structure-Q of the Earth from Crust to Core[M]. Treatise on Geophysics.
    [164] Romanowicz B, Chen L W, French S W. 2020. Accelerating full waveform inversion via source stacking and cross-correlations[J]. Geophysical Journal International, 220(1): 308-322. doi: 10.1093/gji/ggz437
    [165] Roth E G, Wiens D A, Zhao D. 2000. An empirical relationship between seismic attenuation and velocity anomalies in the upper mantle[J]. Geophysical Research Letters, 27(5): 601-604. doi: 10.1029/1999GL005418
    [166] Roult G, Clévédé E. 2000. New refinements in attenuation measurements from free-oscillation and surface-wave observations[J]. Physics of the Earth and Planetary Interiors, 121(1-2): 1-37. doi: 10.1016/S0031-9201(00)00155-2
    [167] Ruan Y, Zhou Y. 2010. The effects of 3-D anelasticity (Q) structure on surface wave phase delays[J]. Geophysical Journal International, 181(1): 479-492. doi: 10.1111/j.1365-246X.2010.04514.x
    [168] Ruan Y, Zhou Y. 2012. The effects of 3-D anelasticity (Q) structure on surface wave amplitudes[J]. Geophysical Journal International, 189(2): 967-983. doi: 10.1111/j.1365-246X.2011.05356.x
    [169] Ruan Y, Forsyth D W, Bell S W. 2018. Shear attenuation beneath the Juan de Fuca plate: Implications for mantle flow and dehydration[J]. Earth and Planetary Science Letters, 496: 189-197. doi: 10.1016/j.jpgl.2018.05.035
    [170] Rudnick R L, McDonough W F, O'Connell R J. 1998. Thermal structure, thickness and composition of continental lithosphere[J]. Chemical Geology 145: 395-411.
    [171] Sato H, Sacks I S, Murase T et al. 1989. QP-melting temperature relation in peridotite at high pressure and temperature: Attenuation mechanism and implications for the mechanical properties of the upper mantle[J]. Journal of Geophysical Research, 94(B8): 10647-10661. doi: 10.1029/JB094iB08p10647
    [172] Sato H, Fehler M C. 1998. Seismic Wave Propagation and Scattering in the Heterogeneous Earth [M]. New York: Springer-Verlag.
    [173] Savage B, Komatitsch D, Tromp J. 2010. Effects of 3D attenuation on seismic wave amplitude and phase measurements[J]. Bulletin of the Seismological Society of America, 100(3): 1241-1251. doi: 10.1785/0120090263
    [174] Scherbaum F. 1990. Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra[J]. Journal of Geophysical Research, 95(B8): 12423-12438. doi: 10.1029/JB095iB08p12423
    [175] Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 31: L07614.
    [176] Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615-1618. doi: 10.1126/science.1108339
    [177] Sheehan A F, de la Torre T L, Monsalve G, et al. 2014. Physical state of Himalayan crust and uppermost mantle: Constraints from seismic attenuation and velocity tomography[J]. Journal of Geophysical Research: Solid Earth, 119: 567-580. doi: 10.1002/2013JB010601
    [178] Shrivastava A, Liu K H, Gao S S. 2021. Teleseismic P-wave attenuation beneath the southeastern United States[J]. Geochemistry, Geophysics, Geosystems, 22: e2021GC009715.
    [179] Sipkin S A, Jordan T H. 1979. Frequency dependence of QScS[J]. Bulletin of the Seismological Society of America, 69(4): 1055-1079.
    [180] Song X, Helmberger D V. 1993. Anisotropy of Earth’s inner core[J]. Geophysical Research Letters, 20(23): 2591-2594. doi: 10.1029/93GL02812
    [181] Soto Castaneda R A, Abers G A, Eilon Z C, et al. 2021. Teleseismic attenuation, temperature, and melt of the upper mantle in the Alaska subduction zone[J]. Journal of Geophysical Research: Solid Earth, 126: e2021JB021653.
    [182] Souriau A, Roudil P. 1995. Attenuation in the uppermost inner core from broad-band GEOSCOPE PKP data[J]. Geophysical Journal International, 123(2): 572-587. doi: 10.1111/j.1365-246X.1995.tb06872.x
    [183] Stachnik J C, Abers G A, Christensen D H. 2004. Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone[J]. Journal of Geophysical Research, 109: B10304.
    [184] Stehly L, Boué P. 2017. On the interpretation of the amplitude decay of noise correlations computed along a line of receivers[J]. Geophysical Journal International, 209(1): 358-372.
    [185] 苏有锦, 刘杰, 郑斯华, 等. 2006. 云南地区S波非弹性衰减Q值研究[J]. 地震学报, 28(2): 206-212 doi: 10.3321/j.issn:0253-3782.2006.02.012

    Su Y J, Liu J, Zheng S H, et al. 2006. Q value of anelastic S-wave attenuation in Yunnan region[J]. Acta Seismologica Sinica, 28(2): 206-212 (in Chinese). doi: 10.3321/j.issn:0253-3782.2006.02.012
    [186] 孙莲, 李永华, 吴庆举, 等. 2012. 中国东北及周边地区地壳横波衰减的成像研究[J]. 地球物理学报, 55(4): 1179-1185 doi: 10.6038/j.issn.0001-5733.2012.04.014

    Sun L, Li Y H, Wu Q J, et al. 2012. Q0 tomography of S wave attenuation in northeast China and adjacent regions[J]. Chinese Journal of Geophysics, 55(04): 1179-1185 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.04.014
    [187] Takei Y, Fujisawa K, McCarthy C. 2011. Experimental study of attenuation and dispersion over a broad frequency range: 1. The apparatus[J]. Journal of Geophysical Research, 116: B09204.
    [188] Takei Y, Karasawa F, Yamauchi H. 2014. Temperature, grain size, and chemical controls on polycrystal anelasticity over a broad frequency range extending into the seismic range[J]. Journal of Geophysical Research: Solid Earth, 119: 5414-5443. doi: 10.1002/2014JB011146
    [189] Talavera-Soza S, Deuss A. 2020. Constraining 1-D inner core attenuation through measurements of strongly coupled normal mode pairs[J]. Geophysical Journal International, 223(1): 612-621. doi: 10.1093/gji/ggaa324
    [190] Talavera-Soza S, Deuss A. 2021. New measurements of long-period radial modes using large earthquakes[J]. Geophysical Journal International, 224(2): 1211-1224.
    [191] Tape C, Liu Q, Tromp J. 2007. Finite-frequency tomography using adjoint methods--Methodology and examples using membrane surface waves[J]. Geophysical Journal International, 168(3): 1105-1129. doi: 10.1111/j.1365-246X.2006.03191.x
    [192] Teng T-L. 1968. Attenuation of body waves and the Q structure of the mantle[J]. Journal of Geophysical Research, 73(6): 2195-2208. doi: 10.1029/JB073i006p02195
    [193] Toyokuni G, Komatsu M, Takenaka H. 2021. Estimation of seismic attenuation of the Greenland Ice Sheet using 3-D waveform modeling[J]. Journal of Geophysical Research: Solid Earth, 126: e2021JB021694 .
    [194] Trinh P T, Brossier R, Métivier L, et al. 2019. Efficient time-domain 3D elastic and viscoelastic full-waveform inversion using a spectral-element method on flexible Cartesian-based mesh[J]. Geophysics, 84(1): R75-R97. doi: 10.1190/geo2018-0099.1
    [195] Tromp J, Dahlen F A. 1992a. Variational principles for surface wave propagation on a laterally heterogeneous Earth--I. Time-domain JWKB theory[J]. Geophysical Journal International, 109(3): 581-598. doi: 10.1111/j.1365-246X.1992.tb00119.x
    [196] Tromp J, Dahlen F A. 1992b. Variational principles for surface wave propagation on a laterally heterogeneous Earth--II. Frequency-domain JWKB theory[J]. Geophysical Journal International, 109(3): 599-619. doi: 10.1111/j.1365-246X.1992.tb00120.x
    [197] Tromp J. 1994. Surface-wave propagation on a rotating, anisotropic Earth[J]. Geophysical Journal International, 117(1): 141-152. doi: 10.1111/j.1365-246X.1994.tb03308.x
    [198] Tromp J, Tape C, Liu Q. 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels[J]. Geophysical Journal International, 160(1): 195-216.
    [199] Tsai V C. 2011. Understanding the amplitudes of noise correlation measurements[J]. Journal of Geophysical Research, 116: B09311.
    [200] Tseng T L, Huang B S, Chin B H. 2001. Depth-dependent attenuation in the uppermost inner core from the Taiwan short period seismic array PKP data[J]. Geophysical Research Letters, 28(3): 459-462. doi: 10.1029/2000GL012118
    [201] Walsh J B. 1966. Seismic wave attenuation in rock due to friction[J]. Journal of Geophysical Research, 71: 2591–2599. doi: 10.1029/JZ071i010p02591
    [202] Wang N, Li J, Borisov D, et al. 2019. Modeling three-dimensional wave propagation in anelastic models with surface topography by the optimal strong stability preserving Runge-Kutta method[J]. Journal of Geophysical Research: Solid Earth, 124: 890-907. doi: 10.1029/2018JB016175
    [203] Wang Y, Lin F-C, Schmandt B, et al. 2017. Ambient noise tomography across Mount St. Helens using a dense seismic array[J]. Journal of Geophysical Research: Solid Earth, 122: 4492-4508. doi: 10.1002/2016JB013769
    [204] Wang Y-J, Ma K-F, Mouthereau F, et al. 2010. Three-dimensional QP- and QS-tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure[J]. Geophysical Journal International, 180(2): 891-910. doi: 10.1111/j.1365-246X.2009.04459.x
    [205] Wang Z, Dahlen F A. 1994. JWKB surface-wave seismograms on a laterally heterogeneous earth[J]. Geophysical Journal International, 119(2): 381-401. doi: 10.1111/j.1365-246X.1994.tb00130.x
    [206] Wang Z, Zhao D. 2019. Updated attenuation tomography of Japan subduction zone[J]. Geophysical Journal International, 219(3): 1679-1697. doi: 10.1093/gji/ggz339
    [207] Weaver R L. 2011. On the amplitudes of correlations and the inference of attenuations, specific intensities and site factors from ambient noise[J]. Comptes Rendus Geoscience, 343(8-9): 615-622. doi: 10.1016/j.crte.2011.07.001
    [208] Weaver R L, Yoritomo J Y. 2018. Temporally weighting a time varying noise field to improve Green function retrieval[J]. The Journal of the Acoustical Society of America, 143(6): 3706-3719. doi: 10.1121/1.5043406
    [209] Weemstra C, Westra W, Snieder R, et al. 2014. On estimating attenuation from the amplitude of the spectrally whitened ambient seismic field[J]. Geophysical Journal International, 197(3): 1770-1788. doi: 10.1093/gji/ggu088
    [210] Weemstra C, Snieder R, Boschi L. 2015. On the estimation of attenuation from the ambient seismic field: Inferences from distributions of isotropic point scatterers[J]. Geophysical Journal International, 203(2): 1054-1071. doi: 10.1093/gji/ggv311
    [211] Wei S S, Wiens D A. 2018. P-wave attenuation structure of the Lau back-arc basin and implications for mantle wedge processes[J]. Earth and Planetary Science Letters, 502: 187-199. doi: 10.1016/j.jpgl.2018.09.005
    [212] Wei S S, Wiens D A. 2020. High bulk and shear attenuation due to partial melt in the Tonga-Lau back-arc mantle[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB017527.
    [213] Wen L, Niu F. 2002. Seismic velocity and attenuation structures in the top of the Earth’s inner core[J]. Journal of Geophysical Research, 107(B11): 2273.
    [214] Widmer R, Masters G, Gilbert F. 1991. Spherically symmetric attenuation within the Earth from normal mode data[J]. Geophysical Journal International, 104(3): 541-553.
    [215] Woodhouse J H, Wong Y K. 1986. Amplitude, phase and path anomalies of mantle waves[J]. Geophysical Journal International, 87(3): 753-773. doi: 10.1111/j.1365-246X.1986.tb01970.x
    [216] Wu S, Lin F-C, Farrell J, et al. 2020. Spatiotemporal seismic structure variations associated with the 2018 Kīlauea eruption based on temporary dense Geophone Arrays[J]. Geophysical Research Letters, 47: e2019GL086668.
    [217] Xie J, Mitchell B J. 1990. Attenuation of multiphase surface waves in the Basin and Range province, part I: Lg and Lg coda[J]. Geophysical Journal International, 102(1): 121–137. doi: 10.1111/j.1365-246X.1990.tb00535.x
    [218] Yamauchi H, Takei Y. 2016. Polycrystal anelasticity at near-solidus temperatures[J]. Journal of Geophysical Research: Solid Earth, 121, 7790–7820. doi: 10.1002/2016JB013316
    [219] Yamauchi H, Takei Y. 2020. Application of a premelting model to the lithosphere-asthenosphere boundary[J]. Geochemistry, Geophysics, Geosystems, 21: e2020GC009338.
    [220] Yang J, Zhu H, Li X, et al. 2020. Estimating P wave velocity and attenuation structures using full waveform inversion based on a time domain complex-valued viscoacoustic wave equation: The method[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB019129.
    [221] Yang Y, Forsyth D W, Weeraratne D S. 2007. Seismic attenuation near the east Pacific Rise and the origin of the low-velocity zone[J]. Earth and Planetary Science Letters, 258(1-2): 260-268. doi: 10.1016/j.jpgl.2007.03.040
    [222] Yassminh R, Laphim P, Sandvol E. 2020. Seismic attenuation and velocity measurements of the uppermost mantle beneath the central and eastern United States and implications for the temperature of the North American lithosphere[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB017728.
    [223] Zhang J, Yang X. 2013. Extracting surface wave attenuation from seismic noise using correlation of the coda of correlation[J]. Journal of Geophysical Research: Solid Earth, 118: 2191-2205. doi: 10.1002/jgrb.50186
    [224] 张智奇, 姚华建, 杨妍. 2020. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J]. 中国科学: 地球科学, 50(9): 1242-1258

    Zhang Z Q, Yao H J, Yang Y. 2020. Shear wave velocity structure of the crust and upper mantle in southeastern Tibet and its geodynamic implications[J]. Science China Earth Sciences, 50(9): 1242-1258 (in Chinese).
    [225] Zhao D. 2021. Seismic imaging of northwest Pacific and east Asia: New insight into volcanism, seismogenesis and geodynamics[J]. Earth-Science Reviews, 214: 103507. doi: 10.1016/j.earscirev.2021.103507
    [226] Zhao D, Wang J, Huang Z, et al. 2021. Seismic structure and subduction dynamics of the western Japan arc[J]. Tectonophysics, 802: 228743. doi: 10.1016/j.tecto.2021.228743
    [227] Zhao L, Jordan T H, Olsen K B et al. 2005. Frechet kernels for imaging regional Earth structure based on three-dimensional reference models[J]. Bulletin of the Seismological Society of America, 95(6): 2066-2080. doi: 10.1785/0120050081
    [228] Zhao L-F, Xie X-B, He J-K, et al. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth and Planetary Science Letters, 383: 113-122. doi: 10.1016/j.jpgl.2013.09.038
    [229] Zhao L-F, Mousavi S M. 2018. Lateral Variation of crustal Lg attenuation in eastern North America[J]. Scientific Reports, 8: 7285. doi: 10.1038/s41598-018-25649-5
    [230] 赵连锋, 谢小碧, 王卫民, 等. 2018. 中国东北和朝鲜半岛地区地壳Lg波宽频带衰减模型[J]. 地球物理学报, 61(3): 856-871 doi: 10.6038/cjg2018L0394

    Zhao L-F, Xie X-B, Wang W-M, et al. 2018. A broadband crustal Lg wave attenuation model in northeast China and the Korean Peninsula[J]. Chinese Journal of Geophysics, 61(3): 856-871 (in Chinese). doi: 10.6038/cjg2018L0394
    [231] Zhou B, Liang X, Lin G, et al. 2019. Upper crustal weak zone in central Tibet: An implication from three-dimensional seismic velocity and attenuation tomography results[J]. Journal of Geophysical Research: Solid Earth, 124: 4654-4672. doi: 10.1029/2018JB016653
    [232] 周连庆, 赵翠萍, 修济刚, 等. 2008. 利用天然地震研究地壳Q值的方法和进展[J]. 国际地震动态, 38(2): 1-11 doi: 10.3969/j.issn.0253-4975.2008.02.001

    Zhou L Q, Zhao C P, Xiu J G, et al. 2008. Methods and development of research on crustal Q value by using earthquakes[J]. Recent Developments in World Seismology, 38(2): 1-11 (in Chinese). doi: 10.3969/j.issn.0253-4975.2008.02.001
    [233] 周龙泉, 刘杰, 苏有锦, 等. 2009 利用S波高频衰减参数对云南地区地壳Q值成像[J]. 地球物理学报, 52(6): 1500-1507.

    Zhou L Q, Liu J, Su Y J, et al. 2009. Tomography for Q of Yunnan region from high-frequency attenuation of S wave[J]. Chinese Journal of Geophysics, 52(6): 1500-1507 (in Chinese).
    [234] Zhou L Q, Song X, Weaver R L. 2020. Retrieval of amplitude and attenuation from ambient seismic noise: Synthetic data and practical considerations[J]. Geophysical Journal International, 222(1): 544-559. doi: 10.1093/gji/ggaa194
    [235] Zhou Y, Dahlen F A, Nolet G. 2004. Three-dimensional sensitivity kernels for surface wave observables[J]. Geophysical Journal International, 158(1): 142-168. doi: 10.1111/j.1365-246X.2004.02324.x
    [236] Zhou Y, Chen X, Ni S, et al. 2021. Determining crustal attenuation with seismic T waves in Southern Africa[J]. Geophysical Research Letters, 48: e2021GL094410.
    [237] Zhu H, Bozdaǧ E, Duffy T S, et al. 2013. Seismic attenuation beneath Europe and the north Atlantic: Implications for water in the mantle[J]. Earth and Planetary Science Letters, 381: 1-11. doi: 10.1016/j.jpgl.2013.08.030
    [238] Zhu H, Bozdaǧ E, Tromp J. 2015. Seismic structure on the European upper mantle based on adjoint tomography[J]. Geophysical Journal International, 201(1): 18-52.
    [239] Zhu Z, Bezada M J, Byrnes J S, et al. 2021. Evidence for stress localization caused by lithospheric heterogeneity from seismic attenuation[J]. Geochemistry, Geophysics, Geosystems, 22(11): e2021GC009987.
  • 加载中
  • 文章访问数:  179
  • HTML全文浏览量:  169
  • PDF下载量:  136
  • 被引次数: 0
  • 收稿日期:  2022-03-26
  • 录用日期:  2022-06-02
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2022-07-11