• ISSN 2097-1893
  • CN 10-1855/P

系外行星的大气环流

连雨辰 胡永云

引用本文: 连雨辰,胡永云. 2023. 系外行星的大气环流. 地球与行星物理论评(中英文),54(1):56-80
Lian Y C, Hu Y Y. 2023. Atmospheric circulation of exoplanets. Reviews of Geophysics and Planetary Physics, 54(1): 56-80 (in Chinese)

系外行星的大气环流

doi: 10.19975/j.dqyxx.2022-027
基金项目: 国家自然科学基金资助项目(41888101)
详细信息
    作者简介:

    连雨辰(1995-),男,博士研究生,主要从事系外行星大气研究. E-mail:lianyc@pku.edu.cn

    通讯作者:

    胡永云(1965-),男,教授,主要从事系外行星大气和古地球气候研究. E-mail:yyhu@pku.edu.cn

  • 恒星光谱偏移测量出的是行星质量与轨道倾角正弦函数的乘积.
  • 红矮星是一类辐射温度低于太阳的恒星,是光谱型为K型和M型的主序星.
  • \begin{document}${\boldsymbol{F}}=-{\boldsymbol{u}} / \tau_{\text {drag }} $\end{document},其中\begin{document}$\tau_{\text {drag }} $\end{document}为摩擦时间尺度.
  • 平均密度随深度\begin{document}$r $\end{document}变化的系统,\begin{document}$\rho = \rho (r) + \widetilde {\rho '}(r,\lambda ,\phi ) $\end{document}.
  • 科里奥利参数f是常数.
  • 中图分类号: P401

Atmospheric circulation of exoplanets

Funds: Supported by the National Natural Science Foundation of China(Grant No. 41888101)
  • 摘要: 迄今为止,已有五千多颗太阳系外行星和两千多颗褐矮星被确认,它们展现出了丰富的多样性. 伴随着愈来愈多系外行星的发现,关于系外行星大气的观测和理论研究均在迅速发展. 本文将回顾近几十年来系外行星和褐矮星探测的主要进展,依序介绍系外行星中的热木星、具有大气层的类地行星,以及孤立并快速旋转的褐矮星大气环流的基本特征,这些大气环流特征是未来系外行星探测的基础. 然后,将介绍基于观测建立的大气模式对这些系外行星和褐矮星大气演化和动力学特征的模拟结果,包括大气的垂直温度分布、层结的稳定性、辐射传输、大气成分等. 热木星受到强烈辐射且被潮汐锁定,环流模式预测其具有大的昼夜温差和赤道地区向东的急流. 温木星通常不会被潮汐锁定,展现出广泛的自转率倾角和轨道偏心率,导致环流模式与热木星相比有很大不同. 潮汐锁定的类地行星具有类似热木星的大气环流模式,但可能存在的海洋以及各种化学过程会深刻改变类地行星的气候,在这一部分本文还将讨论系外行星研究的最终目标——寻找宜居行星. 褐矮星作为行星和恒星之间的过渡状态,通常是缺乏外部辐射并快速旋转的星体,内部具有剧烈的对流,大气表现出云层和温度的不均匀性. 最后,我们将对系外行星和褐矮星大气这一前沿科学领域未来所面临的关键问题和挑战给出展望.

     

    1)  恒星光谱偏移测量出的是行星质量与轨道倾角正弦函数的乘积.
    2)  红矮星是一类辐射温度低于太阳的恒星,是光谱型为K型和M型的主序星.
    3)  ${\boldsymbol{F}}=-{\boldsymbol{u}} / \tau_{\text {drag }} $,其中$\tau_{\text {drag }} $为摩擦时间尺度.
    4)  平均密度随深度$r $变化的系统,$\rho = \rho (r) + \widetilde {\rho '}(r,\lambda ,\phi ) $.
    5)  科里奥利参数f是常数.
  • 图  1  历年所确认的系外行星个数,数据来源:exoplanet.eu

    Figure  1.  Number of confirmed exoplanets over the years, from exoplanet.eu

    图  2  系外行星质量—公转半长轴分布图. 其中红、蓝、绿和褐色分别代表凌星法、视向速度法、微引力透镜法和直接成像法发现的系外行星. 纵轴以木星质量为单位,横轴是天文单位(日地之间平均距离,大约为 1.5 亿千米). 数据来源:exoplanets.org

    Figure  2.  Exoplanet mass-separation relationship. Red, blue, green and brown dots represent exoplanets discovered by the transit method, radial velocity method, microlensing method and direct imaging method, respectively. The vertical axis is in Jupiter mass, and the horizontal axis is in astronomical units (the average distance between the Sun and the Earth, about 150 million kilometers), from exoplanet.org

    图  3  目前发现的系外行星质量和数量占比关系. 上侧标注了太阳系八大行星所对应的质量大小. 可以看出,系外行星中数量较多的主要有三类:质量略大于地球的超级地球(SuperEarth)、质量小于海王星的次海王星(SubNeptune)和质量在木星附近的巨行星(GiantPlanets),在这三者之间存在质量分布的不连续(mass gap). 数据来源:Extarsolar Planets Encyclopedia(2022-05-10)

    Figure  3.  The relationship between the mass and the number of exoplanets. The upper marks the masses corresponding to the eight planets in our solar system. The most kinds of exoplanets are three main types: SuperEarth with a mass slightly larger than Earth, SubNeptune with a mass smaller than Neptune, and GiantPlanets with a mass near Jupiter. There are mass gaps between them. From Extarsolar Planets Encyclopedia (May 10, 2022)

    图  4  (a)热木星HD 209458b在4.5 µm红外波段发射谱的去相关光变曲线;(b)放大局部. 凌星主食:即行星旋转至主星和地球之间;凌星次食:即行星旋转至恒星背后. 相位0.2处的高值可能是系统误差(修改自Zellem et al. 2014);(c)凌星相位示意图(修改自Winn, 2010

    Figure  4.  (a) The decorrelated light curve of the hot Jupiter HD 209458b in the 4.5 µm band; (b) The enlarged part. Transit means the planet rotates between the star and the Earth; Occultation (Secondary eclipse) means the planet rotates behind the star. The high value at 0.2 may be a systematic error (modified from Zellem et al., 2014); (c) A schematic diagram of the transit phase (modified from Winn, 2010)

    图  5  热木星 HD 209458b 模型在达到稳定后的结果(修改自Showman and Guillot, 2002).(a)0.4 bar处的结果;(b)6 bar 处的结果;(c)100 bar处的结果. 灰度显示等压线情况,矢量显示风向,最大风速从上到下分别为1541 m/s 、1223 m/s和598 m/s

    Figure  5.  Results of the hot Jupiter HD 209458b model in equilibrium (modified from Showman and Guillot, 2002) at 0.4 bars, 6 bars and 100 bars from top to bottom. The grayscale map is the isobar map with arrows showing wind directions, and the maximum wind speed from top to bottom is 1541 m/s, 1223 m/s and 598 m/s

    图  6  (a)热木星浅水方程的数值解,颜色图代表位势高度场,箭头代表风向,经纬(0°, 0°)代表星下点,X号代表最热点;(b)动量向赤道输送的示意图(修改自Showman and Polvani, 2011

    Figure  6.  (a) The numerical solution of the hot Jupiter shallow water cases. The colormap shows the geopotential height, the arrows show the wind, the (0°, 0°) shows the substellar point, and the X shows the hottest spot; (b) The momentum are transported equatorward (modified from Showman and Polvani, 2011)

    图  7  非锁定热木星模式的平均纬向风场. (a, c)热木星HD 189733b的模拟,公转周期为2.2天;(b, d)热木星 HD 209458b 的模拟,公转周期为3.3天. 图(a, b)自转周期为公转周期的两倍(4.4天和6.6天);图(c, d)自转和公转周期相等,处于潮汐锁定状态(修改自Rauscher and Kempton, 2014

    Figure  7.  Zonal-mean zonal wind fields for non-synchronously hot Jupiter models. (a, c) A simulation of the hot Jupiter HD 189733b, with an orbital period of 2.2 days; (b, d) The right column is a simulation of the hot Jupiter HD 209458b, with an orbital period of 3.3 days. The rotation period is twice than the orbital period (4.4 days and 6.6 days) at the upper row, and the rotation and orbital periods are equal at the bottom row (modified from Rauscher and Kempton, 2014)

    图  8  潮汐锁定不同倾角状态下的相位温度分布,横轴为时间相位,黑色虚线表示星下点的南北移动. 从上到下行星倾角分别为30°、60°和90°(修改自Rauscher, 2017

    Figure  8.  Temperature with different eccentricity of tidally locked planets. The horizontal axis shows the time, the black dotted line shows movement of the substellar point, and the planetary inclination from top to bottom are 30°, 60° and 90°, respectively (modified from Rauscher, 2017)

    图  9  随自转周期、辐射时间尺度、公转周期和行星倾角而变化的温木星大气运动模式(修改自Ohno and Zhang, 2019a

    Figure  9.  Circulation patterns of warm Jupiter influenced by rotation period, radiation time scale, orbital period and planetary inclination (modified from Ohno and Zhang, 2019a)

    图  10  辐射平衡温度(Teq)为3600 K的超热木星氢气离解情况(70 mbar处). (a)氢原子的质量混合比;(b)离解/聚合加热速率,离解为负值,聚合为正值. 超热木星自转周期2.43天(修改自Tan and Komacek, 2019a

    Figure  10.  (a) The mass mixing ratio of hydrogen atoms and molecules. (b) Heating rate. Positive value shows recombined and negative value shows dissociated. Rotation period of ultrahot Jupiter is 2.43 days, with effective temperature of 3600 K (modified from Tan and Komacek, 2019a)

    图  11  辐射平衡温度为3600 K的超热木星温度和风场分布(70 mbar处),颜色图表示温度,箭头表示风场. (a)没有氢气离解过程;(b)有氢气离解过程(修改自Tan and Komacek, 2019a

    Figure  11.  Temperature and wind of ultra-hot Jupiter with effective temperature of 3600 K (at 70 mbar). (a) Without hydrogen dissociation process; (b) With hydrogen dissociation process (modified from Tan and Komacek, 2019a)

    图  12  宜居带附近的所有行星(深绿色阴影为保守宜居带,浅绿色阴影为乐观宜居带). 只有小于10个地球质量或2.5个地球半径的行星被标记. 圆圈的大小对应于行星的半径(根据质量半径关系估计)(修改自Kopparapu et al., 2014)(PHL @ UPR Arecibo)

    Figure  12.  The figure shows all planets near the habitable zone (darker green shade is the conservative habitable zone and the lighter green shade is the optimistic habitable zone). Only those planets less than 10 Earth masses or 2.5 Earth radii are labeled. The different limits of the habitable zone are described in Kopparapu et al. (2014). Size of the circles corresponds to the radius of the planets (estimated from a mass-radius relationship)

    图  13  一维云模式随时间变化的云混合比(qc)和温度结构(修改自Tan and Showman, 2019b

    Figure  13.  Cloud mixing ratio and temperature structure in 1D cloud models (modified from Tan and Showman, 2019b)

    图  14  Showman等(2019)模拟得到的褐矮星纬向风场(0.77 bars). 从(a-d)四个子图,底部摩擦依次增强

    Figure  14.  The simulation results of zonal wind fields at 0.77 bars field by Showman et al. (2019). The bottom drag increases from (a) to (d)

    图  15  (a)褐矮星赤道风场随时间的改变,红色西风,蓝色东风,纵轴为气压(修改自Showman et al., 2019);(b)地球 QBO 的原理,实线代表风速廓线,曲线代表上传的赤道波,白色空心箭头代表加速度方向(修改自Plumb, 1977

    Figure  15.  (a) Zonal-mean zonal wind at the equator vs. pressure and time (in Earth days). Eastward wind is shown in red and westward wind is shown in blue (modified from Showman et al., 2019); (b) Schematic of the QBO mechanism. The curvy solid line represents the background zonal-mean zonal flow. The curvy arrows show upward propagating equatorial wave. Preferential absorption of these waves leads to zonal accelerations that are shown by the thick double arrows (modified from Plumb, 1977)

  • [1] Abbot D S, Pierrehumbert R T. 2010. Mudball: Surface dust and snowball Earth deglaciation[J]. Journal of Geophysical Research: Atmospheres, 115(D3): D03104.
    [2] Abbot D S, Voigt A, Branson M, et al. 2012. Clouds and snowball Earth deglaciation[J]. Geophysical Research Letters, 39(20): L20711.
    [3] Abe Y, Abe-Ouchi A, Sleep N H, Zahnle K J. 2011. Habitable zone limits for dry planets[J]. Astrobiology, 11(5): 443–460. doi: 10.1089/ast.2010.0545
    [4] Alexander D R, Allard F, Tamanai A, et al. 1997. Grain formation in atmospheres of cool dwarfs[J]. Astrophysics and Space Science, 251(1): 171–175.
    [5] Allers K N, Vos J M, Biller B A, et al. 2020. A measurement of the wind speed on a brown dwarf[J]. Science, 368(6487): 169-172. doi: 10.1126/science.aaz2856
    [6] Anderson D R, Temple L Y, Nielsen L D, et al. 2018. WASP-189b: An ultra-hot Jupiter transiting the bright a star HR 5599 in a polar orbit[J]. Monthly Notices of the Royal Astronomical Society, arXiv: 1809.04897.
    [7] Andrews D, Holton J, Leovy C. 1987. Middle Atmosphere Dynamics, volume 40[M]. San Diego: Academic Press.
    [8] Angerhausen D, DeLarme E, Morse J A. 2015. A comprehensive study of Kepler phase curves and secondary eclipses: Temperatures and albedos of confirmed Kepler giant planets[J]. Publications of the Astronomical Society of the Pacific, 127(957): 1113-1163. doi: 10.1086/683797
    [9] Apai D, Radigan J, Buenzli E, et al. 2013. HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations[J]. The Astrophysical Journal, 768(2): 121-136. doi: 10.1088/0004-637X/768/2/121
    [10] Apai D, Karalidi T, Marley M S, et al. 2017. Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres[J]. Science, 357(6352): 683–687. doi: 10.1126/science.aam9848
    [11] Arcangeli J, Désert J-M, Line M R, et al. 2018. H- opacity and water dissociation in the dayside atmosphere of the very hot gas giant WASP-18b[J]. The Astrophysical Journal Letters, 855(2): L30-L36. doi: 10.3847/2041-8213/aab272
    [12] Artigau E, Bouchard S, Doyon R, et al. 2009. Photometric variability of the T2.5 brown dwarf SIMP J013656.5+093347: Evidence for evolving weather patterns[J]. The Astrophysical Journal, 701(2): 1534-1539. doi: 10.1088/0004-637X/701/2/1534
    [13] Baldwin M P, Gray L, Dunkerton T, et al. 2001. The quasi-biennial oscillation[J]. Reviews of geophysics, 39: 179–229. doi: 10.1029/1999RG000073
    [14] Barragán O, Gandolfi D, Smith A, et al. 2017. K2-139 b: A low-mass warm Jupiter on a 29-day orbit transiting an active K0V star[J]. Monthly Notices of the Royal Astronomical Society, 475: 1765-1776.
    [15] Barstow J K, Aigrain S, Irwin P G J, et al. 2017. A consistent retrieval analysis of 10 hot Jupiters observed in transmission[J]. The Astrophysical Journal, 834: 50-65.
    [16] Batygin K, Stanley S, Stevenson D J. 2013. Magnetically controlled circulation on hot extrasolar planets[J]. The Astrophysical Journal, 776(1): 1567–1579.
    [17] Bean J L, Raymond S N, Owen J E. 2020. The nature and origins of sub-Neptune size planets[J]. Journal of Geophysical Research: Planets, 126(1): e2020JE006639.
    [18] Bell T J, Cowan N B. 2018. Increased heat transport in ultra-hot Jupiter atmospheres through H2 dissociation and recombination[J]. The Astrophysical Journal Letters, 857(2): L20-L26. doi: 10.3847/2041-8213/aabcc8
    [19] Berner R A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2[M]. Oxford University Press.
    [20] Biller B A, Crossfield I J M, Mancini L, et al. 2013. Weather on the nearest brown dwarfs: Resolved simultaneous multi-wavelength variability monitoring of WISE J104915.57−531906.1AB[J]. The Astrophysical Journal Letters, 778: L10–L16. doi: 10.1088/2041-8205/778/1/L10
    [21] Bolmont E, Mathis S. 2016. Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets[J]. Celestial Mechanics and Dynamical Astronomy, 126: 275–296. doi: 10.1007/s10569-016-9690-3
    [22] Bolmont E, Selsis F, Owen J E, et al. 2016. Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1[J]. Monthly Notices of the Royal Astronomical Society, 464(3): 3728-3741.
    [23] Borucki W J, Koch D G, Basri G, et al. 2011. Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data[J]. The Astrophysical Journal, 736(1): 19-31. doi: 10.1088/0004-637X/736/1/19
    [24] Brandeker A, Heng K, Lendl M, et al. 2022. CHEOPS geometric albedo of the hot Jupiter HD 209458 b[J]. Astronomy & Astrophysics, 659: L4-L12.
    [25] Brahm R, Jordán A, Bakos G, et al. 2016. HATS-17b: A transiting compact warm Jupiter in a 16.3 days circular orbit[J]. Physics, 151(4): 89-100.
    [26] Burgasser A J, Gillon M, Faherty J K, et al. 2014. A monitoring campaign for Luhman 16AB. I. Detection of resolved near-infrared spectroscopic variability[J]. The Astrophysical Journal, 785(1): 48-58. doi: 10.1088/0004-637X/785/1/48
    [27] Burrows A, Hubbard W B, Saumon D, et al. 1993. An expanded set of brown dwarf and very low mass star models[J]. The Astrophysical Journal, 406(1): 158–171.
    [28] Burrows A, Sudarsky D, Hubeny I. 2006. Theory for the secondary eclipse fluxes, spectra, atmospheres, and light curves of transiting extrasolar giant planets[J]. The Astrophysical Journal, 650(2): 1140–1149. doi: 10.1086/507269
    [29] Casewell S L, Burleigh M R, Wynn G A, et al. 2012. WD0837+185: The formation and evolution of an extreme mass ratio white dwarf-brown dwarf binary in praesepe[J]. The Astrophysical Journal, 759(2): L34-L39. doi: 10.1088/2041-8205/759/2/L34
    [30] Charbonneau D, Berta Z K, Irwin J, et al. 2009. A super-Earth transiting a nearby low-mass star[J]. Nature, 462: 891–894. doi: 10.1038/nature08679
    [31] Chen G, Palle E, Parviainen H, et al. 2021. Evidence for TiO in the atmosphere of the hot Jupiter HAT-P-65 b[J]. The Astrophysical Journal Letters, 913(1): L16-L30. doi: 10.3847/2041-8213/abfbe1
    [32] Cho J Y K, Polichtchouk I, Thrastarson H T. 2015. Sensitivity and variability redux in hot Jupiter flow simulations[J]. Monthly Notices of the Royal Astronomical Society, 454(4): 3423-3431. doi: 10.1093/mnras/stv1947
    [33] Christian M, Bruce M, Travis B, et al. 2008. Direct imaging of multiple planets orbiting the star HR 8799[J]. Science, 322(5906): 1348-1378. doi: 10.1126/science.1166585
    [34] Cooper C S, Showman A P. 2005. Dynamic meteorology at the photosphere of HD 209458b[J]. The Astrophysical Journal Letters, 629(1): L45-L48. doi: 10.1086/444354
    [35] Cowan N B, Agol E. 2011. A model for thermal phase variations of circular and eccentric exoplanets[J]. The Astrophysical Journal, 726(2): 82-94. doi: 10.1088/0004-637X/726/2/82
    [36] Cranmer S R, Saar S H. 2011. Testing a predictive theoretical model for the mass loss rates of cool stars[J]. Astrophysical Journal, 741(1): 525–536.
    [37] Crossfield I, Biller B, Schlieder J, Deacon N R, et al. 2014. A global cloud map of the nearest known brown dwarf[J]. Nature, 505(7485): 654-656. doi: 10.1038/nature12955
    [38] Dalal S, Kiefer F, Hėbrard G, et al. 2021. The SOPHIE search for northern extrasolar planets XVII. A wealth of new objects: Six cool Jupiters, three brown dwarfs, and 16 low-mass binary stars[J]. Astronomy and Astrophysics, 651(1): A11
    [39] Dang L, Cowan N B, Schwartz J C, et al. 2018. Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b[J]. Nature Astronomy, 2: 220-227. doi: 10.1038/s41550-017-0351-6
    [40] Demory B-O, de Wit J, Lewis N, et al. 2013. Inference of inhomogeneous clouds in an exoplanet atmosphere[J]. The Astrophysical Journal Letters, 776(2): L25-L32. doi: 10.1088/2041-8205/776/2/L25
    [41] Dodson-Robinson S, Willacy K, Bodenheimer P, et al. 2009. Ice lines, planetesimal composition and solid surface density in the solar nebula[J]. Icarus, 200(1): 672–693.
    [42] 窦江培, 朱永田, 任德清. 2014. 太阳系外行星的研究现状[J]. 自然杂志, 36(2): 5-10.

    Dou J P, Zhu Y T, Ren D Q. 2014. Current research status of exoplanets [J]. Chinese Journal of Nature, 36(2): 5-10 (in Chinese).
    [43] Drummond B, Mayne N J, Baraffe I, et al. 2018. The effect of metallicity on the atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium chemistry, and radiative transfer[J]. Astronomy & Astrophysics, 612: A105-A122.
    [44] Esteves L J, De Mooij E J W, Jayawardhana R. 2015. Changing phases of alien worlds: Probing atmospheres of Kepler planets with high-precision photometry[J]. The Astrophysical Journal, 804(2): 150-178. doi: 10.1088/0004-637X/804/2/150
    [45] Evans T M, Sing D K, Kataria T, et al. 2017. An ultrahot gas-giant exoplanet with a stratosphere[J]. Nature, 548(7665): 58-61 doi: 10.1038/nature23266
    [46] France K, Loyd R, Youngblood A, et al. 2016. The MUSCLES treasury survey. I. Motivation and overview[J]. The Astrophysical Journal, 820(2): 89-113. doi: 10.3847/0004-637X/820/2/89
    [47] Freytag B, Allard F, Ludwig H G, et al. 2010. The role of convection, overshoot, and gravity waves for the transport of dust in m dwarf and brown dwarf atmospheres[J]. Astronomy & Astrophysics, 513(4): 449–456.
    [48] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society, 106(449): 447-462. doi: 10.1002/qj.49710644905
    [49] Guillot T, Burrows A, Hubbard W B, et al. 1996. Giant planets at small orbital distances[J]. The Astrophysical Journal Letters, 459: L35-L54.
    [50] Gupta A, Schlichting H E. 2019. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: The core-powered mass-loss mechanism[J]. Monthly Notices of the Royal Astronomical Society, 487(1): 24–33. doi: 10.1093/mnras/stz1230
    [51] Hammond M, Pierrehumbert R T. 2018. Wave-mean flow interactions in the atmospheric circulation of tidally locked planets[J]. The Astrophysical Journal, 869(1): 65-84. doi: 10.3847/1538-4357/aaec03
    [52] Haynes K, Mandell A M, Madhusudhan N, et al. 2015. Spectroscopic evidence for a temperature inversion in the dayside atmosphere of the hot Jupiter WASP-33b[J]. The Astrophysical Journal, 806(2): 146-158. doi: 10.1088/0004-637X/806/2/146
    [53] Heng K, Menou K, Phillipps P J. 2011. Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers[J]. Monthly Notices Of The Royal Astronomical Society, 413(4): 2380–2402. doi: 10.1111/j.1365-2966.2011.18315.x
    [54] Heng K, Demory B-O. 2013. Understanding trends associated with clouds in irradiated exoplanets[J]. The Astrophysical Journal, 777(2): 100-111. doi: 10.1088/0004-637X/777/2/100
    [55] Heng K. 2016. A cloudiness index for transiting exoplanets based on the sodium and potassium lines: Tentative evidence for hotter atmospheres being less cloudy at visible wavelengths[J]. The Astrophysical Journal Letters, 826(1): L16-L22. doi: 10.3847/2041-8205/826/1/L16
    [56] Hirschmann M M. 2000. Mantle solidus: Experimental constraints and the effects of peridotite composition[J]. Geochemistry, Geophysics, Geosystems, 1(10): 1042-26.
    [57] Hu R, Seager S. 2014. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes[J]. The Astrophysical Journal, 784(1): 63-88. doi: 10.1088/0004-637X/784/1/63
    [58] Hu Y, Ding F. 2011. Radiative constraints on the habitability of exoplanets Gliese 581c and Gliese 581d[J]. Astronomy and Astrophysics, 526: A135. doi: 10.1051/0004-6361/201014880
    [59] 胡永云, 丁峰. 2013. 潮汐锁相行星的大气环流与气候[J]. 中国科学: 物理学 力学 天文学, 43: 1356-1368.

    Hu Y, Ding F. 2013. Atmospheric circulations and climate of tidal-locking exoplanets[J]. Science China, 43(10): 1356–1368 (in Chinese).
    [60] Hu Y, Yang J. 2014. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars[J]. Proceedings of the National Academy of Sciences, 111(2): 629–634. doi: 10.1073/pnas.1315215111
    [61] 胡永云. 2016. 关于太阳系外行星的宜居性[J]. 气象科技进展, 6(1): 110–114

    Hu Y Y. 2016. On the habitability of extra-solar planets[J]. Advance in Meteorological Science and Technology, 6(1): 110–114(in Chinese)
    [62] Hu Y, Wang Y, Liu Y, Yang J. 2017. Climate and habitability of Kepler 452b simulated with a fully coupled atmospheric-oceanic general circulation model[J]. The Astrophysical Journal Letters, 835(1): L6-L11. doi: 10.3847/2041-8213/aa56c4
    [63] Hunten D M, Pepin R O, Walker J C G. 1987. Mass fractionation in hydrodynamic escape[J]. Icarus, 69(3): 532-549. doi: 10.1016/0019-1035(87)90022-4
    [64] Hurley J R, Tout C A, Pols O R. 2002. Evolution of binary stars and the effect of tides on binary populations[J]. Monthly Notices of the Royal Astronomical Society, 329(4): 897-928. doi: 10.1046/j.1365-8711.2002.05038.x
    [65] Ingersoll A P. 1969. The runaway greenhouse: A history of water on Venus[J]. Journal of Atmospheric Sciences, 26(6): 1191–1198. doi: 10.1175/1520-0469(1969)026<1191:TRGAHO>2.0.CO;2
    [66] Innes H. , Pierrehumbert R T. 2022. Atmospheric dynamics of temperate sub-Neptunes. I. Dry dynamics[J]. The Astrophysical Journal, 927(1): 38-63. doi: 10.3847/1538-4357/ac4887
    [67] Javoy M. 1999. Chemical Earth models[J]. Comptes Rendus de l'Académie des Sciences - Series IIA –Earth and Planetary Science, 329(8): 537-555.
    [68] Jenkins J M, Twicken J D, Batalha N M, et al. 2015. Discovery and validation of Kepler-452b: A 1.6 R super Earth exoplanet in the habitable zone of a G2 star[J]. The Astronomical Journal, 150(2): 56-75. doi: 10.1088/0004-6256/150/2/56
    [69] Jones H R A, Butler R P, Tinney C G, et al. 2006. High-eccentricity planets from the anglo-australian planet search[J]. Monthly Notices of the Royal Astronomical Society, 369(1): 249–256. doi: 10.1111/j.1365-2966.2006.10298.x
    [70] Joshi M M, Haberle R M, Reynolds R T. 1997. Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting m dwarfs: Conditions for atmospheric collapse and the implications for habitability[J]. Icarus, 129(1): 450–465.
    [71] Karalidi T, Apai D, Marley M S, et al. 2016. Maps of evolving cloud structures in Luhman 16AB from HST time-resolved spectroscopy[J]. The Astrophysical Journal, 825(2): 90-101. doi: 10.3847/0004-637X/825/2/90
    [72] Kasting J F, Whitmire D P, Reynolds R T. 1993. Habitable zones around main sequence stars[J]. Icarus, 101(1): 108–128. doi: 10.1006/icar.1993.1010
    [73] Kataria T, Showman A P, Lewis N K, et al. 2013. Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits[J]. The Astrophysical Journal, 767(1): 76-95. doi: 10.1088/0004-637X/767/1/76
    [74] Kempton E M-R, Lupu R, Owusu-Asare A, et al. 2017. Exo-transmit: An open source code for calculating transmission spectra for exoplanet atmospheres of varied composition[J]. Publications of the Astronomical Society of the Pacific, 129(974): 044402. doi: 10.1088/1538-3873/aa61ef
    [75] Knutson H A, Lewis N, Fortney J J, et al. 2012. 3.6 and 4.5 µm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b[J]. The Astrophysical Journal, 754(1): 22-38. doi: 10.1088/0004-637X/754/1/22
    [76] Komacek T D, Showman A P. 2016. Atmospheric circulation of hot Jupiters: Dayside–nightside temperature differences[J]. The Astrophysical Journal, 821(1): 16-38. doi: 10.3847/0004-637X/821/1/16
    [77] Komacek T D, Tan X. 2018. Effects of dissociation/recombination on the day-night temperature contrasts of ultra-hot Jupiters[J]. Research Notes of the AAS, 2(2): 36. doi: 10.3847/2515-5172/aac5e7
    [78] Kopparapu R K. 2013. A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler m-dwarfs[J]. The Astrophysical Journal Letters, 767(1): L8-L13. doi: 10.1088/2041-8205/767/1/L8
    [79] Kopparapu R K, Ramirez R M, SchottelKotte J, et al. 2014. Habitable zones around main-sequence stars: Dependence on planetary mass[J]. The Astrophysical Journal Letters, 787(2): L29-L35. doi: 10.1088/2041-8205/787/2/L29
    [80] Kundt W. 1983. Atmospheric superrotation on Saturn and Jupiter[J]. Planetary and Space Science, 31(11): 1339–1343. doi: 10.1016/0032-0633(83)90070-3
    [81] Langton J, Laughlin G. 2008. Hydrodynamic simulations of unevenly irradiated Jovian planets[J]. The Astrophysical Journal, 674(1): 1106–1116.
    [82] Lebonnois S, Covey C, Grossman A, et al. 2012. Angular momentum budget in general circulation models of superrotating atmospheres: A critical diagnostic[J]. Journal of Geophysical Research: Planets, 117(E12): 12004.
    [83] Lebrun T, Massol H, Chassefière E, et al. 2013. Thermal evolution of an early magma ocean in interaction with the atmosphere[J]. Journal of Geophysical Research: Planets, 118(6): 1155–1176. doi: 10.1002/jgre.20068
    [84] Leconte J, Forget F, Charnay B, et al. 2013. Increased insolation threshold for runaway greenhouse processes on Earth-like planets[J]. Nature, 504(7479): 268–271. doi: 10.1038/nature12827
    [85] Lee E, Dobbs-Dixon I, Helling C, et al. 2016. Dynamic mineral clouds on HD 189733b. I. 3D RHD with kinetic, non-equilibrium cloud formation[J]. Astronomy & Astrophysics, 594: A48.
    [86] Lee G, Casewell S L, Chubb K L, et al. 2020. Simplified 3D GCM modelling of the irradiated brown dwarf WD0137-349B[J]. Monthly Notices of the Royal Astronomical Society, 496(4): 4674-4687. doi: 10.1093/mnras/staa1882
    [87] Leggett S K, Geballe T R, Saumon D, et al. 2007. 3.6-7.9 µm photometry of L and T dwarfs and the prevalence of vertical mixing in their atmospheres[J]. The Astrophysical Journal, 655(2): 1079–1094. doi: 10.1086/510014
    [88] Leovy C B, Friedson A J, Orton G S. 1991. The quasiquadrennial oscillation of Jupiter’s equatorial stratosphere[J]. Nature, 354(6352): 380–382. doi: 10.1038/354380a0
    [89] Lewis N K, Parmentier V, Kataria T, et al. 2017. Atmospheric circulation and cloud evolution on the highly eccentric extrasolar planet HD 80606b[J]. The Astronomical Journal, arXiv: 1706.00466.
    [90] Lian Y, Showman A P, Tan X, et al. 2022. Influences of internal forcing on atmospheric circulations of irradiated giant planets[J]. The Astrophysical Journal, 928(2): 166-180. doi: 10.3847/1538-4357/ac5598
    [91] Lin D N C, Bodenheimer P, Richardson D C. 1996. Orbital migration of the planetary companion of 51 Pegasi to its present location[J]. Nature, 380(6575): 606–607. doi: 10.1038/380606a0
    [92] Lindzen R S, Holton J R. 1968. A theory of the quasi-biennial oscillation[J]. Journal of the Atmospheric Sciences, 25(6): 1095–1107. doi: 10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2
    [93] Lindzen R S. 1970. Internal equatorial planetary-scale waves in shear flow[J]. Journal of the Atmospheric Sciences, 27(3): 394–407. doi: 10.1175/1520-0469(1970)027<0394:IEPSWI>2.0.CO;2
    [94] Lindzen R S. 1971. Equatorial planetary waves in shear: Part I[J]. Journal of the Atmospheric Sciences, 28(4): 609–622. doi: 10.1175/1520-0469(1971)028<0609:EPWISP>2.0.CO;2
    [95] Lindzen R S. 1972. Equatorial planetary waves in shear: Part II[J]. Journal of the Atmospheric Sciences, 29(8): 1452–1463. doi: 10.1175/1520-0469(1972)029<1452:EPWISP>2.0.CO;2
    [96] Littlefair S P, Casewell S L, Parsons S G, et al. 2014. The substellar companion in the eclipsing white dwarf binary SDSS J141126.20+200911.1[J]. Monthly Notices of the Royal Astronomical Society, 445(2): 2106-2115. doi: 10.1093/mnras/stu1895
    [97] Liu B, Showman A P. 2012. Atmospheric circulation of hot Jupiters: Insensitivity to initial conditions[J]. The Astrophysical Journal, 770(1): 42-57.
    [98] Longstaff E S, Casewell S L, Wynn G A, et al. 2017. Emission lines in the atmosphere of the irradiated brown dwarf WD0137C349B[J]. Monthly Notices of the Royal Astronomical Society, 471(2): 1728–1736. doi: 10.1093/mnras/stx1786
    [99] Luger R, barnes R. 2015. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs[J]. Astrobiology, 15(2): 119-143. doi: 10.1089/ast.2014.1231
    [100] Madhusudhan N, Agúndez M, Moses J I, Hu Y. 2016. Exoplanetary atmospheres-chemistry, formation conditions, and habitability[J]. Space Science Reviews, 205(1): 285–348.
    [101] Malavolta L, Mayo A W, Louden T, et al. 2018. An ultra-short period rocky super-Earth with a secondary eclipse and a Neptune-like companion around K2-141[J]. The Astronomical Journal, 155(3): 107-120. doi: 10.3847/1538-3881/aaa5b5
    [102] Marley M S, Saumon D, Goldblatt C. 2010. A patchy cloud model for the L to T dwarf transition[J]. The Astrophysical Journal Letters, 723(1): L117–L121. doi: 10.1088/2041-8205/723/1/L117
    [103] Matsuno T. 1966. Quasi-geostrophic motions in the equatorial area[J]. Journal of the Meteorological Society of Japan, Ser. II, 44(1): 25-43.
    [104] Mayne N J, Baraffe I, Acreman D M, et al. 2014. The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters - ENDGame for a HD 209458b test case[J]. Astronomy and Astrophysics, 561: A1. doi: 10.1051/0004-6361/201322174
    [105] Mayne N J, Debras F, Baraffe I, et al. 2017. Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere[J]. Astronomy and Astrophysics, 604: A27. doi: 10.1051/0004-6361/201730868
    [106] Mayor M, Queloz D. 1995. A Jupiter-mass companion to a solar-type star[J]. Nature, 378(6555): 355–359. doi: 10.1038/378355a0
    [107] Mckay C, Pollack J, Courtin R. 1991. The greenhouse and antigreenhouse effects on Titan[J]. Science, 253(5024): 1118–1121. doi: 10.1126/science.11538492
    [108] Mendonça J M, Grimm S L, Grosheintz L, Heng K. 2016. THOR: A new and flexible global circulation model to explore planetary atmospheres[J]. The Astrophysical Journal, 829(2): 115-133. doi: 10.3847/0004-637X/829/2/115
    [109] Mendonça J M. 2020. Angular momentum and heat transport on tidally locked hot Jupiter planets[J]. Monthly Notices of the Royal Astronomical Society, 491(1): 1456–1470. doi: 10.1093/mnras/stz3050
    [110] Milsom J, Burrow A. 2002. Deuterium burning and Lithium burning in brown dwarfs, American Astronomical Society, 200th AAS Meeting, id. 11.06[J]. Bulletin of the American Astronomical Society, 34: 659
    [111] Miller-Ricci E K, Zahnle K, Fortney J J. 2012. The atmospheric chemistry of GJ 1214b: Photochemistry and clouds[J]. The Astrophysical Journal, 745(1): 3-16. doi: 10.1088/0004-637X/745/1/3
    [112] Mitchell J L, Vallis G K. 2010. The transition to superrotation in terrestrial atmospheres[J]. Journal of Geophysical Research: Planets, 115(E12): 12008. doi: 10.1029/2010JE003587
    [113] Morbidelli A, Lunine J I, O”Brien D P, et al. 2012. Building terrestrial planets[J]. Annual Review of Earth and Planetary Sciences, 40(1): 251–275. doi: 10.1146/annurev-earth-042711-105319
    [114] Morton T D, Bryson S T, Coughlin J L, et al. 2016. False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives[J]. The Astrophysical Journal, 822(2): 86-101. doi: 10.3847/0004-637X/822/2/86
    [115] Nakajima T, Oppenheimer B, Kulkarni S, et al. 1995. Discovery of a cool brown dwarf[J]. Nature, 378(6556): 463–465. doi: 10.1038/378463a0
    [116] Nellis W J. 1997. Metallic hydrogen at high pressures and temperatures in Jupiter[J]. Chemistry A European Journal, 3(12): 1921–1924. doi: 10.1002/chem.19970031205
    [117] Öberg K I, Murray-Clay R, Bergin E A. 2011. The effects of snowlines on C/O in planetary atmospheres[J]. The Astrophysical Journal, 743(1): L16-L21. doi: 10.1088/2041-8205/743/1/L16
    [118] Odert P, Leitzinger M, Guenther E W, Heinzel P. 2020. Stellar coronal mass ejections II. Constraints from spectroscopic observations[J]. Monthly Notices of the Royal Astronomical Society, 494(3): 3766-3783. doi: 10.1093/mnras/staa1021
    [119] Ohno K, Zhang X. 2019a. Atmospheres on nonsynchronized eccentric-tilted exoplanets I: Dynamical regimes[J]. The Astrophysical Journal, 874(1): 1-20. doi: 10.3847/1538-4357/ab06cc
    [120] Ohno K, Zhang X. 2019b. Atmospheres on nonsynchronized eccentric-tilted exoplanets II: Thermal light curves[J]. The Astrophysical Journal, 874(1): 2-24. doi: 10.3847/1538-4357/ab06ca
    [121] Ortiz M, Gandolfi D, Reffert S, et al. 2014. Kepler-432 b: a massive warm Jupiter in a 52-day eccentric orbit transiting a giant star[J]. Astronomy & Astrophysics, 573(1): L6.
    [122] Parmentier V, Fortney J J, Showman A P, et al. 2016. Transitions in the cloud composition of hot Jupiters[J]. The Astrophysical Journal, 828(1): 22-42. doi: 10.3847/0004-637X/828/1/22
    [123] Parmentier V, Showman A P, Fortney J J. 2021. The cloudy shape of hot Jupiter thermal phase curves[J]. Monthly Notices of the Royal Astronomical Society, 501(1): 78-108.
    [124] Penn J, Vallis G K. 2018. Atmospheric circulation and thermal phase-curve offset of tidally and non-tidally locked terrestrial exoplanets[J]. The Astrophysical Journal, 868(2): 147-160. doi: 10.3847/1538-4357/aaeb20
    [125] Perna R, Heng K, Pont F. 2012. The effects of irradiation on hot jovian atmospheres: Heat redistribution and energy dissipation[J]. The Astrophysical Journal, 751(1): 59-76. doi: 10.1088/0004-637X/751/1/59
    [126] Pierrehumbert R T. 2011. A palette of climates for Gliese 581g[J]. The Astrophysical Journal Letters, 726(1): L8-L13. doi: 10.1088/2041-8205/726/1/L8
    [127] Plumb R A. 1977. The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation[J]. Journal of the Atmospheric Sciences, 34(12): 1847–1858. doi: 10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2
    [128] Pont F, Sing D K, Gibson N P, et al. 2013. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations show affffiliations[J]. Monthly Notices of the Royal Astronomical Society, 432(4): 2917–2944.
    [129] Radigan J, Jayawardhana R, Lafrenière D, et al. 2012. Large amplitude variations of an L/T transition brown dwarf: Multi-wavelength observations of patchy, high-contrast cloud features[J]. The Astrophysical Journal, 750(2): 1529–1536.
    [130] Rappaport S, Vanderburg A, Nelson L, et al. 2017. WD 1202-024: The shortest-period precataclysmic variable[J]. Monthly Notices of the Royal Astronomical Society, 471(1): 948–961. doi: 10.1093/mnras/stx1611
    [131] Rauscher E, Kempton E. 2014. The atmospheric circulation and observable properties of nonsynchronously rotating hot Jupiters[J]. The Astrophysical Journal, 790(1): 917–920.
    [132] Rauscher E. 2017. Models of warm Jupiter atmospheres: Observable signatures of obliquity[J]. The Astrophysical Journal, 846(1): 69-83. doi: 10.3847/1538-4357/aa81c3
    [133] Rebolo R, Zapatero Osorio M. R, Martin E L. 1995. Discovery of a brown dwarf in the Pleiades star cluster[J]. Nature, 377(6545): 129-131. doi: 10.1038/377129a0
    [134] Rogers T M, Komacek T D. 2014. Magnetic effects in hot Jupiter atmospheres[J]. The Astrophysical Journal, 794(2): 132-154. doi: 10.1088/0004-637X/794/2/132
    [135] Rogers T M. 2017. Constraints on the magnetic field strength of HAT-P-7 b and other hot giant exoplanets[J]. Nature Astronomy, 1: 0131. doi: 10.1038/s41550-017-0131
    [136] Roman M, Rauscher E. 2019. Modeled temperature-dependent clouds with radiative feedback in hot Jupiter atmospheres[J]. The Astrophysical Journal, 872(1): 1-16. doi: 10.3847/1538-4357/aafdb5
    [137] Rouan D, Deeg H J, Demangeon O, et al. 2011. The orbital Pphases and secondary transits of Kepler-10b. A physical interpretation based on the Lava-ocean planet model[J]. The Astrophysical Journal Letters, 741(2): L30-L35.
    [138] Ruiz M T, Leggett S K, Allard F. 1997. Kelu-1 : A free-floating brown dwarf in the solar neighborhood[J]. The Astrophysical Journal, 491(2): L107–L110. doi: 10.1086/311070
    [139] Sahlmann J, Segransan D, Queloz D, et al. 2011. Search for brown-dwarf companions of stars[J]. Astronomy & Astrophysics, 525: A95.
    [140] Salmon D, Marley M S. 2008. The evolution of L and T dwarfs in color-magnitude diagrams[J]. The Astrophysical Journal, 689(2): 1327–1344. doi: 10.1086/592734
    [141] Schaefer L, Fegley B. 2010. Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets[J]. Icarus, 208(1): 438–448. doi: 10.1016/j.icarus.2010.01.026
    [142] Schaefer L, Lodders K, Fegley B. 2012. Vaporization of the Earth: Application to exoplanet atmospheres[J]. The Astrophysical Journal, 755(1): 41-57. doi: 10.1088/0004-637X/755/1/41
    [143] Schneider T, Liu J. 2009. Formation of jets and equatorial superrotation on Jupiter[J]. Journal of Atmospheric Sciences, 66(3): 579–601. doi: 10.1175/2008JAS2798.1
    [144] Seager S, Sasselov D D. 2000. Theoretical transmission spectra during extrasolar giant planet transits[J]. The Astrophysical Journal, 537(2): 916-921. doi: 10.1086/309088
    [145] See V, Jardine M, Vidotto A A, et al. 2014. The effects of stellar winds on the magnetospheres and potential habitability of exoplanets[J]. Astronomy and Astrophysics, 570: A99.
    [146] Showman A P, Guillot T. 2002. Atmospheric circulation and tides of “51 Pegasus b-like”planets[J]. Astronomy and Astrophysics, 385: 166. doi: 10.1051/0004-6361:20020101
    [147] Showman A P, Cooper C S. Fortney J J, Marley M S. 2008a. Atmospheric circulation of hot Jupiters: Three-dimensional circulation models of HD 209458b and HD 189733b with simplified forcing[J]. The Astrophysical Journal, 682(1): 559–576. doi: 10.1086/589325
    [148] Showman A P, Menou K, Cho J Y-K. 2008b. Atmospheric circulation of hot Jupiters: A review of current understanding[C]//Fischer D, Rasio F A, Thorsett S E, Wolszczan A. Extreme Solar Systems, ASP Conference Series, 398: 419.
    [149] Showman A P, Fortney J J, Lian Y, et al. 2009. Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b[J]. The Astrophysical Journal, 699(1): 564-584. doi: 10.1088/0004-637X/699/1/564
    [150] Showman A P, Polvani L M. 2010. The matsuno-gill model and equatorial superrotation[J]. Geophysical Research Letters, 37: L18811 .
    [151] Showman A P, Polvani L M. 2011. Equatorial superrotation on tidally locked exoplanets[J]. The Astrophysical Journal, 738(1): 71-95. doi: 10.1088/0004-637X/738/1/71
    [152] Showman A P, Fortney J J, Lewis N K, Shabram M. 2012. Doppler signatures of the atmospheric circulation on hot Jupiters[J]. The Astrophysical Journal, 762(1): 65–69.
    [153] Showman A P, Kaspi Y. 2013. Atmospheric dynamics of brown dwarfs and directly imaged giant planets[J]. The Astrophysical Journal, 776(2): 85-104. doi: 10.1088/0004-637X/776/2/85
    [154] Showman A P, Wordsworth R D, Merlis T M, Kaspi Y. 2013. Atmospheric Circulation of Terrestrial Exoplanets[M]//Mackwell S J, Simon-Miller A A, Harder J W, Bullock M A. Comparative Climatology of Terrestrial Planets, Part II: Greenhouse Effect and Atmospheric Dynamics. University of Arizona Press, 277-327.
    [155] Showman A P, Lewis N K, Fortney J J. 2015. Three-dimensional atmospheric circulation of warm and hot Jupiters: effects of orbital distance, rotation period, and non-synchronous rotation[J]. The Astrophysical Journal, 801(2): 95-116. doi: 10.1088/0004-637X/801/2/95
    [156] Showman A P, Tan X, Zhang X. 2019. Atmospheric circulation of brown dwarfs and Jupiter- and Saturn-like planets: Zonal jets, long-term variability, and QBO-type oscillations[J]. The Astrophysical Journal, 883(1): 4-30. doi: 10.3847/1538-4357/ab384a
    [157] Showman A P, Tan X, Vivien P. 2020. Atmospheric dynamics of hot giant planets and brown dwarfs[J]. Space Science Reviews, 216(8): 139-186. doi: 10.1007/s11214-020-00758-8
    [158] Shporer A, Hu R. 2015. Studying atmosphere-dominated hot Jupiter kepler phase curves: Evidence that inhomogeneous atmospheric reflection is common[J]. The Astronomical Journal, 150(4): 112-122. doi: 10.1088/0004-6256/150/4/112
    [159] Sing D K, Fortney J J, Nikolov N, et al. 2016. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion[J]. Nature, 529(7584): 59-62. doi: 10.1038/nature16068
    [160] Snellen I, Brandl B R, Kok R, et al. 2014. Fast spin of the young extrasolar planet beta Pictoris b[J]. Nature, 509(7498): 63-65. doi: 10.1038/nature13253
    [161] Spiegel D S, Burrows A, Milsom J A. 2011. The Deuterium-burning mass limit for brown dwarfs and giant planets[J]. The Astrophysical Journal, 727(1): 57-66. doi: 10.1088/0004-637X/727/1/57
    [162] Starovoit E D, Rodin A E. 2017. On the existence of planets around the pulsar PSR B0329+54[J]. Astronomy Reports, 61(11): 948-953. doi: 10.1134/S1063772917110063
    [163] Stevenson K B, Désert J-M, Line M R, et al. 2014. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy[J]. Science, 346(6211): 838-841. doi: 10.1126/science.1256758
    [164] Tan X, Komacek T D. 2019a. The atmospheric circulation of ultra-hot Jupiters[J]. The Astrophysical Journal, 886(1): 26-46. doi: 10.3847/1538-4357/ab4a76
    [165] Tan X, Showman A P. 2019b. Atmospheric variability driven by radiative cloud feedback in brown dwarfs and directly imaged extrasolar giant planets[J]. The Astrophysical Journal, 874(2): 111-129. doi: 10.3847/1538-4357/ab0c07
    [166] Tan X, Showman A P. 2020. Atmospheric circulation of tidally locked gas giants with increasing rotation and implications for white-dwarf-brown-dwarf systems[J]. The Astrophysical Journal, 902(1): 27-47. doi: 10.3847/1538-4357/abb3d4
    [167] Tan X, Showman A P. 2021. Atmospheric circulation of brown dwarfs and directly imaged exoplanets driven by cloud radiative feedback: effects of rotation[J]. Monthly Notices of the Royal Astronomical Society, 502(1): 678–699. doi: 10.1093/mnras/stab060
    [168] Thayne C, Kellen L, Glenn S, et al. 2022. Images of embedded Jovian planet formation at a wide separation around AB Aurigae[J]. Nature, Astronomy,DOI: /10.1038/s41550-022-01634-x
    [169] Tian F. 2009. Thermal escape from super Earth atmosphere in the habitable zone of M stars[J]. The Astrophysical Journal, 703(1): 905-909. doi: 10.1088/0004-637X/703/1/905
    [170] Tremblin P, Padioleau T, Phillips M, et al. 2019. Thermo-compositional diabatic convection in the atmospheres of brown dwarfs and in Earth’s atmosphere and oceans[J]. The Astrophysical Journal, 876(2): 144-157. doi: 10.3847/1538-4357/ab05db
    [171] Tsai S-M, Dobbs-Dixon I, Gu P-G. 2014. 3D structures of equatorial waves and the resulting superrotation in the atmosphere of a tidally locked hot Jupiter[J]. The Astrophysical Journal, 793(2): 141-166. doi: 10.1088/0004-637X/793/2/141
    [172] Tsuji T. 1973. Molecular abundances in stellar atmospheres. II[J]. Astronomy & Astrophysics, 23: 411–431.
    [173] Tsuji T, Ohnaka K, Aoki W, Nakajima T. 1996. Evolution of dusty photospheres through red to brown dwarfs: How dust forms in very low mass objects[J]. Astronomy & Astrophysics, 308: L29–L32.
    [174] Turbet M, Leconte J, Selsis F, et al. 2016. The habitability of Proxima Centauri b[J]. Astronomy & Astrophysics, 596: A112-A141.
    [175] Venturini J, Alibert Y, Benz W, Ikoma M. 2015. Critical core mass for enriched envelopes: The role of H2O condensation[J]. Astronomy & Astrophysics, 576: A114.
    [176] Vidotto A A, Jardine M, Morin J, et al. 2013. Effects of M dwarf magnetic field on potentially habitable planets[J]. Astronomy & Astrophysics, 557: A67
    [177] Visscher C, Moses J I. 2011. Quenching of carbon monoxide and methane in the atmospheres of cool brown dwarfs and hot Jupiters[J]. The Astrophysical Journal, 738(1): 72-84. doi: 10.1088/0004-637X/738/1/72
    [178] Wakeford H R, Sing D K. 2014. Transmission spectral properties of clouds for hot Jupiter exoplanets[J]. Astronomy & Astrophysics, 573: A22.
    [179] Wang H, Wordsworth R. 2020. Extremely long convergence times in a 3D GCM simulation of the sub-Neptune Gliese 1214b[J]. The Astrophysical Journal, 891(1): 7-20. doi: 10.3847/1538-4357/ab6dcc
    [180] Wang W, Zhai M, Zhao G, et al. 2020. A space mission dedicated for the characterization of habitable rocky planets[C]//Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave, 11443. doi: 10.1117/12.2563343.
    [181] Wilken T, Curto G L, Probst R A, et al. 2012. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level[J]. Nature, 485(7400): 611-614. doi: 10.1038/nature11092
    [182] Winn J N. 2010. Transits and Occultations[M]. University of Arizona Press.
    [183] Wong I, Shporer A, Zhou G, et al. 2021. TOI-2109b: An ultrahot gas giant on a 16 hr orbit[J]. The Astronomical Journal, 162(6): 256-284. doi: 10.3847/1538-3881/ac26bd
    [184] Wordsworth R D, Forget F, Selsis F, et al. 2011. Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone[J]. The Astrophysical Journal Letters, 733(2): L48-L53. doi: 10.1088/2041-8205/733/2/L48
    [185] Yang H, Komacek T D, Abbot D S. 2019. Effects of radius and gravity on the inner edge of the habitable zone[J]. The Astrophysical Journal Letters, 876(2): L27-L34. doi: 10.3847/2041-8213/ab1d60
    [186] Yang J, Liu Y, Hu Y, Abbot D S. 2014. Water trapping on tidally locked terrestrial planets requires special conditions[J]. The Astrophysical Journal Letters, 796(2): L22-L28. doi: 10.1088/2041-8205/796/2/L22
    [187] Yang J, Ding F, Ramirez R M, et al. 2017. Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse[J]. Nature Geoscience, 10(8): 556–560. doi: 10.1038/ngeo2994
    [188] Yang J, Abbot D S, Koll D D B, et al. 2019a. Ocean dynamics and the inner edge of the habitable zone for tidally locked terrestrial planets[J]. The Astrophysical Journal, 871(1): 29–46. doi: 10.3847/1538-4357/aaf1a8
    [189] Yang J, Ji W, Zeng Y X. 2019b. Transition from eyeball to snowball driven by sea-ice drift on tidally locked terrestrial planets[J]. Nature Astronomy, 4(1): 1–9.
    [190] Yue W, Yang J. 2020. Effect of sea-ice drift on the onset of snowball climate on rapidly rotating aqua-planets[J]. The Astrophysical Journal Letters, 898(1): L19-L32. doi: 10.3847/2041-8213/aba264
    [191] Zahnle K J, Walker J C G. 1982. The evolution of solar ultraviolet luminosity[J]. Reviews of Geophysics and Space Physics, 20: 280-292. doi: 10.1029/RG020i002p00280
    [192] Zellem R T, Lewis N K, Knutson H A, et al. 2014. The 4.5 mm full-orbit phase curve of the hot Jupiter HD 209458b[J]. The Astrophysical Journal, 790(1): 917–920.
    [193] Zeng Y, Yang J. 2021. Oceanic superrotation on tidally locked planets[J]. The Astrophysical Journal, 909(2): 172-188. doi: 10.3847/1538-4357/abe12f
    [194] 詹虎. 2021. 载人航天工程巡天空间望远镜大视场多色成像与无缝光谱巡天[J]. 科学通报, 66(11): 1290-1298 doi: 10.1360/TB-2021-0016

    Zhan H. 2021. The wide-field multiband imaging and slitless spectroscopy survey to be carried out by the Survey Space Telescope of China Manned Space Program[J]. Chinese Science Bulletin, 66(11): 1290-1298(in Chinese) doi: 10.1360/TB-2021-0016
    [195] Zhang X, Showman A P. 2014. Atmospheric circulation of brown dwarfs: Jets, vortices, and time variability[J]. The Astrophysical Journal, 788(1): L6-L12. doi: 10.1088/2041-8205/788/1/L6
  • 加载中
图(15)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  52
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 录用日期:  2022-05-07
  • 修回日期:  2022-04-26
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回