• ISSN 2097-1893
  • CN 10-1855/P
满恒妍,周猛,钟志宏,邓晓华. 2022. 磁场重联中电子尺度的物理过程. 地球与行星物理论评,53(5):544-555. DOI: 10.19975/j.dqyxx.2022-026
引用本文: 满恒妍,周猛,钟志宏,邓晓华. 2022. 磁场重联中电子尺度的物理过程. 地球与行星物理论评,53(5):544-555. DOI: 10.19975/j.dqyxx.2022-026
Man H Y, Zhou M, Zhong Z H, Deng X H. 2022. Electron-scale physics in magnetic reconnection. Reviews of Geophysics and Planetary Physics, 53(5): 544-555 (in Chinese). DOI: 10.19975/j.dqyxx.2022-026
Citation: Man H Y, Zhou M, Zhong Z H, Deng X H. 2022. Electron-scale physics in magnetic reconnection. Reviews of Geophysics and Planetary Physics, 53(5): 544-555 (in Chinese). DOI: 10.19975/j.dqyxx.2022-026

磁场重联中电子尺度的物理过程

Electron-scale physics in magnetic reconnection

  • 摘要: 磁场重联是等离子体中磁能转化为等离子体能量的重要物理机制之一,与太空中许多爆发现象密切相关. 磁场重联是一个跨尺度的物理过程,其中发生在电子尺度的物理过程是影响重联触发和快速进行的关键,因此一直备受关注. 2015年磁层多尺度(MMS)卫星发射后,其提供的前所未有的高精度观测数据使我们对电子尺度的物理过程有了新的认识. 文章主要根据MMS卫星的观测结果,对磁场重联中电子尺度物理过程的最新研究进展进行了简要总结. 我们将重联区域划分为电子扩散区、离子扩散区以及重联出流区,从多个角度总结了其中发生的电子尺度物理过程,主要涉及以下内容:电子扩散区在入流或出流方向上可以形成多层结构,其形成过程可能涉及到多种不稳定性;电子扩散区内的新月形分布受Hall电场以及电子曲折运动等多种因素的影响,使得某些情况下该区域内的电子分布不再呈现出新月形分布;电子扩散区内的等离子体波动可以有效地加热电子以及提供反常电阻来打破磁冻结条件,在重联中起到了关键作用;电子扩散区中的非理想电场可以由电子压强张量项平衡,但有些事件中反常电阻项可能占据主导;离子扩散区中电子尺度相干结构的形成和演化过程对能量转换和耗散十分重要,包括磁岛合并驱动的湍流过程、开尔文—亥姆霍兹不稳定性触发的次级重联以及动理学尺度磁洞的形成等;重联出流区中磁通量绳之间的合并以及磁通量绳与背景磁场的重联可以通过多尺度耦合释放磁能,并且磁通量绳内部可以通过多种加速机制激发高能电子的产生;重联锋面附近往往对应着各种等离子体不稳定性以及强电流结构,在磁能释放中起到了重要作用. 此外,我们简单探讨了磁场重联在电子尺度的触发机制,如湍流中的唯电子重联以及磁尾由电子动理学驱动的磁重联等. 最后讨论了多尺度耦合过程在磁重联中的重要性以及目前尚未解决的部分关键科学问题.

     

    Abstract: Magnetic reconnection is one of the important physical mechanisms for the conversion of magnetic energy into plasma energy, which is closely related to many explosive phenomena in space. Magnetic reconnection is a cross-scale physical process, in which the physical process at the electron-scale plays key roles in triggering reconnection and facilitating reconnection fast, hence it has attracted much attention. After the launch of the magnetospheric multiscale (MMS) satellite in 2015, the unprecedented high-resolution data provided by MMS enable us to have a new understanding of the electron-scale physics. This paper briefly summarizes the recent research progresses of electron-scale physics in magnetic reconnection based on the observational results of MMS. We divided the reconnection region into the electron diffusion region, ion diffusion region and reconnection exhaust, and summarized the electron scale physical processes from many aspects. The main contents are as follows: The electron diffusion region can form a multiple structure in the inflow or outflow direction, and its formation process may involve a variety of instabilities; The crescent distribution in the electron diffusion region is affected by many factors, such as Hall electric field and electron meandering motion, so that the electron distribution function in this region no longer presents a crescent distribution in some cases; Plasma waves in the electron diffusion region can effectively heat electrons and provide anomalous resistance to break the frozen-in conditions, which plays a key role in reconnection; The non-ideal electric field in the electron diffusion region can be balanced by the electron pressure tensor term, but the anomalous resistance term may dominate in some events; The formation and evolution of electron scale coherent structures in the ion diffusion region are very important for energy conversion and dissipation, including the turbulence driven by the merging of magnetic islands, the secondary reconnection triggered by Kelvin-Helmholtz instability and the formation of kinetics scale magnetic holes; The coalescence of magnetic flux ropes and the magnetic reconnection between the magnetic flux ropes and the geomagnetic field in the reconnection exhaust can release the magnetic energy through multi-scale coupling, and the generation of high-energy electrons can be excited in the magnetic flux ropes through a variety of acceleration mechanisms; Near the reconnection front, there are often various plasma instabilities and strong current structures, which play an important role in the release of magnetic energy. In addition, we briefly discuss the triggering mechanism of magnetic reconnection at the electron-scale, such as the electron-only reconnection in turbulence and reconnection driven by electron kinetics in the magnetotail. Finally, we discuss the importance of multi-scale coupling in magnetic reconnection and some key open questions.

     

/

返回文章
返回