• ISSN 2097-1893
  • CN 10-1855/P

地震Lg波衰减成像方法、算法、数据处理流程及应用

赵连锋 谢小碧 何熹 沈琳 张蕾 姚振兴

引用本文: 赵连锋,谢小碧,何熹,沈琳,张蕾,姚振兴. 2022. 地震Lg波衰减成像方法、算法、数据处理流程及应用. 地球与行星物理论评,53(6):721-744
Zhao L F, Xie X B, He X, Shen L, Zhang L, Yao Z X. 2022. Seismic Lg-wave attenuation tomography: Method, algorithm, data processing flow and application. Reviews of Geophysics and Planetary Physics, 53(6): 721-744 (in Chinese)

地震Lg波衰减成像方法、算法、数据处理流程及应用

doi: 10.19975/j.dqyxx.2022-024
基金项目: 国家自然科学基金资助项目(U2139206,42104055,41974061,41974054);中国地震科学实验场资助项目(2019CSES0103)
详细信息
    通讯作者:

    赵连锋,男,研究员,主要从事地震学研究. E-mail:zhaolf@mail.iggcas.ac.cn

  • 中图分类号: P315

Seismic Lg-wave attenuation tomography: Method, algorithm, data processing flow and application

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. U2139206, 42104055, 41974061 and 41974054) and the China Seismic Experimental Site (Grant No. 2019CSES0103)
  • 摘要: 随着现代地震观测系统的快速发展,地震信号能够在更宽的频带、更大的动态范围和更高的空间密度以数字形式被准确地记录下来,由此提供了利用大量高质量地震数据获取地下介质品质因子Q值精细分布的可能性. 地震Lg波是区域地震记录中最显著的震相之一,因其主要在地壳内以导波形式传播或能量集中在壳内的高阶面波的叠加,所以常常被用来研究地壳的衰减属性. 本文对利用Lg波进行地壳衰减测量的理论和实践进行了系统回顾,对相关的反演方法进行了介绍,同时也对与此有关的大量实际问题有所述及,例如区域地震资料收集、震相分离、噪声分析和数据质量控制,振幅谱计算、去噪处理等. 进一步介绍了衰减成像结果在研究地质学、地球物理学和地球动力学方面的应用. 以中国台湾及周边地区的地震数据处理为例,介绍了地壳Lg波成像的具体流程. 根据416个区域地震事件在86个宽频带地震台站的8650条垂直分量波形记录,建立了台湾岛及周边宽频带、高分辨率的地壳Lg波Q值模型,模型频率范围为0.05~10.0 Hz. 在数据覆盖较好的地区,分辨率可达0.25º×0.25º. 模型揭示出该区地壳Lg波Q值横向变化显著,以岛内高Q值、周边低Q值为主要特征. 低Q异常主要出现在台湾东北部南日岛盆地、东南部台南盆地、台湾东部菲律宾板块俯冲带以及欧亚板块的碰撞带、花东海盆、琉球弧和冲绳海槽等区域. 这些强衰减区与板块碰撞引起的强烈构造活动有关.

     

  • 图  1  中东地区不同地质块体地壳Lg波宽频带Q值的频率依赖关系. EP:欧亚板块;AP:阿拉伯板块;IP:印度板块;CC:陆陆碰撞造山带;ET:东土耳其高原;TI:土耳其与伊朗高原;AB:阿富汗地块;PA:帕米尔;TS:天山山脉. 其中蓝色表示地壳稳定地区,红色表示构造活动强烈区域(修改自Zhao and Xie, 2016

    Figure  1.  Frequency-dependent QLg for different geo-blocks in the Middle East. EP, the Eurasian plate; AP, the Arabian plate; IP, the Indian plate; CC, the continental collision orogenic; ET, the Eastern Turkish plateau; TI, the Turkish and Iranian plateau; AB, the Afghanistan block; PA, the Pamir; and TS, the Tianshan range, where blue symbols represent the stable geo-blocks, whereas red symbols indicate the active tectonic terranes (modified from Zhao and Xie, 2016)

    图  2  地震事件与台站的分布:(a)单台;(b,c)双台;(d,e)双事件数据. 在选取参考点时,无论是双台数据中的参考台站,还是双事件数据中的参考事件,均以其到达实际台站或事件的距离不大于成像网格边长的一半作为数据提取的阀值

    Figure  2.  Schematics showing (a) event-station geometry for single-station data, (b) an ideal geometry for two-station data where the stations and the source are perfectly aligned, and (c) a more practical geometry where the source and stations are roughly aligned, (d) and (e) similar to (b) and (c), respectively, but for two-event data. To make the approximation valid, we require the distances between locations i and l, h and q smaller than half an inversion grid

    图  3  中国台湾及周边区域地表地形与水深图. 其中方块和十字分别表示地震台站和事件的位置

    Figure  3.  Map showing the topography in the Taiwan Island and its vicinity, overlapped by the locations of the stations (square) and the epicenters of the earthquakes used in this study

    图  4  地震波形能量叠加. (a)TW.TPUB台站的垂直分量地表运动速度记录;(b)归一化的波形能量;(c)全部地震波形能量叠加. 在较小震中距范围,首波为Pg震相,群速度约为6.0 km/s,较大震中距时Pn波成为初至震相,群速度为7.8 km/s. 图中虚线标出了IASP91模型的初至P波到时. 根据波形能量分布,Pn、Pg、Sn和Lg震相均能清晰识别. Pg、Sn和Lg波的群速度(实线)分别为6.0 km/s、4.5 km/s和3.5 km/s

    Figure  4.  Stacked waveform energy of vertical regional seismograms. (a) An example waveform for vertical ground velocity seismogram recorded at station TW.TPUB; (b) Its normalized waveform energy, and (c) stacked energy distribution for all regional seismograms used in this study. Also plotted in (b) and (c) are the group velocities, which are 6.0 km/s, 4.5 km/s and 3.5 km/s for the Sn- and Lg-waves, respectively

    图  5  2020年8月11日地震的速度波形记录,按震中距排列,滤波频带是0.05~10.0 Hz. 震中距和归一化的最大地表垂直速度(Max.am.)标于波形左侧,单位分别是km和um/s,右侧标出观测波形的采样率,波形上的竖线和数字为群速度值

    Figure  5.  Observed seismograms for the earthquake on 11 August 2020. The stations are ordered according to their epicentral distances, and the normalized vertical ground velocities filtered between 0.05 and 10.0 Hz are plotted. The station names, distances, and maximum amplitudes are listed on the left-hand side and the sampling rates are listed on the right-hand side, where the amplitudes are measured in micrometers per second. Marks on the waveforms indicate apparent group velocities

    图  6  2003年6月5日地震的速度波形记录,参数与图5一致

    Figure  6.  Similar to Figure 5, except these seismograms are for the earthquake on 5 June 2003

    图  7  地震Lg波振幅谱测量实例. TW.TPUB地震台站记录到的2020年8月11日地震事件.(a)垂直分量波形,震中距为236.6 km;(b)去掉仪器响应得到地表速度记录;(c)经过0.5~5.0 Hz频带滤波的波形;(d)波形包络曲线,其中标出了典型的群速度值,在波形的左边标出了归一化的最大振幅值和单位. 经采样获得的(e)Lg波和(f)P波前噪声,左边标出了最大振幅值. (g)计算得到的振幅谱,实线与圆圈为参考频率处Lg波的振幅谱和均方根(RMS)振幅值,虚线和三角为噪声谱和RMS振幅值. 信噪比如(h)所示,舍弃信噪比小于2.0的数据;(i)去噪后得到的Lg波信号谱

    Figure  7.  Data processing procedure for amplitude measurement of Lg wave spectrum illustrated by using observation recorded at station TW.TPUB from the earthquake on 11 August 2020. (a) Original seismogram; (b) Velocity record after deconvolving with the instrument response; (c) Velocity waveform filtered between 0.5 and 5.0 Hz for highlighting Lg phase; (d) Envelop waveform after Hilbert transform from waveform in (c); (e, f) Windowed Lg phase and pre-P noise; (g) Lg-wave and noise spectra; (h) Signal-to-noise ratio, and (i) Lg-wave spectrum. Note that the data points have been dropped where the signal-to-noise ratio is below the threshold of 2.0

    图  8  地震Lg波Q值成像数据处理流程图

    Figure  8.  The flow chart for data processing on seismic Lg wave Q tomography

    图  9  Lg波振幅谱拟合偏差的统计直方图,其中灰色和红色分别表示反演前后的振幅偏差,从左到右依次为(a)0.5 Hz;(b)1.0 Hz;(c)2.0 Hz

    Figure  9.  Histograms of the Lg spectral amplitude misfits before (solid gray) and after (open red) inversions at (a) 0.5 Hz, (b) 1.0 Hz, and (c) 2.0 Hz

    图  10  中国台湾地区地壳Lg波Q值分布(a-c)、射线覆盖(d-f)和用于空间分辨率分析的0.25°×0.25°Q值扰动量的重建结果(g-i). 从左至右各列分别对应频率为0.5 Hz、1.0 Hz和2.0 Hz的结果. 图中的数字标出Q值异常对应的地质块体,#1:NB:南日岛盆地;#2:TB:台南海盆;#3,#4:TD:台湾东部菲律宾板块俯冲与欧亚板块碰撞带南段和北段;#5:HDB:花东海盆;#6,#7:LQ:冲绳海槽和琉球弧

    Figure  10.  The QLg distributions, ray path coverage, and spatial resolutions at selected frequencies 0.5 Hz (left column), 1.0 Hz (middle column), and 2.0 Hz (right column), respectively. The numbers indicate the geological blocks corresponding to low Q anomalies, #1: NB, Nanridao basin; # 2: TB, Tainan Basin; # 3, #4: TD, the southern and northern segments of the collision belt between the Philippine plate subduction and the Eurasian plate in Eastern Taiwan; # 5: HDB, Huadong basin; # 6 and #7: LQ, Okinawa Trough and Ryukyu arc

    图  11  (a)台湾岛和(b)台南海盆地壳Lg波Q值与频率的关系,其中的灰色十字是成像直接得到的Q值,蓝色圆圈和红色三角为统计均值,竖线为标准差. (c)对不同地质块体中Q值与频率关系的统计值:TW:台湾岛;NB:南日岛盆地;TB:台南海盆;TD:台东碰撞带;HDB:花东海盆;LQ:琉球弧和冲绳海槽. 阴影显示0.2~2.0 Hz的频带范围,在此区间Lg波Q值对各地质块体的差异具有较高的区分能力

    Figure  11.  Frequency-dependent QLg for (a) the Taiwan Island (TW) and (b) the Tainan Basin (TB), and (c) QLg versus frequency for different geological blocks: TW, the Taiwan Island; NB, the Nanridao Basin; TB, the Tainan Basin; TD, the collision orogenic belt in eastern Taiwan; HDB, the Huandong oceanic Basin; LQ, the Ryukyu arc and Okinawa Trough

    图  12  (a)中国台湾地区0.2~2.0 Hz宽频带地壳Lg波Q值分布;(b)全球定位系统GPS水平运动速率;(c)区域地震活动性分布. 图中的蓝色线条标出图13的剖面位置

    Figure  12.  Broadband QLg between 0.2 and 2.0 Hz in and around the Taiwan Island (a), Global Position System (GPS) horizontal movement rate (b), and seismicity (c) in this region. Blue lines are section locations for comparisons among topography, crust and lithospheric structure, seismicity, and frequency-dependent QLg in Fig. 13

    图  13  各种观测在横跨台湾岛剖面上的分布. 其中,剖面所在位置见图12中的蓝色直线. 从上至下的框图分别是:①地表地形、②壳幔结构和地震活动性和③宽频带Lg波Q值频率剖面

    Figure  13.  Comparisons between surface topography, crust and lithospheric structure, seismicity, and frequency-dependent QLg along different cross-sections shown by blue lines in Fig. 12

    图  14  中国台湾地区地震Lg波震源谱. 各个事件的发震时刻标在图框之上. 图中黑色十字是通过成像反演获得的震源谱,覆于十字之上的实线为最佳拟合的理论震源谱,阴影区为标准偏差. 震源模型包括标量地震矩,拐角频率和高频下降率,这些参数及其标准差均标于图框左下角

    Figure  14.  Lg-wave source excitation spectra for selected earthquakes in and around Taiwan Island. The origin time of each event is on the top of each panel. The black crosses are source spectra inverted from the observed Lg-wave spectra. Solid lines are synthetic source spectra from the best-fit source models, and pink shades are their standard deviations. The model parameters, including the seismic moment , corner frequency fc, and high-frequency falloff rate n, along with their standard deviations, are labeled in each panel

    图  15  典型台站TW.ANPB、TW.LYUB、TW.TWKB、YM.TGC03、YM.TGN08和YM.TGS04与频率相关的台基响应,台站位置列于表S1

    Figure  15.  Frequency-dependent site responses at selected stations, TW.ANPB, TW.LYUB, TW.TWKB, YM.TGC03, YM.TGN08, and YM.TGS04, whose locations are also listed in Table S1

  • [1] Abercrombie R E. 1995. Earthquake source scaling relationships from -1 to 5 M(L) using seismograms recorded at 2.5-km depth[J]. Journal of Geophysical Research, 100(B12): 24015-24036. doi: 10.1029/95JB02397
    [2] Aggarwal S K, Khan P K. 2016. Q(Lg) tomography in Gujarat, Western India[J]. Physics and Chemistry of the Earth, 95: 135-149. doi: 10.1016/j.pce.2015.12.003.
    [3] Akinci A, Ibáñez J M, Delpezzo E, Morales J. 1995. Geometrical spreading and attenuation of Lg waves: A comparison between western Anatolia (Turkey) and southern Spain[J]. Tectonophysics, 250(1-3): 47-60. doi: 10.1016/0040-1951(95)00046-1
    [4] Al-Damegh K, Sandvol E, Al-Lazki A, Barazangi M. 2004. Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions[J]. Geophysical Journal International, 157(2): 775-795. doi: 10.1111/j.1365-246X.2004.02246.x
    [5] Aleqabi G I, Wysession M E. 2006. Q(Lg) distribution in the basin and range province of the western United States[J]. Bulletin of the Seismological Society of America, 96(1): 348-354. doi: 10.1785/0120040086
    [6] Atkinson G M. 2004. Empirical attenuation of ground-motion spectral amplitudes in southeastern Canada and the northeastern United States[J]. Bulletin of the Seismological Society of America, 94(3): 1079-1095. doi: 10.1785/0120030175
    [7] Bao X Y, Sandvol E, Ni J, et al. 2011. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions[J]. Geophysical Research Letters, 38: L16304. doi: 10.1029/2011GL048012.
    [8] Baqer S, Mitchell B J. 1998. Regional variation of Lg coda Q in the continental United States and its relation to crustal structure and evolution[J]. Pure and Applied Geophysics, 153(2-4): , 613-638.
    [9] Benz H M, Frankel A, Boore D M. 1997. Regional Lg attenuation for the continental United States[J]. Bulletin of the Seismological Society of America, 87(3): 606-619. doi: 10.1785/BSSA0870030606
    [10] Boatwright J. 1980. Spectral theory for circular seismic sources: Simple estimates of source dimension, dynamic stress drop, and radiated seismic energy[J]. Bulletin of the Seismological Society of America, 70(1): 1-27.
    [11] Bouchon M. 1982. The complete synthesis of seismic crustal phases at regional distances[J]. Journal of Geophysical Research, 87(B3): 1735-1741. doi: 10.1029/Jb087ib03p01735.
    [12] Burgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations[J]. Annual Review of Earth & Planetary Sciences, 36: 531-567. doi: 10.1146/annurev.earth.36.031207.124326.
    [13] Calvert A, Sandvol E, Seber D, et al. 2000. Propagation of regional seismic phases (Lg and Sn) and Pn velocity structure along the Africa-Iberia plate boundary zone: tectonic implications[J]. Geophysical Journal International, 142(2): 384-408. doi: 10.1046/j.1365-246x.2000.00160.x.
    [14] Campillo M, Plantet J L, Bouchon M. 1985. Frequency-dependent attenuation in the crust beneath central France from Lg waves: Data analysis and numerical modeling[J]. Bulletin of the Seismological Society of America, 75(5): 1395-1411. doi: 10.1785/BSSA0750051395
    [15] Campillo M, Feignier B, Bouchon M, Bethoux N. 1993. Attenuation of crustal waves across the Alpine range[J]. Journal of Geophysical Research, 98(B2): 1987-1996. doi: 10.1029/92jb02357.
    [16] Chen Y L, Xie J K. 2017. Resolution, uncertainty and data predictability of tomographic Lg attenuation models-application to Southeastern China[J]. Geophysical Journal International, 210(1): 166-183. doi: 10.1093/gji/ggx147
    [17] Chevrot S, Cansi Y. 1996. Source spectra and site-response estimates using the coda of Lg wayes in western Europe[J]. Geophysical Research Letters, 23(13): 1605-1608. doi: 10.1029/96GL01480
    [18] Chow R A C, Fairhead J D, Marshall P D. 1979. Magnitude determination in Southern Africa using Lg wave amplitudes[J]. Geophysical Journal Royal Astronomical Society, 57(1): 258-258.
    [19] Chow R A C, Fairhead J D, Henderson N B, Marshall P D. 1980. Magnitude and Q determinations in Southern Africa using Lg wave amplitudes[J]. Geophysical Journal Royal Astronomical Society, 63(3): 735-745. doi: 10.1111/j.1365-246X.1980.tb02648.x
    [20] Chun K Y, West G F, Kokoski R J, Samson C. 1987. A novel technique for measuring Lg attenuation-results from eastern Canada between 1 to 10 Hz[J]. Bulletin of the Seismological Society of America, 77(2): 398-419. doi: 10.1785/BSSA0770020398
    [21] Cong L L, Mitchell B J. 1998. Lg coda Q and its relation to the geology and tectonics of the Middle East[J]. Pure and Applied Geophysics, 153(2-4): 563-585.
    [22] Deakin R E, Hunter M N, Karney C F F. 2010. The Gauss-Krueger projection: Karney-Krueger equations. https://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/D1-Map%20projection/CO-300.pdf.
    [23] Erickson D, McNamara D E, Benz H M. 2004. Frequency-dependent Lg Q within the continental United States[J]. Bulletin of the Seismological Society of America, 94(5): 1630-1643. doi: 10.1785/012003218
    [24] Fan G W, Lay T. 2002. Characteristics of Lg attenuation in the Tibetan plateau[J]. Journal of Geophysical Research, 107(B10): B102256. doi: 10.1029/2001JB000804.
    [25] Fan G W, Lay T. 2003a. Strong Lg attenuation in the Tibetan plateau[J]. Bulletin of the Seismological Society of America, 93(5): 2264-2272. doi: 10.1785/0120030052
    [26] Fan G W, Lay T. 2003b. Strong Lg wave attenuation in the northern and eastern Tibetan Plateau measured by a two-station/two-event stacking method[J]. Geophysical Research Letters, 30(10): 101530. doi: 10.1029/2002GL016211.
    [27] 范娜, 赵连锋, 谢小碧, 姚振兴. 2013. 朝鲜核爆的Rayleigh波震级测量[J]. 地球物理学报, 56(3): 906 - 915. doi: 10.6038/cjg20130319.

    Fan N, Zhao L F, Xie X B, Yao Z X. 2013. Measurement of Rayleigh-wave magnitudes for North Korean nuclear tests[J]. Chinese Journal of Geophysics, 56(3): 906–915 (in Chinese). doi: 10.6038/cjg20130319.
    [28] Ferdinand R W. 1998. Average attenuation of 0.7-5.0 Hz Lg waves and magnitude scale determination for the region bounding the western branch of the East African Rift[J]. Geophysical Journal International, 134(3): 818-830. doi: 10.1046/j.1365-246x.1998.00616.x
    [29] Ford S R, Dreger D S, Mayeda K, et al. 2008. Regional attenuation in Northern California: A comparison of five 1D Q methods[J]. Bulletin of the Seismological Society of America, 98(4): 2033-2046. doi: 10.1785/0120070218.
    [30] Ford S R, Phillips W S, Walter W R, et al. 2010. Attenuation tomography of the Yellow Sea/Korean Peninsula from coda-source normalized and direct Lg amplitudes[J]. Pure and Applied Geophysics, 167(10): 1163-1170. doi: 10.1007/s00024-009-0023-2
    [31] Furumura T, Hong T-K, Kennett B L. 2014. Lg wave propagation in the area around Japan: observations and simulations[J]. Progress in Earth and Planetary Science, 1(1): 10. doi: 10.1186/2197-4284-1-10
    [32] Gallegos A, Ranasinghe N, Ni J, Sandvol E. 2014. Lg attenuation in the central and eastern United States as revealed by the EarthScope Transportable Array[J]. Earth and Planetary Science Letters, 402: 187-196. doi: 10.1016/j.jpgl.2014.01.049.
    [33] Gallegos A, Ranasinghe N, Ni J, Sandvol E. 2017. Lg attenuation, frequency dependence and relative site response of the western United States as revealed by the EarthScope Transportable Array[J]. Geophysical Journal International, 209(3): 1955-1971. doi: 10.1093/gji/ggx145
    [34] 何静, 吴庆举, 李永华, 雷建设. 2017. 天然地震Lg波衰减研究进展及其在中国大陆地区的应用[J]. 地球物理学进展, 32(2): 466-475 doi: 10.6038/pg20170204

    He J, Wu Q J, Li Y H, Lei J S. 2017. Developments of earthquake Lg wave attenuation study and its application in the continental China[J]. Progress in Geophysics, 32(2): 466-475(in Chinese). doi: 10.6038/pg20170204.
    [35] He J, Sandvol E, Wu Q J, et al. 2017. Attenuation of regional seismic phases (Lg and Sn) in Eastern Mongolia[J]. Geophysical Journal International, 211(2): 979-989. doi: 10.1093/gji/ggx349
    [36] He X, Zhao L F, Xie X B, et al. 2020. Stress drop assessment of the August 8, 2017, Jiuzhaigou earthquake sequence and its tectonic implications[J]. Earthquake Science, 33: 161–176. doi:110.29382/eqs-22020-20161-29301.
    [37] He X, Zhao L-F, Xie X-B, et al. 2021. Weak crust in southeast Tibetan Plateau revealed by Lg-wave attenuation tomography: Implications for crustal material escape[J]. Journal of Geophysical Research, 126: e2020JB020748. doi: 020710.021029/022020JB020748.
    [38] Herrmann R B, Kijko A. 1983. Short-period Lg magnitudes: Instrument, attenuation, and source effects[J]. Bulletin of the Seismological Society of America, 73(6): 1835-1850.
    [39] Hlatywayo D J, Midzi V. 1995. Determination of Lg-wave attenuation using single-station seismograms: A case-study for Zimbabwe[J]. Geophysical Journal International, 123(1): 291-296. doi: 10.1111/j.1365-246X.1995.tb06676.x
    [40] Hong T K, Baag C E, Choi H, Sheen D H. 2008. Regional seismic observations of the 9 October 2006 underground nuclear explosion in North Korea and the influence of crustal structure on regional phases[J]. Journal of Geophysical Research, 113(B3): B03305. doi: 10.1029/2007jb004950.
    [41] Hong T K, Rhie J. 2009. Regional source scaling of the 9 October 2006 underground nuclear explosion in North Korea[J]. Bulletin of the Seismological Society of America, 99(4): 2523-2540. doi: 10.1785/0120080007.
    [42] Hong T K. 2010. Lg attenuation in a region with both continental and oceanic environments[J]. Bulletin of the Seismological Society of America, 100(2): 851-858. doi: 10.1785/0120090057
    [43] Hong T K. 2013. Seismic discrimination of the 2009 North Korean nuclear explosion based on regional source spectra[J]. Journal of Seismology, 17(2): 753-769. doi: 10.1007/s10950-012-9352-1.
    [44] 黄奇瑜. 2017. 台湾岛的年龄[J]. 中国科学: 地球科学, 40(4): 394-405 doi: 10.1360/N072017-00023

    Huang C Y. 2017. Geological ages of Taiwan stratigraphy and tectonic events[J]. Scientia Sinica Terrae, 47: 394-405(in Chinese). doi: 10.1360/N072017-00023.
    [45] 靳平, 肖卫国, 段克敏. 2004. 由Lg波振幅谱估算地震矩及Lg波Q值[J]. 地震学报, 26: 21-30

    Jin P, Xiao W G, Duan K. 2004. Estimating seismic moments and QLg using Lg spectra[J]. Acta Seismologica Sinica, 26: 21-30 (in Chinese).
    [46] Kadinsky-Cade K, Barazangi M, Oliver J, Isacks B. 1981. Lateral variations of high-frequency seismic-wave propagation at regional distances across the Turkish and Iranian plateaus[J]. Journal of Geophysical Research, 86(B10): 9377-9396. doi: 10.1029/Jb086ib10p09377.
    [47] Kaviani A, Sandvol E, Bao X Y, et al. 2015. The structure of the crust in the Turkish-Iranian Plateau and Zagros using Lg Q and velocity[J]. Geophysical Journal International, 200(2): 1252-1266. doi: 10.1093/Gji/Ggu468.
    [48] Kennett B L N. 1984. Guided wave propagation in laterally varying media. 1. Theoretical development[J]. Geophysical Journal Royal Astronomical Society , 79(1): 235-255. doi: 10.1111/j.1365-246X.1984.tb02853.x
    [49] Kennett L N, Mykkeltveit S. 1984. Guided wave propagation in laterally varying media. 2. Lg-waves in Northwestern Europe[J]. Geophysical Journal Royal Astronomical Society, 79(1): 257-267. doi: 10.1111/j.1365-246X.1984.tb02854.x
    [50] Kennett B L N, Fishwick S, Reading A M, Rawlinson N. 2004. Contrasts in mantle structure beneath Australia: Relation to Tasman Lines?[J]. Australian Journal of Earth Sciences, 51(4): 563-569. doi: 10.1111/j.1400-0952.2004.01075.x
    [51] Kim T S, Kang I B, Kim G Y. 2009. Yield ratio estimates using regional Pn and Pg from North Korea's underground nuclear explosions[J]. Geophysical Research Letters, 36(22): L22302. doi: 10.1029/2009gl040495.
    [52] Kirkpatrick S, Gelatt C D, Vecchi M P. 1983. Optimization by simulated annealing[J]. Science, 220(4598): 671-680. doi: 10.1126/science.220.4598.671.
    [53] Kirkpatrick S. 1984. Optimization by simulated annealing: Quantitative studies[J]. Journal of Statistical Physics, 34(5-6): 975-986. doi: 10.1007/Bf01009452.
    [54] Knopoff L. 1964. Q[J]. Reviews of Geophysics, 2(4): 625-661. doi: 10.1029/RG002i004p00625
    [55] Knopoff L, Schwab F, Kausel E. 1973. Interpretation of Lg[J]. Geophysical Journal International, 33(4), 389-404. doi: 10.1111/j.1365-246X.1973.tb02375.x.
    [56] Langston C A, Bodin P, Powell C, et al. 2005. Bulk sediment Q(p) and Q(s), in the Mississippi embayment, central United States[J]. Bulletin of the Seismological Society of America, 95(6): 2162-2179. doi: 10.1785/0120050047
    [57] Laske G, Masters G, Ma Z, Pasyanos M. 2013. Update on CRUST1.0 - A 1-degree global model of Earth's crust[C]//EGU General Assembly Conference Abstracts EGU2013-2658.
    [58] Lawrence J F, Prieto G A. 2011. Attenuation tomography of the western United States from ambient seismic noise[J]. Journal of Geophysical Research, 116: B06302. doi: 10.1029/2010jb007836.
    [59] Levandowski W, Boyd O S, AbdelHameid D, McNamara D E. 2021. Crustal seismic attenuation of the central United States and intermountain west[J]. Journal of Geophysical Research, 126(12): e2021JB022097. 10.1029/2021JB022097.
    [60] 林鑫, 姚振兴. 2016. 利用区域地震波形振幅包络约束朝鲜地下核试验的埋深和当量[J]. 地球物理学报, 59(6): 2066-2079. doi: 10.6038/cjg20160613.

    Lin X, Yao Z X. 2016. Yield and burial depth of the North Korean underground nuclear tests constrained by amplitude envelopes of regional seismic waveforms[J]. Chinese Journal of Geophysics, 59(6): 2066-2079 (in Chinese). doi: 10.6038/cjg20160613.
    [61] 刘建华, 刘福田, 阎晓蔚, 等. 2004. 华北地区Lg尾波衰减研究: Lg尾波Q的测量[J]. 地球物理学报, 47(6): 822-831

    Liu J H, Liu F T, Yan X W, et al. 2004. A study of Lg coda attenuation beneath North China: Seismic imaging of Lg coda Q0[J]. Chinese Journal of Geophysics, , 47(6): 822-831(in Chinese).
    [62] 罗毅, 盖增喜. 2019. Lg波Q值随震源深度的变化作为地壳本征衰减深度的判据[J]. 地球物理学报, 62(3): 898-911

    Luo Y, Ge Z X. 2019. Dependence of Lg Q on depth as a criterion to determine the depth of intrinsic attenuation in the crust[J]. Chinese Journal of Geophysics, 62(3): 898-911 (in Chinese). doi: 810.6038/cjg2019M0234.
    [63] Luo Y, Zhao L F, Ge Z X, et al. 2021. Crustal Lg-wave attenuation in Southeast Asia and its implications for regional tectonic evolution[J]. Geophysical Journal International, 226(3): 1873-1884. doi: 10.1093/gji/ggab122
    [64] Mayeda K, Walter W R. 1996. Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes[J]. Journal of Geophysical Research, 101(B5): 11195-11208. doi: 10.1029/96jb00112.
    [65] McNamara D E, Owens T J, Walter W R. 1995. Observations of regional phase propagation across the Tibetan Plateau[J]. Journal of Geophysical Research, 100(B11): 22215-22229. doi: 10.1029/95jb01863.
    [66] McNamara D E, Owens T J, Walter W R. 1996. Propagation characteristics of Lg across the Tibetan Plateau[J]. Bulletin of the Seismological Society of America, 86(2): 457-469. doi: 10.1785/BSSA0860020457
    [67] McNamara D E, Walter W R. 2001. Mapping crustal heterogeneity using Lg propagation efficiency throughout the Middle East, Mediterranean, Southern Europe and Northern Africa[J]. Pure and Applied Geophysics, 158(7): 1165-1188. doi: 10.1007/PL00001219
    [68] McNamara D E, Gee L, Benz H M, Chapman M. 2014. Frequency-dependent seismic attenuation in the eastern United States as observed from the 2011 central Virginia earthquake and aftershock sequence[J]. Bulletin of the Seismological Society of America, 104(1): 55-72. doi: 10.1785/0120130045
    [69] Mellors R J, Camp V E, Vernon F L, et al. 1999. Regional waveform propagation in the Arabian Peninsula[J]. Journal of Geophysical Research, 104(B9): 20221-20235. doi: 10.1029/1999JB900187
    [70] Mitchell B J, Pan Y, Xie J K, Cong L L. 1997. Lg coda Q variation across Eurasia and its relation to crustal evolution[J]. Journal of Geophysical Research, 102(B10): 22767-22779. doi: 10.1029/97JB01894
    [71] Mitchell B J, Cong L L, Ekstrom G. 2008. A continent-wide map of 1-Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution[J]. Journal of Geophysical Research, 113(B4): B04303. doi: 10.1029/2007JB005065.
    [72] Mousavi S M, Cramer C H, Langston C A. 2014. Average Q(Lg), Q(Sn), and observation of Lg blockage in the Continental Margin of Nova Scotia[J]. Journal of Geophysical Research, 119(10): 7722-7744. doi: 10.1002/2014JB011237.
    [73] Nuttli O W. 1973. Seismic wave attenuation and magnitude relations for eastern North America[J]. Journal of Geophysical Research, 78(5): 876-885. doi: 10.1029/Jb078i005p00876.
    [74] Nuttli O W. 1986a. Lg magnitudes of selected east Kazakhstan underground explosions[J]. Bulletin of the Seismological Society of America, 76(5): 1241-1251. doi: 10.1785/BSSA0760051241
    [75] Nuttli O W. 1986b. Yield estimates of Nevada test site explosions obtained from seismic Lg waves[J]. Journal of Geophysical Research, 91(B2): 2137-2151. doi: 10.1029/Jb091ib02p02137.
    [76] Ottemöller L. 2002. Lg wave Q tomography in Central America[J]. Geophysical Journal International, 150(1): 295-302. doi: 10.1046/j.1365-246X.2002.01715.x
    [77] Ottemöller L, Shapiro N M, Singh S K, Pacheco J F. 2002. Lateral variation of Lg wave propagation in southern Mexico[J]. Journal of Geophysical Research, 107(B1): 12008. doi: 10.1029/2001JB000206.
    [78] Paige C C, Saunders M A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software, 8(1): 43-71. doi: 10.1145/355984.355989.
    [79] Pasyanos M E, Matzel E M, Walter W R, Rodgers A J. 2009a. Broad-band Lg attenuation modelling in the Middle East[J]. Geophysical Journal International, 177(3): 1166-1176. doi: 10.1111/j.1365-246X.2009.04128.x
    [80] Pasyanos M E, Walter W R, Matzel E M. 2009b. A simultaneous multiphase approach to determine P-wave and S-wave attenuation of the crust and upper mantle[J]. Bulletin of the Seismological Society of America, 99(6): 3314-3325. doi: 10.1785/0120090061
    [81] Pasyanos M E, Tarabulsi Y M, Al-Hadidy S Y, et al. 2021. Improved lithospheric attenuation structure of the Arabian Peninsula through the use of national network data[J]. Arabian Journal of Geosciences, 14(10): 914. doi: 10.1007/s12517-021-07294-x
    [82] Pei S P, Zhao J M, Rowe C A, et al. 2006. ML amplitude tomography in North China[J]. Bulletin of the Seismological Society of America, 96(4): 1560-1566.
    [83] Phillips W S, Hartse H E, Taylor S R, Randall G E. 2000. 1 Hz Lg Q tomography in Central Asia[J]. Geophysical Research Letters, 27(20): 3425-3428. doi: 10.1029/2000GL011482
    [84] Phillips W S, Hartse H E, Rutledge J T. 2005. Amplitude ratio tomography for regional phase Q[J]. Geophysical Research Letters, 32(21): L21301. doi: 10.1029/2005GL023870.
    [85] Phillips W S, Stead R J. 2008. Attenuation of Lg in the western US using the USArray[J]. Geophysical Research Letters, 35(7): L07307. doi: 10.1029/2007gl032926.
    [86] Ranasinghe N R, Gallegos A C, Trujillo A R, et al. 2015. Lg attenuation in northeast China using NECESSArray data[J]. Geophysical Journal International, 200(1): 67-76. doi: 10.1093/gji/ggu375.
    [87] Reshma K S, Illa B, Kumar P, Srinagesh D. 2022. Lg Q in the Indian shield[J]. Pure and Applied Geophysics, 179(1): 149-168. doi: 10.1007/s00024-021-02911-y
    [88] Richards P G, Kim W Y. 2007. Seismic signature[J]. Nature Physics, 3(1): 4-6. doi: 10.1038/Nphys495.
    [89] Ringdal F, Marshall P D, Alewine R W. 1992. Seismic yield determination of Soviet underground nuclear explosions at the Shagan River test site[J]. Geophysical Journal International, 109(1): 65-77. doi: 10.1111/j.1365-246X.1992.tb00079.x.
    [90] Rodgers A J, Ni J F, Hearn T M. 1997. Propagation characteristics of short-period Sn and Lg in the Middle East[J]. Bulletin of the Seismological Society of America, 87(2): 396-413.
    [91] Rodgers A J, Schwartz S Y. 1998. Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional waveform modeling: Evidence for partial melt[J]. Journal of Geophysical Research, 103(B4): 7137-7152. doi: 10.1029/97JB03535
    [92] Rothman D H. 1986. Automatic estimation of large residual statics corrections[J]. Geophysics, 51(2): 332-346. doi: 10.1190/1.1442092
    [93] Sandvol E, Al-Damegh K, Calvert A, et al. 2001. Tomographic imaging of Lg and Sn propagation in the Middle East[J]. Pure and Applied Geophysics, 158(7): 1121-1163. doi: 10.1007/Pl00001218.
    [94] Selby N D. 2010. Relative locations of the October 2006 and May 2009 DPRK announced nuclear tests using international monitoring system seismometer arrays[J]. Bulletin of the Seismological Society of America, 100(4): 1779-1784. doi: 10.1785/0120100006.
    [95] Shapiro N, Bethoux N, Campillo M, Paul A. 1996. Regional seismic phases across the Ligurian Sea: Lg blockage and oceanic propagation[J]. Physics of the Earth and Planetary Interiors, 93(3-4): 257-268. doi: 10.1016/0031-9201(95)03069-7.
    [96] Shen L, Zhao L F, Xie X B, et al. 2022. Stress drop variations of the 2019 ML 6.0 Changning earthquake and its aftershock sequence in the southern Sichuan Basin, China[J]. Geophysical Journal International.
    [97] Shi J H, Kim W Y, Richards P G. 1996. Variability of crustal attenuation in the northeastern United States from Lg waves[J]. Journal of Geophysical Research, 101(B11): 25231-25242. doi: 10.1029/96JB02580
    [98] Shi J H, Kim W Y, Richards R G. 1997. Variability of crustal attenuation in the northeastern United States from Lg waves[J]. Journal of Geophysical Research, 102(B6): 11899-11899. doi: 10.1029/97JB00724
    [99] Shi J H, Kim W Y, Richards P G. . 1998. The corner frequencies and stress drops of intraplate earthquakes in the northeastern United States[J]. Bulletin of the Seismological Society of America, 88(2): 531-542. doi: 10.1785/BSSA0880020531
    [100] Singh C, Mondal P, Singh S, et al. 2015. Lg attenuation tomographic models of Himalaya and southern Tibet[J]. Tectonophysics, 664: 176-181. doi: 10.1016/j.tecto.2015.09.009.
    [101] Solomon S C. 1972. Seismic-wave attenuation and partial melting in the upper mantle of North America[J]. Journal of Geophysical Research, 77(8): 1483 -1502. doi: 10.1029/JB077i008p01483
    [102] Street R L, Herrmann R B, Nuttli O W. 1975. Spectral characteristics of Lg wave generated by central United States earthquakes[J]. Geophysical Journal Royal Astronomical Society, 41(1): 51-63. doi: 10.1111/j.1365-246X.1975.tb05484.x
    [103] 苏伟, 吴建平, 明跃红, 王椿镛. 2006. Lg尾波Q0值与中国大陆及邻区的地质构造关系[J]. 地震学报, 28(2): 132-140 doi: 10.6038/cjg20130212

    Su W, Wu J P, Ming Y H, Wang C Y. 2006. Lg coda Q0 value and its relation with the tectonics in Chinese mainland and adjacent regions[J]. Acta Seismologica Sinica, 28(2): 132-140 (in Chinese). doi: 10.6038/cjg20130212.
    [104] 田有, 柳云龙, 刘财, 等. 2015. 朝鲜2009年和2013年两次核爆的地震学特征对比研究[J]. 地球物理学报, 58(3): 809 – 820. doi: 10.6038/cjg20150311.

    Tian Y, Liu Y L, Liu C, et al. 2015. Comparative study on seismological characteristics of 2009 and 2013 nuclear explosions in North Korea[J]. Chinese Journal of Geophysics, 58(3): 809 – 820 (in Chinese). doi: 10.6038/cjg20150311.
    [105] Tsai M C, Yu S B, Shin T C, et al. 2015. Velocity field derived from Taiwan continuous GPS array (2007-2013)[J]. Terrestrial, Atmospheric and Oceanic Sciences, 26(5): 527-556.
    [106] Wei M. 2017. Location and source characteristics of the 2016 January 6 North Korean nuclear test constrained by InSAR[J]. Geophysical Journal International, 209(2): 762-769. doi: 10.1093/gji/ggx053.
    [107] Wei Z, Kennett B L N, Zhao L F. 2017. Lg-wave attenuation in the Australian crust[J]. Tectonophysics, 717: 413-424. doi: 10.1016/j.tecto.2017.08.022
    [108] Wen L X, Long H. 2010. High-precision location of North Korea's 2009 nuclear test[J]. Seismological Research Letters, 81(1): 26-29. doi: 10.1785/gssrl.81.1.26.
    [109] Wessel P, Smith W. 1998. New, improved version of the generic mapping tools released[J]. Eos Transactions, 79: 579. doi: 10.1029/98EO00426
    [110] Wu W N, Lo C L, Doo W B, et al. 2021. Seismogenic structure along the deformation front off SW Taiwan revealed by the aftershocks of the 2017 Tainan near-shore earthquake with ocean bottom seismometers[J]. Tectonophysics, 815: 228995. doi: 10.1016/j.tecto.2021.228995
    [111] Xie J, Mitchell B J. 1990. Attenuation of multiphase surface waves in the basin and range province, Part I: Lg and Lg coda[J]. Geophysical Journal International, 102(1): 121-137. doi: 10.1111/j.1365-246X.1990.tb00535.x
    [112] Xie J. 1993. Simultaneous inversion for source spectrum and path-Q using Lg with application to 3 Semipalatinsk explosions[J]. Bulletin of the Seismological Society of America, 83(5): 1547-1562.
    [113] Xie J. 2002. Lg Q in the eastern Tibetan Plateau[J]. Bulletin of the Seismological Society of America, 92(2): 871-876. doi: 10.1785/0120010154
    [114] Xie J, Gök R, Ni J, Aoki Y. 2004. Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion[J]. Journal of Geophysical Research, 109(B10): B10308. doi: 10.1029/2004JB002988.
    [115] Xie J, Wu Z, Liu R, et al. 2006. Tomographic regionalization of crustal Lg Q in eastern Eurasia[J]. Geophysical Research Letters, 33(3): L03315. doi: 10.1029/2005GL024410.
    [116] Xie X B, Lay T. 1994. The excitation of Lg waves by explosions: A finite-difference investigation[J]. Bulletin of the Seismological Society of America, 84(2): 324-342.
    [117] 谢小碧, 赵连锋. 2018. 朝鲜地下核试验的地震学观测[J]. 地球物理学报, 61(3): 889-904. doi: 10.6038/cjg2018L0677.

    Xie X B, Zhao L F. 2018. The seismic characterization of Nprth Korea underground nuclear tests[J]. Chinese Journal of Geophysics, 61(3): 889-904 (in Chinese). doi: 10.6038/cjg2018L0677.
    [118] Yu S B, Chen H Y, Kuo L C. 1997. Velocity field of GPS stations in the Taiwan area[J]. Tectonophysics, 274(1-3): 41-59. doi: 10.1016/S0040-1951(96)00297-1
    [119] Zhang L, Zhao L F, Xie X B, et al. 2022. Lateral variations in crustal Lg attenuation in and around the Hangay Dome, Mongolia[J]. International Journal of Earth Sciences, 111(2): 591-606. doi: 10.1007/s00531-021-02131-8
    [120] Zhang M, Wen L X. 2013. High-precision location and yield of North Korea's 2013 nuclear test[J]. Geophysical Research Letters, 40(12): 2941-2946. doi: 10.1002/grl.50607.
    [121] Zhang T R, Lay T. 1995. Why the Lg phase does not traverse oceanic crust[J]. Bulletin of the Seismological Society of America, 85(6): 1665-1678.
    [122] 赵连锋, 王卫民, 姚振兴. 2004. 逐次线性化衰减层析成像方法研究[J]. 地球物理学报, 47(4): 691-696 doi: 10.1002/cjg2.3538

    Zhao L F, Wang W M, Yao Z X. 2004. Seismic attenuation tomography using the successive linearization method[J]. Chinese Journal of Geophysics, 47(4): 691-696 (in Chinese). doi: 10.1002/cjg2.3538
    [123] Zhao L F, Xie X B, Wang W M, Yao Z X. 2008. Regional seismic characteristics of the 9 October 2006 North Korean nuclear test[J]. Bulletin of the Seismological Society of America, 98(6): 2571-2589. doi: 10.1785/0120080128.
    [124] Zhao L F, Xie X B, Wang W M, et al. 2010. Seismic Lg-wave Q tomography in and around Northeast China[J]. Journal of Geophysical Research, 115: B08307. doi: 10.1029/2009JB007157.
    [125] Zhao L F, Xie X B, Wang W M, Yao Z X. 2012. Yield estimation of the 25 May 2009 North Korean nuclear explosion[J]. Bulletin of the Seismological Society of America, 102(2): 467-478. doi: 10.1785/0120110163.
    [126] Zhao L F, Xie X B, He J K, et al. 2013a. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth and Planetary Science Letters, 383: 113-122. doi: 10.1016/j.jpgl.2013.09.038.
    [127] Zhao L F, Xie X B, Wang W M, et al. 2013b. Crustal Lg attenuation within the North China Craton and its surrounding regions[J]. Geophysical Journal International, 195(1): 513-531. doi: 10.1093/gji/ggt235.
    [128] Zhao L F, Xie X B, Wang W M, Yao Z X. 2014. The 12 February 2013 North Korean underground nuclear test[J]. Seismological Research Letters, 85(1): 130-134. doi: 10.1785/0220130103.
    [129] Zhao L F, Xie X B. 2016. Strong Lg-wave attenuation in the Middle East continental collision orogenic belt[J]. Tectonophysics, 674: 135-146. doi: 10.1016/j.tecto.2016.02.025
    [130] Zhao L F, Xie X B, Wang W M, et al. 2016. Seismological investigation of the 2016 January 6 North Korean underground nuclear test[J]. Geophysical Journal International, 206: 1487-1491. doi: 10.1093/gji/ggw239.
    [131] Zhao L F, Xie X B, Wang W M, et al. 2017. The september 9, 2016 North Korean underground nuclear test[J]. Bulletin of the Seismological Society of America, 107(6): 3044-3051. doi: 10.1785/0120160355.
    [132] 赵连锋, 谢小碧, 何熹, 等. 2017. 2017年9月3日朝鲜地下核试验地震学鉴别和当量估计[J]. 科学通报, 62(35): 4163-4168. doi: 10.1360/N972017-00979.

    Zhao L F, Xie X B, He X, et al. 2017. Seismological discrimination and yield estimation of the 3 September 2017 Democratic People’s Republic of Korea (DPRK) underground nuclear test[J]. Chinese Science Bulletin, 62(35): 4163-4168 (in Chinese). doi: 10.1360/N972017-00979.
    [133] Zhao L F, Mousavi S M. 2018. Lateral variation of crustal Lg attenuation in Eastern North America[J]. Scientific Reports, 8: 7285. doi: 10.1038/s41598-018-25649-5.
    [134] 赵连锋, 谢小碧, 王卫民, 姚振兴. 2018. 中国东北和朝鲜半岛地区地壳Lg波宽频带衰减模型[J]. 地球物理学报, 61(3): 586-871 doi: 10.6038/cjg2018L0394

    Zhao L F, Xie X B, Wang W M, Yao Z X. 2018. A broadband crustal Lg wave attenuation model in Northeast China and the Korean Peninsula[J]. Chinese Journal of Geophysics, 61(3): 586-871 (in Chinese). doi: 10.6038/cjg2018L0394.
    [135] 周连庆, 赵翠萍, 修济刚, 陈章立. 2008. 川滇地区Lg波Q值层析成像[J]. 地球物理学报, 51(6): 1745-1752

    Zhou L Q, Zhao C P, Xiu J G, Chen Z L. 2008. Tomography of QLg in Sichuan-Yunnam zone[J]. Chinese Journal of Geophysics, 51(6): 1745-1752(in Chinese).
    [136] Zor E, Sandvol E, Xie J K, et al. 2007. Crustal attenuation within the Turkish plateau and surrounding regions[J]. Bulletin of the Seismological Society of America, 97(1): 151-161. doi: 10.1785/0120050227.
  • 2022-024表S1,S2.xls
    2022-024gausspro.txt.rar
  • 加载中
图(15)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  100
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-19
  • 录用日期:  2022-05-16
  • 修回日期:  2022-05-15
  • 网络出版日期:  2022-05-25
  • 刊出日期:  2022-07-11

目录

    /

    返回文章
    返回