Source parameters, seismogenic structures of the 1950 Medog-Zayu MS8.6 earthquake and seismicity in the surrounding areas
-
摘要: 印度—欧亚板块的挤压碰撞形成了长达2500 km的喜马拉雅造山带. 北京时间1950年8月15日22点09分,在喜马拉雅东构造结的墨脱—察隅一带发生了MS8.6地震,是世界上有历史地震记录以来发生的最大的内陆型地震,整个青藏高原及毗邻的印度平原均有明显震感,给周边地区带来重大的经济和财产损失. 我们基于前人在地震灾害、地震定位和震源机制等方面获得的研究成果,对墨脱—察隅大地震的震源参数、震源区地下结构、发震断层的构造特点进行了系统回顾. 在此基础上,我们收集了不同机构给出的历史地震目录资料,总结了震前20年和震后10年较为完整的5.0级以上地震目录,分析了4个不同时间和空间发展阶段的地震活动性;同时利用现代地震目录和我们在震源区架设的近台观测波形资料,探讨了1964年以来发生的中小地震、2017年米林6.9级地震和2019年墨脱6.3级地震的发生机制. 东构造结地区构造背景复杂,发育了三个不同方向、依次向南迁移的次级构造结,即南迦巴瓦构造结、桑构造结及阿萨姆构造结. 在最年轻的阿萨姆构造结地区,印度板块不仅沿着米什米逆冲断裂向NE方向俯冲,同时沿着主前锋逆冲断裂向NW方向俯冲,阿萨姆构造结前缘的察隅岛弧和桑构造结表现出强烈的地壳水平缩短. 这种持续不断的高强度的构造挤压应力作用,导致主前锋逆冲断裂和米什米逆冲断裂同时发生破裂,形成MS8.6的墨脱—察隅大地震,并在米什米山和阿博尔山一带发生大范围的余震活动和明显的地表形变. 早期地震发生机制的不确定性有待进一步深入分析,地震、地质、遥感和野外调查等多种研究手段的融合可以为其提供较为全面的观测依据.
-
关键词:
- 1950年墨脱—察隅大地震 /
- 喜马拉雅东构造结 /
- 地震活动性 /
- 震源机制 /
- 构造背景
Abstract:The collision between the Indian and Eurasian plates formed the 2500 km long Himalayan orogenic belt . At 22:09 on August 15, 1950, Beijing time, an MS8.6 earthquake occurred in Medog-Zayu area in the eastern Himalayan syntaxis, which is the largest continental earthquake in the world ever recorded since the historical earthquake records have become available. It has been felt by people across the entire Tibetan Plateau and the adjacent plains of India and caused extensive economic and property damages. Based on previous studies about the seismic hazards, earthquake locations and focal mechanisms, we systematically review the source parameters, deep structures of the earth beneath the source area and the features of the seismogenic faults. In addition, we collected earthquake catalogues provided by different agencies and summarized a relatively complete earthquake catalogue with magnitudes greater than or equal to 5.0 within 20 years before and 10 years after the great earthquake. We then analysed the seismicity in four different special and temporal stages. Using the modern earthquake catalogues and waveform data recorded by seismic stations we deployed in the nearby areas, we discussed the mechanisms of small and medium earthquakes occurring since 1964, the 2017 MS6.9 Mainling earthquake, and the 2019 MS6.3 Medog earthquake. The tectonic background of the eastern Himalayan syntaxis is complex. There are three secondary syntaxis which migrate from north to south in different directions, i.e., the Namche Barwa syntaxis, the Sang syntaxis and the Assam syntaxis. In the youngest Assam syntaxis, the Indian plate subducts not only toward NE along the Mishmi Thrust but also toward NW along the Main Frontal Thrust, resulted strong compressive crustal deformation in the Zayu island arc and in Sang syntaxis. Under the continuous high strength of tectonically compressional regime, the Main Frontal Thrust and the Mishmi Thrust ruptured simultaneously, led to the formation of the MS8.6 Medog-Zayu great earthquake. Large aftershocks and clear surface deformation are widely observed in the areas of the Mishmi hills and the Abor hills. The uncertainties of the mechanism of early great earthquakes need to be further analyzed. The integration of seismological, geological, remote sensing and field investigations may provide observations in more comprehensive ways. -
图 1 墨脱—察隅大地震震源区地质图和不同研究机构给出的震中位置(红色五角星). 黑色线表示断裂(Ding et al., 2001);蓝色线表示水系;STDS:藏南拆离系;MCT:主中央逆冲断裂;MBT:主边界逆冲断裂 ;MFT:主前锋逆冲断裂;MT:米什米逆冲断裂
Figure 1. Geological map of the Medog-Zayu great earthquake area and epicenter locations given by different research agencies (red pentagram). Black lines are faults (Ding et al., 2001); blue lines are rivers; STDS:South Tibet Detachment System; MCT: Main Central Thrust; MBT: Main Boundary Thrust; MFT: Main Frontal Thrust; MT: Mishmi Thrust
图 2 墨脱—察隅大地震等烈度线图(修改自西藏自治区科学技术委员会和国家地震局科技监测司,1989)
Figure 2. Intensity isoline map of the Medog-Zayu great earthquake (modified from Science and Technology Committee of the Tibet Autonomous Region and Monitoring and Forecasting Division of the China Earthquake Administration, 1989)
图 3 墨脱—察隅大地震震源区房屋、建筑物破坏的照片(西藏自治区科学技术委员会和国家地震局监测预报司,1989)
Figure 3. Photos of houses and buildings destroyed in the Medog-Zayu great earthquake area (Science and Technology Committee of the Tibet Autonomous Region and Monitoring and Forecasting Division of the China Earthquake Administration, 1989)
图 4 墨脱—察隅大地震震前及震后地震序列分布. (a)1929年3月25日至1950年8月14日(约20年)期间发生的15个地震分布(表3序号1—15);(b)1950年8月15日至18日(4天)期间发生的18个地震分布(表3序号16—33),橙色五角星为墨脱—察隅大地震;(c)1950年8月19日至1951年3月11日(约7个月)期间发生的28个地震分布(表3序号34—61);(d)1951年3月12日至1960年9月2日(约9.5年)期间发生的18个地震分布(表3序号62—79)
Figure 4. The distribution of earthquake sequence before and after the Medog-Zayu great earthquake. (a) The distribution of 15 earthquakes occurred from 25 March, 1929 to 14 August, 1950 (about 20 years) (Table 3 Serial number 1-15); (b) The distribution of 18 earthquakes occurred from 15 August, 1950 to 18 August, 1950 (4 days) (Table 3 Serial number 16-33), the Medog-Zayu great earthquake shows by orange asterisks; (c) The distribution of 28 earthquakes occurred from 19 August, 1950 to 11 March, 1951 (about 7 months) (Table 3 Serial number 34-61); (d) The distribution of 18 earthquakes occurred from 12 March, 1951 to 2 September, 1960 (about 9.5 years) (Table 3 Serial number 62-79)
图 6 喜马拉雅东构造结地区主要地震活动. 红色沙滩球表示墨脱—察隅大地震的震源机制解(Coudurier-Curveur et al., 2020),蓝色沙滩球表示1900年以来发生的3次6级以上地震(李保昆等,2014;白玲等,2017;李国辉等,2020),黑色沙滩球表示1964年至今较大地震的震源机制解(gCMT),灰色小圆圈表示1964年至今发生的4.0级以上地震,黑色小圆圈表示1964年至今发生的5.0级以上地震,黑色较大圆圈表示1000—1964年发生的6.0级以上地震(USGS)
Figure 6. Major earthquakes occurred in the eastern Himalayan syntaxis area. Red beach ball shows the focal mechanism of the Medog-Zayu earthquake (Coudurier-Curveur et al., 2020), blue beach balls show the focal mechanism of three MW≥6.0 earthquakes since 1900 (Li et al., 2014; Bai et al., 2017; Li et al., 2020), black beach balls show the locations of relatively large earthquakes with focal mechanism available since 1964 (gCMT). Gray small circles show the locations of MW≥4.0 earthquakes since 1964, black small circles show the locations of MW≥5.0 earthquakes since 1964, black larger circles show the locations of MW≥6.0 earthquakes between 1000 and 1964 (USGS)
表 1 不同地震目录给出的墨脱—察隅大地震震源参数的比较
Table 1. Comparison of source parameters of the Medog-Zayu great earthquake given by different earthquake catalogues
序号 日期 时间 震级 经度/(°) 纬度/(°) 深度/km 走向/倾角/滑动角/(°) 来源 1 1950-08-15 22:09:34 8.6 96.70 28.40 / / CENC 2 1950-08-15 22:09:34 8.6 97.00 28.50 15 / USGS 3 1950-08-15 22:09:34 8.6 96.44 28.36 15 / ISC 4 1950-08-15 / 8.7 96.72 28.38 37±3 293/16/107 CC 5 1950-08-15 22:09:31 8.6 96.68 28.65 11±6.3 303.2/63.92/164.15 Li 6 1950-08-15 22:09:30 8.6 96.76 28.38 30 260/12/90 CM 7 1950-08-15 / 8.8 96.68 28.38 30 334/60/176 BM 注:CENC: 中国地震台网中心; USGS: 美国地质勘探局; ISC: 国际地震中心; CC: Coudurier-Curveur et al., 2020; Li: 李保昆等, 2015; CM: Chen and Molnar, 1977; BM: Ben-Menahem et al., 1974. 表 2 墨脱—察隅大地震后各地区受灾害情况(顾功叙等,1983)
Table 2. The disaster situation in each region after the Medog-Zayu great earthquake (Gu et al., 1983)
各县(市)名称 灾害情况 墨脱 旧房全部倒塌、山崖崩塌、人被压死者不少. 雅鲁藏布江两岸大量地裂缝,宽2 m多. 叶东、地东、背源、甘代、格林、朱巴、旁辛、中荣等村房屋全部倒塌、山崩地裂普遍. 叶东村因山崩掉入江中被冲走. 地裂缝宽约1 m多,长几十米到数百米不等,其方向以顺江方向为主 米林 卡纳达捷果房屋全部倒塌,地裂缝普遍,长10~100 m,宽0.5~2 m,平行于江面. 巨石滚落 林芝 尼洋河两岸村庄房屋大部分倒塌,压死200余人 朗县 部分房屋倒塌,有的地方出现地裂缝 察雅 吉塘房屋倒塌,酉西山崖崩垮,道路毁坏,卡贡房屋倒塌 八宿 阿公区西南地区倒塌房屋20余间 桑昂曲 土石建筑十有九破坏 札西则 房屋震塌很多,札西则冲萨(此地可能就是扎喜哲宗)倒塌房量数间,石崖亦有崩塌 太昭地区 央莫宗的买德卡宗地方,房量全部倒塌 则拉 房屋全部倒塌 波密 房屋倒塌甚多,倾多宗之普龙、月儿岗、许木宗,索瓦卡松宗之达罗、然抗根、松宗,易贡宗之甲中,东久等民房及喇嘛寺有些倒塌,山垮,个别村庄地面陷沉 白马岗 房屋震塌很多 昌都 杂堆区、俄堆区(四川河沟)一带,坏民房数间,宗戍乍噶(云南河沟)等岩石震落,昌都之察堆、察美民房倒塌 贡布 布久、德木恰成寺等寺庙及巧木宗府和许多民房倒塌. 德木怡成寺100余名喇嘛死亡,俗民死伤众多,怡那寺约480名喇嘛死亡 错那 绝大部分房屋倒塌 拉萨 有感 表 3 墨脱—察隅大地震前后30年喜马拉雅东构造结地区5.0级以上地震目录
Table 3. Catalogues of the earthquakes occurred before and after Medog-Zayu great earthquake in the eastern Himalayan syntaxis area with M≥5.0 and time period of 30 years
序号 日期 时间 经度/(°) 纬度/(°) 震级 来源 序号 日期 时间 经度/(°) 纬度/(°) 震级 来源 1 1929-03-25 11:47:14 95.101 29.942 5.65 ISC 41 1950-08-23 23:34:02 97.02 27.048 5.7 USGS 2 1931-05-27 / 98.5 27.5 5.25 Gu 42 1950-08-24 2:47:03 96.476 28.504 5.9 USGS 3 1931-08-12 14:05:30 98.5 27.5 5.5 Gu 43 1950-08-24 9:27:53 96.672 28.249 5.6 USGS 4 1931-10-02 22:18:28 98 28.3 5.25 Gu 44 1950-08-26 14:33:10 94.9 27.05 6 Li 5 1932-03-07 / 96 31 4.75 Gu 45 1950-08-27 19:00:06 94.6 29.183 5.5 USGS 6 1933-07-20 / 98.5 27.5 4.5 Gu 46 1950-09-01 3:52:37 95.33 28.61 5.7 USGS 7 1938-11-21 9:11:32 95.138 29.889 6.26 ISC 47 1950-09-01 15:12:04 95.302 29.688 5.7 USGS 8 1941-02-23 17:56:34 96.887 28.305 5.72 ISC 48 1950-09-02 7:44:43 95.226 29.585 5.5 USGS 9 1942-09-03 15:44:20 96.142 30.308 5.74 ISC 49 1950-09-03 0:14:43 96.753 29.758 5.9 USGS 10 1946-03-08 / 96.4 27.5 5.25 Gu 50 1950-09-04 16:12:39 96.731 29.711 5.7 USGS 11 1947-07-29 21:43:22 93.65 28.61 7.7 Li(a) 51 1950-09-11 17:39:53 94.158 28.615 5.8 USGS 12 1949-03-12 / 93.5 31.5 5.5 Gu 52 1950-09-13 19:07:30 96.17 27.54 6 Li 13 1949-07-15 19:22:41 98 29 5 Gu 53 1950-09-30 15:28:55 94.47 28.71 6 1/2 Li 14 1950-02-13 15:22:19 95.3 29.8 4.5 Gu 54 1950-10-04 7:01:58 97.508 27.161 6 USGS 15 1950-02-23 19:01:13 95.26 29.7 6 Li 55 1950-10-08 12:50:13 94.72 28.61 6 1/4 Li 16 1950-08-15 22:09:31 96.68 28.65 8.6 Li 56 1950-10-16 23:42:35 95.457 28.22 5.5 USGS 17 1950-08-15 23:57:39 96.6 28.7 5.75 Gu 57 1950-10-29 14:02:32 95.354 27.419 6 USGS 18 1950-08-16 0:29:26 97.11 28.38 6 Li 58 1950-11-03 4:17:32 97.396 30.353 5.6 USGS 19 1950-08-16 0:50:00 97.1 28.84 6 Li 59 1950-11-13 5:30:32 94.807 27.233 5.5 USGS 20 1950-08-16 1:16:55 96.39 29.15 6 Li 60 1950-12-03 14:26:53 95.89 28.84 6 Li 21 1950-08-16 2:38:48 96.46 28.66 6 Li 61 1951-03-07 2:58:17 95.427 28.661 5.7 USGS 22 1950-08-16 3:58:49 95.98 28.68 6 Li 62 1951-03-12 22:52:21 94.668 27.99 6 USGS 23 1950-08-16 5:01:35 96.777 27.337 5.8 USGS 63 1951-03-16 21:56:54 97.487 30.634 5.8 USGS 24 1950-08-16 7:44:45 95.131 28.498 5.8 USGS 64 1951-03-17 12:27:36 97.363 30.843 6.2 USGS 25 1950-08-16 13:33:11 96.746 28.665 5.8 USGS 65 1951-04-07 7:53:06 97.391 30.731 5.7 USGS 26 1950-08-16 14:42:01 96.31 28.75 6 Li 66 1951-04-15 7:40:56 94.6 28.21 6 1/2 USGS 27 1950-08-16 23:29:29 94.866 29.063 5.8 USGS 67 1951-04-22 11:37:44 94.575 28.842 6 USGS 28 1950-08-17 0:36:01 94.968 28.18 5.7 USGS 68 1951-07-21 9:32:29 96.529 28.619 5.8 USGS 29 1950-08-17 1:51:34 92.802 27.492 6 USGS 69 1951-08-01 21:37:30 95.312 31.539 5.5 USGS 30 1950-08-17 3:25:39 95.963 28.716 5.7 USGS 70 1952-02-17 5:44:03 95.924 29.434 5.5 USGS 31 1950-08-17 9:54:17 94.844 28.427 6.1 USGS 71 1952-05-26 10:46:36 94.488 28.4 6 USGS 32 1950-08-17 13:29:19 94.774 29.622 5.7 USGS 72 1952-08-25 9:44:53 93.905 28.138 5.6 USGS 33 1950-08-18 9:07:48 96.59 28.76 6 1/4 Li 73 1953-04-23 11:50:58 96.712 30.495 5.8 USGS 34 1950-08-19 0:58:54 96.557 29.723 6.1 USGS 74 1953-04-23 11:53:37 96.874 31.049 6 USGS 35 1950-08-20 17:03:42 95.062 29.473 5.8 USGS 75 1953-10-09 0:20:11 97.262 29.824 5.9 USGS 36 1950-08-21 13:51:34 97.157 27.186 5.7 USGS 76 1955-05-04 8:17:00 96.927 27.051 5.8 USGS 37 1950-08-22 10:22:41 95.511 29.932 6 USGS 77 1956-08-23 3:40:18 95.211 27.974 5.6 USGS 38 1950-08-22 14:43:15 94.584 28.97 5.9 USGS 78 1959-02-15 6:25:52 96.459 27.604 5.7 USGS 39 1950-08-22 21:22:21 97.16 27.27 6 Li 79 1960-09-02 21:46:10 98.394 28.839 6 USGS 40 1950-08-23 11:09:24 95.019 29.207 6 USGS 注: ISC: 国际地震中心 ; Gu: 《中国地震目录》 (顾功叙等, 1983); USGS: 美国地质勘探局; Li(a): 李保昆等, 2014; Li: 李保昆等, 2015 . -
[1] Bai D, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3: 358-362. doi: 10.1038/ngeo830 [2] Bai L, Li G H, Khan N G, et al. 2017. Focal depths and mechanisms of shallow earthquakes in the Himalayan-Tibetan region[J]. Gondwana Research, 41: 390-399. doi: 10.1016/j.gr.2015.07.009 [3] 白玲, 李国辉, 宋博文. 2017.2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 60(12): 4956-4963 doi: 10.6038/cjg20171234Bai L, Li G H, Song B W. 2017. The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 60(12): 4956-4963 (in Chinese). doi: 10.6038/cjg20171234 [4] Bai L, Klemperer S L, Mori J, et al. 2019. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal[J]. Science Advances, 5: eaav0723. doi: 10.1126/sciadv.aav0723 [5] Ben-Menahem A, Aboodi E, Schild R. 1974. The source of the great Assam earthquake: an interplate wedge motion[J]. Physics of the Earth and Planetary Interiors, 9: 265-289. doi: 10.1016/0031-9201(74)90056-9 [6] Chang L J, Wang C Y, Ding Z F, et al. 2015. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis[J]. Science China Earth Sciences, 45(5): 577-588. [7] Chen W P, Molnar P. 1977. Seismic moments of major earthquakes and the average rate of slip in central Asia[J]. Journal of Geophysical Research, 82(20): 2945-2969. doi: 10.1029/JB082i020p02945 [8] 程成, 白玲, 丁林, 等. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构[J]. 地球物理学报, 60(8): 2969-2979 doi: 10.6038/cjg20170806Cheng C, Bai L, Ding L, et al. 2017. Crustal structure of eastern Himalayan syntaxis revealed by receiver function method[J]. Chinese Journal of Geophysics, 60(8): 2969-2979 (in Chinese). doi: 10.6038/cjg20170806 [9] Coudurier-Curveur A, Tapponnier P, Okal E, et al. 2020. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis[J]. Earth and Planetary Science Letters, 15: 1-13. [10] 崔仲雄, 裴顺平. 2009. 青藏高原东构造结及周边地区上地幔顶部Pn速度结构和各向异性研究[J]. 地球物理学报, 52(9): 2245-2254 doi: 10.3969/j.issn.0001-5733.2009.09.008Cui Z X, Pei S P. 2009. Study on Pn velocity and anisotropy in the uppermost mantle of eastern Himalayan syntaxis and surrounding region[J]. Chinese Journal of Geophysics, 52(9): 2245-2254 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.09.008 [11] Devachandra M, Kundu B, Catherine J, et al. 2014. Global Positioning System (GPS) measurements of crustal deformation across the frontal eastern Himalayan syntaxis and seismic-hazard assessment[J]. Bulletin of the Seismological Society of America, 104(3): 1518-1524. doi: 10.1785/0120130290 [12] Ding L, Zhong D, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa) [J]. Earth and Planetary Science Letters, 192(3): 423-438. doi: 10.1016/S0012-821X(01)00463-0 [13] Ding L, Spicer R A, Yang J, et al. 2017. Quantifying the rise of the Himalaya orogen and implications for the south Asian monsoon[J]. Geology, 45(3): 215-218. doi: 10.1130/G38583.1 [14] Dong H, Wei W, Jin S, et al. 2016. Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data[J]. Earth and Planetary Science Letters, 454: 78-85. doi: 10.1016/j.jpgl.2016.07.043 [15] England P, McKenzie D P. 2010. A thin viscous sheet model for continental deformation[J]. Geophysical Journal of the Royal Astronomical Society, 73(2): 523-532. [16] Fu Y V, Li A, Chen Y J. 2010. Crustal and upper mantle structure of southeast Tibet from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12323. doi: 10.1029/2009JB007160 [17] 顾功叙, 林庭煌, 时振梁. 1983. 中国地震目录(公元前1831年—公元1969年)[M]. 北京: 科学出版社.Gu G X, Lin T H, Shi Z L. 1983. China Earthquake Catalog, 1831BC-1969AD [M]. Beijing: Science Press (in Chinese). [18] 郭增建, 马宗晋. 1988. 中国特大地震研究[M]. 北京: 地震出版社.Guo Z J, Ma Z J. 1988. A Study of Mega-Earthquakes in China [M]. Beijing: Seismological Press (in Chinese). [19] 黄臣宇, 常利军, 丁志峰. 2021. 喜马拉雅东构造结及周边地区地壳各向异性特征[J]. 地球物理学报, 64(11): 3970-3982Huang C Y, Chang L J, Ding Z F. 2021. Crustal anisotropy in the eastern Himalayan syntaxis and adjacent areas[J]. Chinese Journal of Geophysics, 64(11): 3970-3982 (in Chinese). [20] 黄周传, 吉聪, 吴寒婷, 等. 2021. 青藏高原东南缘地壳结构与变形机制研究进展[J]. 地球与行星物理论评, 52(3): 291-307Huang Z C, Ji C, Wu H T, et al. 2021. Review on the crustal structures and deformations in the southeastern margin of the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics, 52(3): 291-307 (in Chinese). [21] International Seismological Centre. 2022. ISC-GEM Catalogue [BD/OL]. http://www.isc.ac.uk/iscgem/download.php. [22] Kumar S, Wesnousky S G, Rockwell T K, et al. 2006. Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya[J]. Journal of Geophysical Research: Solid Earth, 111: B03304. [23] Kumar S, Wesnousky S G, Jayangondaperumal R, et al. 2010. Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes[J]. Journal of Geophysical Research, 115: B12422. doi: 10.1029/2009JB006789 [24] Kundu A, Hazarika D, Yadav D K, Ghosh P. 2022. Crustal thickness and Poisson’s ratio variations in the Siang Window and adjoining areas of the eastern Himalayan syntaxis[J]. Journal of Asian Earth Sciences, 231(3B): 05225. [25] 李保昆, 刁桂苓, 邹立晔, 等. 2014.1947年西藏朗县东南M7.7大地震震源参数复核[J]. 地震地磁观测与研究, 35(1/2): 85-91Li B K, Diao G L, Zou L Y, et al. 2014. The redetermination of the source parameters of the big earthquake M7.7 in the southeast of Lang county in Tibet in 1947[J]. Seismological and Geomagnetic Observation and Research, 35(1/2): 85-91 (in Chinese). [26] 李保昆, 刁桂苓, 徐锡伟, 等. 2015.1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报, 58(11): 4254-4265Li B K, Diao G L, Xu X W, et al. 2015. Redetermination of the source parameters of the Zayü, Tibet M8.6 earthquake sequence in 1950[J]. Chinese Journal of Geophysics, 58(11): 4254-4265 (in Chinese). [27] 李国辉, 白玲, 丁林, 等. 2020.2019年西藏墨脱MS6.3级地震震源参数及其构造意义[J]. 地球物理学报, 63(3): 1214-1223 doi: 10.6038/cjg2020N0231Li G H, Bai L, Ding L, et al. 2020. Source parameters of the 2019 MS6.3 Medog earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 63(3): 1214-1223 (in Chinese). doi: 10.6038/cjg2020N0231 [28] 李鸿儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展[J]. 地球与行星物理论评, 52(2): 182-193Li H R, Bai L, Zhan H L. 2021. Research progress of Jiali fault activity[J]. Reviews of Geophysics and Planetary Physics, 52(2): 182-193 (in Chinese). [29] Li Y H, Pan J, Wu Q J, et al. 2014. Crustal and uppermost mantle structure of SE Tibetan Plateau from Rayleigh-wave group-velocity measurements[J]. Earthquake Science, 27: 411-419. doi: 10.1007/s11589-014-0090-z [30] Peng M, Jiang M, Li Z, et al. 2016. Complex Indian subduction style with slab fragmentation beneath the eastern Himalayan syntaxis revealed by teleseismic P-wave tomography[J]. Tectonophysics, 667: 77-86. doi: 10.1016/j.tecto.2015.11.012 [31] Priyanka R S, Jayangondaperumal R, Pandey A, et al. 2017. Primary surface rupture of the 1950 Tibet-Assam great earthquake along the eastern Himalayan front, India[J]. Scientific Reports, 7: 5433. doi: 10.1038/s41598-017-05644-y [32] Science and Technology Committee of Tibet Autonomous Region, Tibet Autonomous Region Archives Compiled. 1982. Tibet Earthquake Historical Data Compilation[M]. Lhasa: Tibet People's Publishing House (in Chinese). [33] Science and Technology Committee of Tibet Autonomous Region, Science and Technology Monitoring Department of State Seismological Bureau. 1988. Tibet Zayu Dangxiong Earthquake[M]. Lhasa: Tibet People's Publishing House (in Chinese). [34] Science and Technology Committee of Tibet Autonomous Region, Science and Technology Monitoring Department of State Seismological Bureau. 1989. Tibet Zayu Dangxiong Earthquake Photo Gallery[M]. Chengdu: Chengdu Cartographic Publishing House (in Chinese). [35] Sol S, Meltzer A, Bürgmann R, et al. 2007. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy[J]. Geology, 35: 563-566. [36] Tandon A N. 1955. Direction of faulting in the Great Assam Earthquake of 15 August 1950[J]. Indian Journal of Meteorology and Geophysics. 6, 61-64. [37] Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: new insight from simple experiments with plasticine[J]. Geology, 10 (12): 305-325. [38] Tillotson E. 1951. The great Assam earthquake of August 15, 1950[J]. Nature, 167: 128-130. doi: 10.1038/167128a0 [39] United States Geological Survey. 2022. Search Earthquake Catalog [BD/OL]. https://earthquake.usgs.gov/earthquakes/search/. [40] Wang C Y, Mooney W D, Zhu L, et al. 2019. Deep structure of the eastern Himalayan collision zone: Evidence for underthrusting and delamination in the postcollisional stage[J]. Tectonics, 38(10): 3614-3628. doi: 10.1029/2019TC005483 [41] 西藏自治区科学技术委员会, 西藏自治区档案馆. 1982. 西藏地震史料汇编[M]. 拉萨: 西藏人民出版社. [42] 西藏自治区科学技术委员会, 国家地震局科技监测司. 1988. 西藏察隅当雄大地震[M]. 拉萨: 西藏人民出版社. [43] 西藏自治区科学技术委员会, 国家地震局科技监测司. 1989. 西藏察隅当雄大地震资料图片集[M]. 成都: 成都地图出版社. [44] 谢毓寿, 蔡美彪. 1983. 中国地震历史资料汇编[M]. 北京: 科学出版社.Xie Y S, Cai M B. 1983. China Earthquake Historical Data Compilation[M]. Beijing: Science Press (in Chinese). [45] Yao H J. 2012. Lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography: Recent advances and perspectives[J]. Earthquake Science, 25: 371-383. doi: 10.1007/s11589-012-0863-1 [46] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [47] 尹凤玲, 韩立波, 蒋长胜, 等. 2018.2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响[J]. 地球物理学报, 61(8): 3185-3197 doi: 10.6038/cjg2018L0761Yin F L, Han L B, Jiang C S, et al. 2018. Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults[J]. Chinese Journal of Geophysics, 61(8): 3185-3197(in Chinese). doi: 10.6038/cjg2018L0761 [48] Zhao L F, Xie X B, He J K, et al. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth and Planetary Science Letters, 383: 113-122. doi: 10.1016/j.jpgl.2013.09.038 [49] 钟宁, 郭长宝, 黄小龙, 等. 2021. 嘉黎—察隅断裂带中南段晚第四纪活动性及其古地震记录[J]. 地质学报, 95(12): 3642-3659 doi: 10.3969/j.issn.0001-5717.2021.12.005Zhong N, Guo C B, Huang X L, et al. 2021. Late Quaternary activity and paleoseismic records of the middle south section of the Jiali-Chayu fault[J]. Acta Geologica Sinica, 95(12): 3642-3659 (in Chinese). doi: 10.3969/j.issn.0001-5717.2021.12.005 -
2022-020_附件1.pdf
-