• ISSN 2097-1893
  • CN 10-1855/P

多种面波层析成像方法及其在青藏高原的应用与对比

李伦 蔡晨 付媛媛 方洪健

引用本文: 李伦,蔡晨,付媛媛,方洪健. 2022. 多种面波层析成像方法及其在青藏高原的应用与对比. 地球与行星物理论评(中英文),53(0):1-23
Li L, Cai C, Fu Y Y, Fang H J. 2022. Multiple surface wave tomography methods and their applications to the Tibetan Plateau. Reviews of Geophysics and Planetary Physics, 53(0): 1-23 (in Chinese)

多种面波层析成像方法及其在青藏高原的应用与对比

doi: 10.19975/j.dqyxx.2022-019
基金项目: 第二次青藏高原综合科学考察研究资助项目(2019QZKK0701);国家自然科学基金青年科学基金资助项目(41804043,42106067);广东省自然科学基金面上资助项目(2019A1515011729);广州市科技计划项目(202102020456);广东省引进人才创新创业团队资助项目(2017ZT07Z066)
详细信息
    通讯作者:

    李伦,男,博士,副教授. 主要从事地球内部物理学与地震学研究. E-mail:lilun6@mail.sysu.edu.cn; lilun.cugb@gmail.com

  • 中图分类号: P315

Multiple surface wave tomography methods and their applications to the Tibetan Plateau

Funds: Supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0701), the National Nature Science Foundation of China (Grant Nos. 41804043, 42106067), the Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515011729), the Science and Technology Projects in Guangzhou (Grant No. 202102020456), and the Pearl River Talent Program of Guangdong, China (Grant No. 2017ZT07Z066)
  • 摘要: 面波层析成像是一种广泛应用的获取地壳与上地幔地震波速度与各向异性结构的地球物理方法. 本论文综述了面波层析成像方法的简要历史,阐述了多种常用的面波层析成像方法(双台法、双平面波法、程函方程法、Helmholtz方程法、背景噪声成像法与直接面波层析成像法)的基本原理及其优缺点. 双台法的理论与实际使用简单,但该方法要求震源与两个台站需近似位于同一大圆弧路径,在台站较少且记录时间较短的区域,获取的相速度水平分辨率偏低. 双平面波法能一定程度克服地震波多路径传播与散射对频散的影响,但其对面波波形数据要求较为严格,且通常适用于区域地震台网. 程函方程法和Helmholtz方程法可直接从地震记录同时获取相速度与方位各向异性,计算方便快速,无需经过正演与反演过程,但这两种方法要求台站分布密度要高,不适用于台站间距大且分布稀疏的区域. 与程函方程法相比,Helmholtz方程法不仅考虑了波形的相位,还利用了其振幅,能获取更准确的相速度与方位各向异性信息. 背景噪声成像法的优点是无需震源就可获取高分辨率地壳尺度的成像结果,但通常缺乏长周期面波的信息,难以约束岩石圈深部与软流圈结构. 直接面波层析成像法能直接从台站间的面波频散数据通过反演获取三维剪切波(S波)速度结构与方位各向异性信息,省去了反演相速度图的中间步骤. 此外,我们对比了多种方法在青藏高原获取的相速度结果. 结果表明,多种面波层析成像方法获取的同一周期相速度结果高度吻合,主要特征表现在:在中长周期的相速度图中,青藏高原内部主要以低速为主,而周缘区域(如,柴达木盆地、四川盆地等)以相对高速为主,这表明青藏高原中下地壳与上地幔的流变强度均比其周缘区域要弱,青藏高原的岩石圈变形受控于周缘块体的阻挡. 在青藏高原东南缘,短中周期(20~40 s)的相速度图像指示受强度较大的川滇地块阻挡,青藏高原中下地壳物质以地壳流的方式沿地壳薄弱带(即红河断裂带与鲜水河断裂带)向南挤出逃逸. 此外,祁连山在短中周期(20~40 s)的相速度图中都表现为低速特征,可能与局部地幔物质上涌造成地壳的高温度异常有关. 地震面波层析成像方法(双台法、双平面波法、程函方程法、Helmholtz方程法)与背景噪声层析成像法结合可获取短长周期范围(如,4~200 s)的瑞利波与勒夫波相速度,用于同时构建壳幔速度与各向异性结构. 本文还提出开展地震高阶面波、伴随成像与联合反演等方法综合研究可望获取精度更高与更为可靠的壳幔结构.

     

  • 图  1  (a)双台法的示意图,该方法假设震源与两个台站近似地位于同一个大圆弧路径上,两个台站的面波记录来源于Li和Li(2015);(b)双台法要求地震事件到近台的方位角与近台到远台的方位角之差β 小于3°(修改自Yao et al., 2006

    Figure  1.  (a) Schematic diagram for two-station method. This method assumes that the earthquake and two seismic stations are at same great circle. The two stations' surface waveforms are from Li and Li (2015). (b) The two-station method requires the difference of azimuthal angle β between the earthquake and two seismic stations is less than 3° (modified from Yao et al., 2006)

    图  2  (a)双平面波法示意图;(b)双平面波法的坐标系统设置(Forsyth and Li, 2005),三角形代表参考台站,而圆形代表任意台站;(c)局部笛卡尔坐标系统设置,零点(0, 0)为参考台站位置(修改自Li and Li, 2015

    Figure  2.  (a) Schematic diagram for two-plane-wave surface wave tomography. (b) The coordinate system setting used in two-plane-wave method (Forsyth and Li, 2005). The triangle denotes the seismic stations and circles represents the grid nodes; (c) Localized Cartesian coordinate system setting. Point (0, 0) is assigned as reference seismic station position (modified from Li and Li, 2015)

    图  3  青藏高原中部与东部的构造、地形与地震台站分布图. 棕色方框代表青藏高原中北部(面波相速度对比范围);蓝色方框代表青藏高原东北缘(面波相速度对比范围);红色方框代表青藏高原东南缘(面波相速度对比范围);黑色五角星代表形成峨眉山大火成岩省的峨眉山地幔柱的中心位置. CB:川滇块体;IYS:印支— 雅鲁藏布缝合带;BNS:班公— 怒江缝合带;JRS:金沙江缝合带;KLF:昆仑断裂;HYF:海原断裂;ATF:阿尔金断裂;XRF:鲜水河断裂

    Figure  3.  The tectonic and topographic map of the central-eastern Tibetan Plateau with seismic stations distribution. Brown box represents the region of central-northern Tibet for the comparison of phase velocity maps; The blue and red boxes denote the northeastern and southeastern Tibet, respectively; The black star denotes the center of the Emeishan mantle plume that was suggest to produce the Emeishan large igneous province. CB: the Chuandian Block; IYS: Indus-Yarlung suture zone; BNS: Bangong-Nujiang suture zone; JRS: Jinsha River suture zone; KLF: Kunlun fault; HYF: Haiyuan Fault; ATF: Altyn Tagh Fault. XRF: Xianshui River Fault

    图  4  青藏高原中部与北部双平面法和背景噪声成像获取的瑞利波相速度图像对比. (a-d)双平面波法获取的相速度图像(20 s、30 s、40 s和50 s周期)(数据来自于Li and Fu, 2020);(e-h)背景噪声成像获取的相速度图像(20 s、30 s、40 s和50 s周期)(数据来自于Xie et al., 2013);(i-l)两种方法在相对应的周期获取的相速度图像之差值. TPW代表双平面波法. ANT代表背景噪声层析成像. 左下方的数据代表相速度图像的周期与用于计算速度扰动的平均值

    Figure  4.  The comparisons of Rayleigh-wave phase velocity maps obtained from two-plane-wave method and ambient noise tomography in the central-northern Tibetan Plateau. (a-d) Phase velocity maps at periods of 20 s, 30 s, 40 s and 50 s obtained from two-plane-wave method (data from Li and Fu, 2020); (e-h) Phase velocity maps at periods of 20 s, 30 s, 40 s and 50 s obtained from ambient noise tomography (data from Xie et al, 2013). (i-l) The differences of phase velocities obtained from two methods. TPW represents the two-plane-wave method. ANT denotes ambient noise tomography. The number in the left corner denotes the average phase velocity value used to calculate the velocity perturbations

    图  5  青藏高原中部与北部双平面法和背景噪声成像获取的勒夫波相速度图像对比. (a-c)双平面波法获取的相速度图像(20 s、30 s和40 s周期)(数据来自于Li and Fu, 2020);(d-f)背景噪声成像获取的相速度图像(20 s、30 s和40 s周期)(数据来自于Xie et al., 2013);(g-i)两种方法在相对应的周期获取的相速度图像之差值

    Figure  5.  The comparisons of Love-wave phase velocity maps obtained from two-plane-wave method and ambient noise tomography in the central-northern Tibetan Plateau. (a-c) Phase velocity maps at periods of 20 s, 30 s and 40 s obtained from two-plane-wave method (data from Li and Fu, 2020); (d-f) Phase velocity maps at periods of 20 s, 30 s and 40 s obtained from ambient noise tomography (data from Xie et al, 2013). (g-i) The differences of phase velocities obtained from two methods

    图  6  青藏高原中部与北部双平面法获取的瑞利波与勒夫波长周期(67 s、90 s、100 s和125s)相速度图像(数据来自于Li and Fu, 2020

    Figure  6.  Rayleigh-wave and Love-wave phase velocity maps at periods of 67 s, 90 s, 100 s and 125 s obtained from two-plane-wave method in the central-northern Tibet (data from Li and Fu, 2020)

    图  7  青藏高原东北缘双台法、程函方程法与背景噪声成像法获取的中短周期(20 s、32 s和40 s)瑞利波相速度图像对比. (a-c)背景噪声成像获取的相速度图像(20s、32 s和40 s)(数据来自于Shen et al., 2016);(d-f)双台法波获取的相速度图像(20 s、32 s和40 s)(数据来自于Li Y et al., 2017);(g-i)程函方程法获取的相速度图像(20 s、32 s和40 s)(修改自钟世军等,2017). 蓝色虚线圈代表三种方法观测到青藏高原松潘—甘孜块体与祁连山地区的低速区的一致性特征. ANT代表背景噪声层析成像; TS:双台法;EE:基于程函方程法. 在图7a中,GAP: 阿拉善地块; TP:青藏高原;QL:祁连山;H-Y:贺兰山—银川地堑

    Figure  7.  The comparisons of Rayleigh-wave phase velocity maps at periods of 20 s, 32 s and 40 s obtained from two-station, Eikonal equation, and ambient noise tomography in the central-northern Tibetan Plateau. (a-c) Phase velocity maps at periods of 20 s, 32 s and 40 s obtained from ambient noise tomography (data from Shen et al., 2016); (d-f) Phase velocity maps at periods of 20 s, 32 s and 40 s obtained from two-station (data from Li Y et al, 2017). (g-i) Phase velocity maps at periods of 20 s, 32 s and 40 s obtained from Eikonal equation method (modified from Zhong et al., 2017). Two blue dash circles denote the low velocity zone in the Songpan-Ganzi Terrane, and Qilian Orogenic belt that are consistent in the phase velocity maps three methods. ANT: Ambient noise tomography; TS: Two-station method; EE: Eikonal equation method. In Figure 7a, GAP: Gobi-Alashan Platform; TP: Tibetan Plateau; QL: Qilian Orogenic belt; H-Y: Helanshan-Yinchuan Graben

    图  8  青藏高原东南缘背景噪声成像法、双平面波法、双台法与程函方程法获取的短中周期(20 s和40 s)瑞利波相速度图像对比. (a-b)背景噪声成像获取的相速度图像(20 s和40 s)(数据来自于Shen et al., 2016);其中,黑色虚线代表峨眉山大火成岩省的内带和中带;(c-d)双平面波法波获取的相速度图像(20 s和40 s)(数据来自于Fu et al., 2017);(e-f)双台法波获取的相速度图像(20 s和40 s)(修改自潘佳铁等,2015);(g-h)程函方程法获取的相速度图像(20 s和36 s)(修改自王怀富等,2020). 白色虚线圈代表两种方法观测到的一致性特征. ANT:背景噪声层析成像;TPW:双平面波法;TS:双台法;EE:程函方程法

    Figure  8.  The comparisons of Rayleigh-wave phase velocity maps at periods of 20 s and 40 s obtained from ambient noise tomography, two-plane-wave method, two-station method, and Eikonal equation method in the southeastern Tibetan Plateau. (a-b) Phase velocity maps at periods of 20 s and 40 s obtained from ambient noise tomography (data from Shen et al., 2016); Black dashed line denoted the inner and intermediate zones of Emeishan large igneous province; (c-d) Phase velocity maps at periods of 20 s and 40 s obtained from two-plane-wave method (data from Fu et al., 2017). (e-f) Phase velocity maps at periods of 20 s and 40 s obtained from two-station method (modified from Pan et al., 2015). (g-h) Phase velocity maps at periods of 20 s and 36 s obtained from Eikonal equation method (modified from Wang et al., 2020). White dashed circle denotes the consistent features from multiple methods. ANT: Ambient noise tomography; TPW: Two-plane-wave method; TS: Two-station method; EE: Eikonal equation method

    图  9  直接面波层析成像法获取的地壳与上地幔顶部三维S波速度模型及方位各向异性(修改自Liu et al., 2019

    Figure  9.  Three-dimensional S wave velocity model and corresponding azimuthal anisotropy in the crust and uppermost mantle obtained from direct surface wave tomography (modified from Liu et al., 2019)

  • [1] Agius M R, Lebedev S. 2013. Tibetan and Indian lithospheres in the upper mantle beneath Tibet: Evidence from broadband surface-wave dispersion[J]. Geochemistry, Geophysics, Geosystems, 14(10): 4260-4281.
    [2] Aki K, Lee W H K. 1976. Determination of three‐dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model[J]. Journal of Geophysical research, 81(23): 4381-4399. doi: 10.1029/JB081i023p04381
    [3] Aki K, Christoffersson A, Husebye E S. 1977. Determination of the three‐dimensional seismic structure of the lithosphere[J]. Journal of Geophysical Research, 82(2): 277-296. doi: 10.1029/JB082i002p00277
    [4] Anderson D L. 1987. Global Mapping of the Uppermantle by Surface Wave Tomography[M]//Fuchs K, Froidevaux C. Geodynamics Series. American Geophysical Union (AGU).
    [5] Bao X, Song X, Li J. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 417: 132-141. doi: 10.1016/j.jpgl.2015.02.024
    [6] Bao X, Song X, Eaton D W, et al. 2020. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophysical Research Letters, 47(3): e2019GL085721.
    [7] Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x
    [8] Bourjot L, Romanowicz B. 1992. Crust and upper mantle tomography in Tibet using surface waves[J]. Geophysical Research Letters, 19(9): 881-884. doi: 10.1029/92GL00261
    [9] Brandon C, Romanowicz B. 1986. A “no‐lid” zone in the central Chang‐Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh waves[J]. Journal of Geophysical Research: Solid Earth, 91(B6): 6547-6564. doi: 10.1029/JB091iB06p06547
    [10] Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the seismological Society of America, 95(6): 2081-2092. doi: 10.1785/0120050077
    [11] Brune J N, Nafe J E, Oliver J E. 1960. A simplified method for the analysis and synthesis of dispersed wave trains[J]. Journal of Geophysical Research, 65(1): 287-303. doi: 10.1029/JZ065i001p00287
    [12] Cai C, Wiens D A, Shen W, Eimer M. 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data[J]. Nature, 563(7731): 389-392. doi: 10.1038/s41586-018-0655-4
    [13] Ceylan S, Ni J, Chen J Y, et al. 2012. Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 117(B11): B11303.
    [14] Chen C W, Li A. 2012. Shear wave structure in the Grenville Province beneath the lower Great Lakes region from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 117(B1): B01303.
    [15] Chen G Y, Zeng R S, Wu F T, Su X L. 1993. The phase velocities of Rayleigh waves and the lateral variation of lithospheric structure in Tibetan Plateau[J]. Acta Seismologica Sinica, 6(2): 289-297. doi: 10.1007/BF02650941
    [16] Chen M, Niu F, Tromp J, et al. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature communications, 8(1): 1-10. doi: 10.1038/s41467-016-0009-6
    [17] Chen Y, Badal J, Hu J. 2010. Love and Rayleigh wave tomography of the Qinghai-Tibet Plateau and surrounding areas[J]. Pure and Applied Geophysics, 167(10): 1171-1203. doi: 10.1007/s00024-009-0040-1
    [18] Curtis A, Woodhouse J H. 1997. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion[J]. Journal of Geophysical Research: Solid Earth, 102(B6): 11789-11813. doi: 10.1029/96JB03182
    [19] Dave R, Li A. 2016. Destruction of the Wyoming craton: Seismic evidence and geodynamic processes[J]. Geology, 44(11): 883-886. doi: 10.1130/G38147.1
    [20] Deng Y, Shen W, Xu T, Ritzwoller M H. 2015. Crustal layering in northeastern Tibet: A case study based on joint inversion of receiver functions and surface wave dispersion[J]. Geophysical Journal International, 203(1): 692-706. doi: 10.1093/gji/ggv321
    [21] Deng Y, Li J, Song X, Zhu L. 2018. Joint inversion for lithospheric structures: Implications for the growth and deformation in northeastern Tibetan Plateau[J]. Geophysical Research Letters, 45(9): 3951-3958. doi: 10.1029/2018GL077486
    [22] Dong S, Li L, Zhao L, Shen X, et al. 2022. Seismic evidence for fluid‐driven pore pressure increase and its links with induced seismicity in the Xinfengjiang Reservoir, South China[J]. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB023548.
    [23] Dorman J, Ewing M, Oliver J. 1960. Study of shear-velocity distribution in the upper mantle by mantle Rayleigh waves[J]. Bulletin of the Seismological Society of America, 50(1): 87-115.
    [24] Dziewonski A M, Hager B H, O'Connell R J. 1977. Large‐scale heterogeneities in the lower mantle[J]. Journal of Geophysical Research, 82(2): 239-255. doi: 10.1029/JB082i002p00239
    [25] Evernden J F. 1953. Direction of approach of Rayleigh waves and related problems: (Part I)[J]. Bulletin of the Seismological Society of America, 43(4): 335-374. doi: 10.1785/BSSA0430040335
    [26] Ewing M, Press F. 1954. An investigation of mantle Rayleigh waves[J]. Bulletin of the Seismological Society of America, 44(2A): 127-147. doi: 10.1785/BSSA04402A0127
    [27] 范莉苹, 吴建平, 房立华, 王未来. 2015. 青藏高原东南缘瑞利波群速度分布特征及其构造意义探讨[J]. 地球物理学报, 58(5): 1555-1567 doi: 10.6038/cjg20150509

    Fan L P, Wu J P, Fang L H, Wang W L. 2015. The characteristic of Rayleigh wave group velocities in the southeastern margin of the Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 58(5): 1555-1567(in Chinese). doi: 10.6038/cjg20150509
    [28] Fang H, Yao H, Zhang H, et al. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application[J]. Geophysical Journal International, 201(3): 1251-1263. doi: 10.1093/gji/ggv080
    [29] Feng C C, Teng T L. 1983. Three‐dimensional crust and upper mantle structure of the Eurasian continent[J]. Journal of Geophysical Research: Solid Earth, 88(B3): 2261-2272. doi: 10.1029/JB088iB03p02261
    [30] Feng M, An M, Mechie J, et al. 2020. Lithospheric structures of and tectonic implications for the central–east Tibetan plateau inferred from joint tomography of receiver functions and surface waves[J]. Geophysical Journal International, 223(3): 1688-1707. doi: 10.1093/gji/ggaa403
    [31] Forsyth D W, Webb S C, Dorman L M, Shen Y. 1998. Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise[J]. Science, 280(5367): 1235-1238. doi: 10.1126/science.280.5367.1235
    [32] Forsyth D W, Li A. 2005. Array analysis of two‐dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference[J]. Seismic Earth: Array Analysis of Broadband Seismograms, 157: 81-97.
    [33] Forsyth D W, Li A, Levander A, Nolet G. 2005. Array Analysis of Two-dimensional Variations in Surface Wave Phase Velocity and Azimuthal Anisotropy in the Presence of Multipathing Interference[M]//Levander A, Nolet G. Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union (AGU) , 157: 81.
    [34] Friederich W, Wielandt E. 1995. Interpretation of seismic surface waves in regional networks: joint estimation of wavefield geometry and local phase velocity. Method and numerical tests[J]. Geophysical Journal International, 120(3): 731-744. doi: 10.1111/j.1365-246X.1995.tb01849.x
    [35] 付媛媛, 肖卓. 2020. 青藏高原东北缘及邻区 Rayleigh 和 Love 波背景噪声层析成像[J]. 地球物理学报, 63(3): 860-870

    Fu Y Y, Xiao Z. 2020. Ambient noise tomography of Rayleigh and Love wave in northeast Tibetan Plateau and adjacent regions[J]. Chinese Journal of Geophysics 63(3): 860-870 (in Chinese). doi: 10.6038/cjg2020N0239
    [36] Fu Y V, Li A, Chen Y J. 2010. Crustal and upper mantle structure of southeast Tibet from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12323. doi: 10.1029/2009JB007160
    [37] Fu Y V, Gao Y, Li A, et al. 2016. Origin of intraplate volcanism in northeast China from Love wave constraints[J]. Journal of Geophysical Research: Solid Earth, 121(11): 8099-8112. http:// dx. doi.org/10.1002/2016JB013305.
    [38] Fu Y V, Gao Y, Li A, et al. 2017. Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 122(6): 4631-4644. https://doi.org/10.1002/2016JB013096
    [39] Fu Y V, Li L, Xiao Z. 2019. Lithospheric SH wave velocity structure beneath the northeastern Tibetan plateau from Love wave tomography[J]. Journal of Geophysical Research: Solid Earth, 124(9): 9682-9693.https://doi.org/10.1029/ 2019JB017788 doi: 10.1029/2019JB017788
    [40] Gouedard P, Stehly L, Brenguier F, et al. 2008. Cross‐correlation of random fields: Mathematical approach and applications[J]. Geophysical Prospecting, 56(3): 375-393. doi: 10.1111/j.1365-2478.2007.00684.x
    [41] Guo Z, Chen Y J. 2017. Mountain building at northeastern boundary of Tibetan Plateau and craton reworking at Ordos block from joint inversion of ambient noise tomography and receiver functions[J]. Earth and Planetary Science Letters, 463: 232-242. doi: 10.1016/j.jpgl.2017.01.026
    [42] 黄忠贤, 李红谊, 胥颐. 2014. 中国西部及邻区岩石圈S波速度结构面波层析成像[J]. 地球物理学报, 57(12): 3994-4004 doi: 10.6038/cjg20141212

    Huang Z X, Li H Y, Xu Y. 2014. Lithospheric S-wave velocity structure of west China and neighboring areas from surface wave tomography[J]. Chinese Journal of Geophysics, 57(12): 3994-4004 (in Chinese). doi: 10.6038/cjg20141212
    [43] Jiang C, Yang Y, Zheng Y. 2014. Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomography[J]. Earth and Planetary Science Letters, 406: 81-92. doi: 10.1016/j.jpgl.2014.08.040
    [44] Jiang M, Zhou S, Sandvol E, et al. 2011. 3-D lithospheric structure beneath southern Tibet from Rayleigh-wave tomography with a 2-D seismic array[J]. Geophysical Journal International, 185(2): 593-608. doi: 10.1111/j.1365-246X.2011.04979.x
    [45] Jin G. 2015. Surface-wave analysis and its application to determining crustal and mantle structure beneath regional arrays[D]. New York: Columbia University.
    [46] Jobert N, Journet B, Jobert G, et al. 1985. Deep structure of southern Tibet inferred from the dispersion of Rayleigh waves through a long-period seismic network[J]. Nature, 313(6001): 386-388. doi: 10.1038/313386a0
    [47] Jordan T H. 2020. Frank Press, A life of magnitude[J]. Proceedings of the National Academy of Sciences, 117(17): 9138-9141. doi: 10.1073/pnas.2004812117
    [48] Julia J, Ammon C J, Herrmann R B, Correig A M. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophysical Journal International, 143(1): 99-112.
    [49] Knopoff L, Mueller S, Pilant W L. 1966. Structure of the crust and upper mantle in the Alps from the phase velocity of Rayleigh waves[J]. Bulletin of the Seismological Society of America, 56(5): 1009-1044. doi: 10.1785/BSSA0560051009
    [50] Knopoff L. 1972. Observation and inversion of surface-wave dispersion[J]. Tectonophysics, 13(1-4): 497-519. doi: 10.1016/0040-1951(72)90035-2
    [51] Kovach R L. 1978. Seismic surface waves and crustal and upper mantle structure[J]. Reviews of Geophysics, 16(1): 1-13. doi: 10.1029/RG016i001p00001
    [52] Kuo J, Brune J, Major M. 1962. Rayleigh wave dispersion in the Pacific Ocean for the period range 20 to 140 seconds[J]. Bulletin of the Seismological Society of America, 52(2): 333-357. doi: 10.1785/BSSA0520020333
    [53] Larose E, Margerin L, Derode A, et al. 2006. Correlation of random wavefields: An interdisciplinary review[J]. Geophysics, 71(4): SI11-SI21. doi: 10.1190/1.2213356
    [54] Legendre C P, Deschamps F, Zhao L, Chen Q F. 2015. Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet[J]. Scientific Reports, 5(1): 1-7. doi: 10.9734/JSRR/2015/14076
    [55] Laske G. 1995. Global observation of off-great-circle propagation of long-period surface waves[J]. Geophysical Journal International, 123(1): 245-25
    [56] Li A, Detrick R S. 2003. Azimuthal anisotropy and phase velocity beneath Iceland: implication for plume-ridge interaction[J]. Earth and Planetary Science Letters, 214(1-2): 153-165. doi: 10.1016/S0012-821X(03)00382-0
    [57] Li A, Forsyth D W, Fischer K M. 2003. Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion[J]. Journal of Geophysical Research, 108(B8): 2362. 10.1029/2002JB002259 doi: 10.1029/2002JB002259
    [58] Li A, Forsyth D W, Fischer K M, et al. 2005. Rayleigh Wave Constraints on Shear-Wave Structure and Azimuthal Anisotropy Beneath the Colorado Rocky Mountains[M]//The Rocky Mountain Region—An Evolving Lithosphere: Tectonics, Geochemistry, and Geophysics, AGU Monograph, 154.
    [59] Li A. 2011. Shear wave model of southern Africa from regional Rayleigh wave tomography with 2-D sensitivity kernels[J]. Geophysical Journal International, 185(2): 832-844. doi: 10.1111/j.1365-246X.2011.04971.x
    [60] Li A, Li L. 2015. Love wave tomography in southern Africa from a two-plane-wave inversion method[J]. Geophysical Journal International, 202(2): 1005-1020. doi: 10.1093/gji/ggv203
    [61] Li H, Su W, Wang C Y, Huang Z. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet[J]. Earth and Planetary Science Letters, 282(1-4): 201-211. doi: 10.1016/j.jpgl.2009.03.021
    [62] Li H, Su W, Wang C Y, et al. 2010. Ambient noise Love wave tomography in the eastern margin of the Tibetan plateau[J]. Tectonophysics, 491(1-4): 194-204. doi: 10.1016/j.tecto.2009.12.018
    [63] Li H, Shen Y, Huang Z, et al. 2014. The distribution of the mid‐to‐lower crustal low‐velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 119(3): 1954-1970. doi: 10.1002/2013JB010374
    [64] Li J, Song X, Zhu L, Deng Y. 2017. Joint inversion of surface wave dispersions and receiver functions with P velocity constraints: Application to Southeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 122(9): 7291-7310. doi: 10.1002/2017JB014135
    [65] Li L, Li A, Shen Y, et al. 2013. Shear wave structure in the northeastern Tibetan Plateau from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 118(8): 4170-4183. doi: 10.1002/jgrb.50292
    [66] Li L, Li A, Murphy M A, Fu Y V. 2016. Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity[J]. Geochemistry, Geophysics, Geosystems, 17(9): 3674-3690.
    [67] Li L, Fu Y V. 2020. Surface‐wave tomography of eastern and central Tibet from two‐plane‐wave inversion: Rayleigh‐Wave and Love‐Wave phase velocity maps[J]. Bulletin of the Seismological Society of America, 110(3): 1359-1371. doi: 10.1785/0120190199
    [68] Li L, Murphy M A, Gao R. 2020. Subduction of the Indian plate and the nature of the crust beneath western Tibet: Insights from seismic imaging[J]. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019684.
    [69] Li L, Zhang X, Liao J, et al. 2021. Geophysical constraints on the nature of lithosphere in central and eastern Tibetan plateau[J]. Tectonophysics, 804: 228722. doi: 10.1016/j.tecto.2021.228722
    [70] Li M, Zhang S, Wang F, et al. 2016. Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions[J]. Journal of Asian Earth Sciences, 117: 52-63. doi: 10.1016/j.jseaes.2015.12.002
    [71] Li X, Li H, Shen Y, et al. 2014. Crustal velocity structure of the northeastern Tibetan Plateau from ambient noise surface‐wave tomography and its tectonic implications[J]. Bulletin of the Seismological Society of America, 104(3): 1045-1055. doi: 10.1785/0120130019
    [72] Li Y, Wu Q, Zhang R, et al. 2008. The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data[J]. Physics of the Earth and Planetary Interiors, 170(1-2): 134-146. doi: 10.1016/j.pepi.2008.08.006
    [73] Li Y, Wu Q, Pan J, et al. 2013. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography[J]. Earth and Planetary Science Letters, 377: 367-377.
    [74] Li Y, Pan J, Wu Q, Ding Z. 2017. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography[J]. Geophysical Journal International, 210(2): 570-584. doi: 10.1093/gji/ggx181
    [75] Liang X, Tian X, Zhu G, et al. 2016. SANDWICH: A 2D broadband seismic array in central Tibet[J]. Seismological Research Letters, 87(4): 864-873. doi: 10.1785/0220150243
    [76] Liang Y, Li L, Liao J, Gao R. 2020. Interaction of the Indian and Asian plates under the Pamir and Hindu-Kush regions: Insights from 3-D shear wave velocity and anisotropic structures[J]. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009041.
    [77] Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 173(1): 281-298. doi: 10.1111/j.1365-246X.2008.03720.x
    [78] Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophysical Journal International, 177(3): 1091-1110. doi: 10.1111/j.1365-246X.2009.04105.x
    [79] Lin F C, Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. Geophysical Journal International, 186(3): 1104-1120. doi: 10.1111/j.1365-246X.2011.05070.x
    [80] Lin F C, Schmandt B, Tsai V C. 2012. Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust[J]. Geophysical Research Letters, 39(12): L12303.
    [81] Liu C, Yao H, Yang H Y, et al. 2019. Direct inversion for three‐dimensional shear wave speed azimuthal anisotropy based on surface wave ray tracing: Methodology and application to Yunnan, southwest China[J]. Journal of Geophysical Research: Solid Earth, 124(11): 11394-11413. doi: 10.1029/2018JB016920
    [82] Liu Q, Gu Y J. 2012. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 566: 31-66.
    [83] Liu Q Y, Van Der Hilst R D, Li Y, et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 7(5): 361-365.
    [84] Liu Y, Li L, van Wijk J, et al. 2021. Surface-wave tomography of the Emeishan large igneous province (China): Magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction[J]. Geology, 49(9): 1032-1037. doi: 10.1130/G49055.1
    [85] Lobkis O I, Weaver R L. 2001. On the emergence of the Green's function in the correlations of a diffuse field[J]. The Journal of the Acoustical Society of America, 110(6): 3011-3017.
    [86] 鲁来玉, 何正勤, 丁志峰, 王椿镛. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报, 57(3): 822-836 doi: 10.6038/cjg20140312

    Lu L Y, He Z Q, Ding Z F, Wang C Y. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics, 57(3): 822-836(in Chinese). doi: 10.6038/cjg20140312
    [87] Lü Z, Lei J. 2018. Shear-wave velocity structure beneath the central Tien Shan (NW China) from seismic ambient noise tomography[J]. Journal of Asian Earth Sciences, 163: 80-89. doi: 10.1016/j.jseaes.2018.05.024
    [88] McEvilly TV. 1964. Central US crust—upper mantle structure from Love and Rayleigh wave phase velocity inversion[J]. Bulletin of the Seismological Society of America, 54(6A): 1997-2015. doi: 10.1785/BSSA05406A1997
    [89] Meier T, Dietrich K, Stöckhert B, Harjes H P. 2004. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications[J]. Geophysical Journal International, 156(1): 45-58.
    [90] Miller M S, Levander A, Niu F, Li A. 2009. Upper mantle structure beneath the Caribbean‐South American plate boundary from surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 114(B1): B01312.
    [91] Montagner J P. 1985. Seismic anisotropy of the Pacific Ocean inferred from long-period surface waves dispersion[J]. Physics of the Earth and Planetary Interiors, 38(1): 28-50. doi: 10.1016/0031-9201(85)90120-7
    [92] Nafe J E, Brune J N. 1960. Observations of phase velocity for Rayleigh waves in the period range 100 to 400 seconds[J]. Bulletin of the Seismological Society of America, 50(3): 427-439. doi: 10.1785/BSSA0500030427
    [93] Nakanishi I, Anderson D L. 1982. Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion[J]. Bulletin of the Seismological Society of America, 72(4): 1185-1194. doi: 10.1785/BSSA0720041185
    [94] Nakanishi I, Anderson D L. 1983. Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: 1. Analysis of great circle phase velocities[J]. Journal of Geophysical Research: Solid Earth, 88(B12): 10267-10283. doi: 10.1029/JB088iB12p10267
    [95] Nakanishi I, Anderson D L. 1984. Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy—II. Analysis by the single-station method[J]. Geophysical Journal International, 78(2): 573-617. doi: 10.1111/j.1365-246X.1984.tb01964.x
    [96] Nataf H C, Nakanishi I, Anderson D L. 1984. Anisotropy and shear‐velocity heterogeneities in the upper mantle[J]. Geophysical Research Letters, 11(2): 109-112. doi: 10.1029/GL011i002p00109
    [97] Nataf H C, Nakanishi I, Anderson D L. 1986. Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy: 3. Inversion[J]. Journal of Geophysical Research: Solid Earth, 91(B7): 7261-7307. doi: 10.1029/JB091iB07p07261
    [98] Nolet G. 2008. A Breviary of Seismic Tomography[M]. Cambridge University Press.
    [99] Nunn C, Roecker S W, Tilmann F J, et al. 2014. Imaging the lithosphere beneath NE Tibet: teleseismic P and S body wave tomography incorporating surface wave starting models[J]. Geophysical Journal International, 196(3): 1724-1741. doi: 10.1093/gji/ggt476
    [100] Oliver J, Ewing M. 1957. Higher modes of continental Rayleigh waves[J]. Bulletin of the Seismological Society of America, 47(3): 187-204. doi: 10.1785/BSSA0470030187
    [101] 潘佳铁, 李永华, 吴庆举, 丁志峰, 2015. 青藏高原东南部地区瑞雷波相速度层析成像[J]. 地球物理学报, 58(11): 3993-4006

    Pan J T, Li Y H, Wu Q J, Ding Z F. 2015. Phase velocity maps of Rayleigh waves in the southeast Tibetan Plateau[J]. Chinese Journal of Geophysics, 58(11): 3993-4006 (in Chinese). doi: 10.6038/cjg20151109
    [102] Pandey S, Yuan X, Debayle E, et al. 2015. Depth‐variant azimuthal anisotropy in Tibet revealed by surface wave tomography[J]. Geophysical Research Letters, 42(11): 4326-4334. doi: 10.1002/2015GL063921
    [103] Poli P, Campillo M, Pedersen H, LAPNET Working Group. 2012. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise[J]. Science, 338(6110): 1063-1065. doi: 10.1126/science.1228194
    [104] Poli P, Boue P, Campillo M, et al. 2015. Sounding the inner core with ambient seismic noise correlations[C]// EGU General Assembly Conference Abstracts, 6406.
    [105] Press F, Ewing M, Oliver J. 1956. Crustal structure and surface-wave dispersion in Africa[J]. Bulletin of the Seismological Society of America, 46(2): 97-103. doi: 10.1785/BSSA0460020097
    [106] Rau C J, Forsyth D W. 2011. Melt in the mantle beneath the amagmatic zone, southern Nevada[J]. Geology, 39(10): 975-978. doi: 10.1130/G32179.1
    [107] Rawlinson N, Sambridge M. 2003. Seismic traveltime tomography of the crust and lithosphere[J]. Advances in Geophysics, 46: 81-199.
    [108] Rawlinson N, Pozgay S, Fishwick S. 2010. Seismic tomography: A window into deep Earth[J]. Physics of the Earth and Planetary Interiors, 178(3-4): 101-135. doi: 10.1016/j.pepi.2009.10.002
    [109] Riahi A, Shomali Z H, Obermann A, Kamayestani A. 2021. Simultaneous retrieval of body and surface waves in the Dehdasht area, Iran, from the seismic ambient field and the observation of spurious artefacts[J]. Geophysical Journal International. 227(2): 1193-203. doi: 10.1093/gji/ggab267
    [110] Ritzwoller M H, Lin F C, Shen W. 2011. Ambient noise tomography with a large seismic array[J]. Comptes Rendus Geoscience, 343(8-9): 558-570. doi: 10.1016/j.crte.2011.03.007
    [111] Romanowicz B. 2003. Global mantle tomography: Progress status in the past 10 years[J]. Annual Review of Earth and Planetary Sciences, 31(1): 303-328. doi: 10.1146/annurev.earth.31.091602.113555
    [112] Romanowicz B A. 1982. Constraints on the structure of the Tibet Plateau from pure path phase velocities of Love and Rayleigh waves[J]. Journal of Geophysical Research: Solid Earth, 87(B8): 6865-6883. doi: 10.1029/JB087iB08p06865
    [113] Sato Y. 1955. Analysis of dispersed surface waves by means of Fourier transform I[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 33: 33-48.
    [114] Satô Y. 1958. Attenuation, dispersion, and the wave guide of the G wave[J]. Bulletin of the Seismological Society of America, 48(3): 231-251. doi: 10.1785/BSSA0480030231
    [115] Schutt D L, Dueker K,Yuan H. 2008. Crust and upper mantle velocity structure of the Yellowstone hot spot and surroundings[J]. Journal of Geophysical Research: Solid Earth, 113(B3): B03310.
    [116] Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 31(7): L07614.
    [117] Shapiro N M, Campillo M, Stehly L, Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615-1618. doi: 10.1126/science.1108339
    [118] Shen W, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 206(2): 954-979. doi: 10.1093/gji/ggw175
    [119] Shirzad T, Shomali Z H. 2016. Extracting stable seismic core phases from ambient seismic noise[J]. Bulletin of the Seismological Society of America, 106(1): 307-312. doi: 10.1785/0120150031
    [120] 苏伟, 王椿镛, 黄忠贤. 2008. 青藏高原及邻区的Rayleigh 面波的方位各向异性[J]. 中国科学: D 辑, 38(6): 674-682.

    Su W, Wang C Y, Huang Z X. 2008. Azimuthal anisotropy of Rayleigh waves beneath the Tibetan Plateau and adjacent areas[J]. Science in China Series D: Earth Sciences, 51(12): 1717-1725 (in Chinese). doi: 10.1007/s11430-008-0137-x
    [121] Sun X, Song X, Zheng S, et al. 2010. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography[J]. Earthquake Science, 23(5): 449-463. doi: 10.1007/s11589-010-0744-4
    [122] Takeuchi H, Press F, Kobayashi N. 1959. Rayleigh-wave evidence for the low-velocity zone in the mantle[J]. Bulletin of the Seismological Society of America, 49(4): 355-364. doi: 10.1785/BSSA0490040355
    [123] Tanimoto T, Anderson D L. 1984. Mapping convection in the mantle[J]. Geophysical Research Letters, 11(4): 287-290.
    [124] Tanimoto T, Anderson D L. 1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s[J]. Journal of Geophysical Research: Solid Earth, 90(B2):1842-1858.
    [125] 滕吉文, 杨顶辉, 田小波, 等. 2019. 青藏高原深部地球物理探测70年[J]. 中国科学: 地球科学, 49(10): 1546-1564 doi: 10.1360/SSTe-2019-0132

    Teng J W, Yang D H, Tian X B, et al. 2019. Geophysical investigation progresses of the Qinghai-Tibetan Plateau in the past 70 years[J]. Science China Earth Sciences, 49: 1546-1564 (in Chinese). DOI: 10.1360/SSTe-2019-0132
    [126] Tromp J, Komatitsch D, Liu Q. 2008. Spectral-element and adjoint methods in seismology[J]. Communications in Computational Physics, 3(1): 1-32.
    [127] 王怀富, 吴建平, 周仕勇, 等. 2020. 青藏高原东南缘基于程函方程的面波方位各向异性研究[J]. 地球物理学报, 63(3): 1070-1084 doi: 10.6038/cjg2020N0104

    Wang H F, Wu J P, Zhou S Y, et al. 2020. Rayleigh wave azimuthal anisotropy in the Southeastern Tibetan Plateau from Eikonal tomography[J]. Chinese Journal of Geophysics, 63(3): 1070-1084(in Chinese). doi: 10.6038/cjg2020N0104.
    [128] Wang J N, Wu G X, Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher N, W Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3708-3723. doi: 10.1029/2018JB016595
    [129] Wang K, Lu L, Maupin V, et al. 2020. Surface wave tomography of northeastern Tibetan Plateau using beamforming of seismic noise at a dense array[J]. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018416.
    [130] Wang Q, Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences, 57(10): 2532-2542. doi: 10.1007/s11430-014-4908-2
    [131] 王琼, 高原, 石玉涛. 2015. 青藏高原东南缘基于背景噪声的 Rayleigh 面波方位各向异性研究[J]. 地球物理学报, 58(11): 4068-4078 doi: 10.6038/cjg20151115

    Wang Q, Gao Y, Shi Y T. 2015. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise[J]. Chinese Journal of Geophysics, 58(11): 4068-4078(in Chinese). doi: 10.6038/cjg20151115
    [132] 王琼, 高原. 2018. 基于背景噪声研究青藏高原东北缘瑞利波相速度和方位各向异性[J]. 地球物理学报, 61(7): 2760-2775 doi: 10.6038/cjg2018L0509

    Wang Q, Gao Y. 2018. Rayleigh wave phase velocity and azimuthal anisotropy in the northeastern margin of the Tibetan plateau derived from seismic ambient noise[J]. Chinese Journal of Geophysics, 61(7): 2760-2775(in Chinese). doi: 10.6038/cjg2018L0509
    [133] Weeraratne D S, Forsyth D W, Fischer K M, Nyblade A A. 2003. Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 108(B9): 2427.
    [134] Weeraratne D S, Forsyth D W, Yang Y, Webb S C. 2007. Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific[J]. Journal of Geophysical Research: Solid Earth, 112(B6): B06303.
    [135] Wei X, Jiang M, Liang X, et al. 2017. Limited southward underthrusting of the Asian lithosphere and material extrusion beneath the northeastern margin of Tibet, inferred from teleseismic Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 122(9): 7172-7189. doi: 10.1002/2016JB013832
    [136] Wessel P, Smith W H, Scharroo R, et al. 2013. Generic mapping tools: Improved version released[J]. Eos, Transactions American Geophysical Union, 94(45): 409-410.
    [137] Woodhouse J H, Dziewonski A M. 1984. Mapping the upper mantle: Three‐dimensional modeling of Earth structure by inversion of seismic waveforms[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5953-5986. doi: 10.1029/JB089iB07p05953
    [138] Wu F T, Levshin A. 1994. Surface-wave group velocity tomography of East Asia[J]. Physics of the Earth and Planetary Interiors, 84(1-4): 59-77. doi: 10.1016/0031-9201(94)90034-5
    [139] Wu Q, Zheng X, Pan J, et al. 2009. Measurement of interstation phase velocity by wavelet transformation[J]. Earthquake Science, 22(4): 425-429. doi: 10.1007/s11589-009-0425-3
    [140] Wu T, Zhang S, Li M, et al. 2016. Two crustal flowing channels and volcanic magma migration underneath the SE margin of the Tibetan Plateau as revealed by surface wave tomography[J]. Journal of Asian Earth Sciences, 132: 25-39. doi: 10.1016/j.jseaes.2016.09.017
    [141] Xiao Z, Fuji N, Iidaka T, et al. 2020. Seismic structure beneath the Tibetan plateau from iterative finite‐frequency tomography based on ChinArray: New insights into the Indo‐Asian collision[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018344.
    [142] Xie J, Ritzwoller M H, Shen W, et al. 2013. Crustal radial anisotropy across eastern Tibet and the western Yangtze craton[J]. Journal of Geophysical Research: Solid Earth, 118(8): 4226-4252. doi: 10.1002/jgrb.50296
    [143] Xie J, Yang Y, Ni S. 2016. On the accuracy of long-period Rayleigh waves extracted from ambient noise[J]. Geophysical Journal International, 206(1): 48-55. doi: 10.1093/gji/ggw137
    [144] Xu H, Beghein C. 2019. Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach[J]. Geophysical Journal International, 218(1): 333-353. doi: 10.1093/gji/ggz133
    [145] 徐义贤, 罗银河. 2015. 噪声地震学方法及其应用[J]. 地球物理学报, 58(8):2618-2636. doi: 10.6038/cjg20150803

    Xu Y X, Luo Y H. 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics, 58(8): 2618-2636(in Chinese). doi: 10.6038/cjg20150803
    [146] Yang Y, Forsyth D W. 2006. Rayleigh wave phase velocities, small‐scale convection, and azimuthal anisotropy beneath southern California[J]. Journal of Geophysical Research: Solid Earth, 111(B7): B07306.
    [147] Yang Y, Li A, Ritzwoller M H. 2008. Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography[J]. Geophysical Journal International, 174(1): 235-248. doi: 10.1111/j.1365-246X.2008.03779.x
    [148] Yang Y, Zheng Y, Chen J, et al. 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochemistry, Geophysics, Geosystems, 11(8): Q08010.
    [149] Yang Y, Ritzwoller M H, Zheng Y, et al. 2012. A synoptic view of the distribution and connectivity of the mid‐crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 117(B4): B04303.
    [150] Yao H, Xu G, Zhu L, Xiao X. 2005. Mantle structure from two-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions[J]. Physics of the Earth and Planetary Interiors, 148(1): 39-54. doi: 10.1016/j.pepi.2004.08.006
    [151] Yao H, van Der Hilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophysical Journal International, 166(2): 732-744. doi: 10.1111/j.1365-246X.2006.03028.x
    [152] Yao H, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 173(1): 205-219. doi: 10.1111/j.1365-246X.2007.03696.x
    [153] Yao H, Van Der Hilst R D, Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12307. doi: 10.1029/2009JB007142
    [154] 张明辉, 武振波, 马立雪, 等. 2020. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 35(2): 495-511 doi: 10.6038/pg2020EE0022

    Zhang M H, Wu Z B, Ma L X, et al. 2020. Research progress of passive source detection technology based on short-period dense seismic array[J]. Progress in Geophysics, 35(2): 495-511(in Chinese). doi: 10.6038/pg2020EE0022.
    [155] Zhang Q, Sandvol E, Ni J, et al. 2011. Rayleigh wave tomography of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 304(1-2): 103-112. doi: 10.1016/j.jpgl.2011.01.021
    [156] Zhang X, Curtis A, Galetti E, de Ridder S. 2018. 3-D Monte Carlo surface wave tomography[J]. Geophysical Journal International, 215: 1644–1658. doi: 10.1093/gji/ggy362
    [157] Zhang Y, Li H, Huang Y, et al. 2020. Shallow structure of the Longmen Shan fault zone from a high‐density, short‐period seismic array[J]. Bulletin of the Seismological Society of America, 110(1): 38-48. doi: 10.1785/0120190147
    [158] Zhao J, Zhang P, Zhang X, et al. 2021. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project[J]. Earth Science Frontiers, 28(5): 230-259.
    [159] Zheng F, Xu T, Ai Y, et al. 2022. Metallogenic potential of the Wulong goldfield, Liaodong Peninsula, China revealed by high-resolution ambient noise tomography[J]. Ore Geology Reviews, 142: 104704. doi: 10.1016/j.oregeorev.2022.104704
    [160] 钟世军, 吴建平, 房立华, 等. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报, 60(6): 2304-2314 doi: 10.6038/cjg20170622

    Zhong S J, Wu J P, Fang L H, et al. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 60(6): 2304-2314 (in Chinese). doi: 10.6038/cjg20170622.
    [161] Zhou Y, Dahlen F A, Nolet G. 2004. Three‐dimensional sensitivity kernels for surface wave observables[J]. Geophysical Journal International, 158(1): 142-168. doi: 10.1111/j.1365-246X.2004.02324.x
    [162] Zhou Y, Nolet G, Dahlen F A, Laske G. 2006. Global upper‐mantle structure from finite‐frequency surface‐wave tomography[J]. Journal of Geophysical Research: Solid Earth, 111(B4): B04304.
    [163] 朱子杰, 王绪本, 刘志强, 梁春涛, 2021. 基于密集台阵资料的背景噪声研究青藏高原东南缘地震各向异性[J]. 地球物理学报, 64(3): 823-837

    Zhu Z J, Wang X B, Liu Z Q, Liang C T. 2021. Seismic anisotropy in the southeastern margin of the Tibetan Plateau revealed by ambient noise tomography based on high-density array[J]. Chinese Journal of Geophysics, 64(3): 823-837 (in Chinese). doi: 10.6038/cjg2021O0440
  • 加载中
图(9)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  86
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 录用日期:  2022-03-30
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回