• ISSN 2097-1893
  • CN 10-1855/P

地震体波速度与各向异性层析成像研究进展

黄周传

引用本文: 黄周传. 2022. 地震体波速度与各向异性层析成像研究进展. 地球与行星物理论评,53(6):656-679
Huang Z C. 2022. Review on body-wave tomography for seismic velocity and anisotropy. Reviews of Geophysics and Planetary Physics, 53(6): 656-679 (in Chinese)

地震体波速度与各向异性层析成像研究进展

doi: 10.19975/j.dqyxx.2022-018
基金项目: 国家自然科学基金资助项目(42174056)
详细信息
    通讯作者:

    黄周传(1984-),男,教授,主要从事地震学和深部构造的研究. E-mail:huangz@nju.edu.cn

  • 中图分类号: P315.3

Review on body-wave tomography for seismic velocity and anisotropy

Funds: Supported by the National Natural Science Foundation of China (Grant No. 42174056)
  • 摘要: 地震层析成像被称为地球CT,是利用地震观测资料反演获得地球深部的结构. 利用体波走时反演速度结构是最稳定、最重要的层析成像方法,成功地揭示了地球的深部结构,推动了地球科学的发展. 近年来,随着地震数据的快速积累与计算机能力的大幅度提升,地震体波成像的理论与应用均取得了显著的进步,在揭示地球内部的物质循环与动力学、大地震的孕震与发震构造等领域均发挥了重要的作用. 本文总结了21世纪以来地震体波成像的新方法和取得的重要进展,特别详细描述了各向异性层析成像的原理和方法. 结合东亚、东南亚地区的研究,本文总结了地震层析成像在揭示俯冲板片的形态、结构的应用,发现东亚地区俯冲太平洋板片大规模滞留在地幔转换带中,但在东南亚大量的俯冲印度—澳大利亚板片直接穿过转换带进入下地幔;地震波各向异性进一步约束了俯冲板片及其上覆地幔的变形特征,东亚地区存在强烈的大地幔楔对流,东南亚的上地幔对流相对复杂,并可能受到青藏高原演化的影响. 在大地震构造区,地震层析成像揭示了明显的速度和结构异常,陆内大地震的震源附近常常发现低速异常,可能指示了流体对大地震的重要影响;在板块边界,发生在俯冲带逆冲断层面的板间大地震与高速异常的分布密切相关,各向异性反映了断层面的应力状态,可以用来研究逆冲断层面的地震构造. 最后,本文探讨了地震体波层析成像存在的问题,展望了该方法如何在地球内部结构演化与动力学领域进一步发挥更大、更重要的作用.

     

  • 图  1  体波走时的地震射线理论与有限频敏感核. (a)联合伪弯曲方法和斯奈尔定律的地震射线追踪方法(修改自Zhao et al., 1992). 黑色实线表示初始路径,蓝色虚线表示最终的射线路径. (b)计算P波走时敏感核的速度模型. (c)利用伴随状态法获得的P波走时敏感核(修改自Liu and Tromp, 2006

    Figure  1.  Ray path and sensitivity kernel of body wave travel time. (a) A ray tracing method combining pseudo-bending algorithm and Snell's law (modified from Zhao et al., 1992). The solid black and dashed blue lines denote the initial and final ray paths. (b) The velocity model used to calculate the sensitivity kernel of P wave travel time. (c) The Sensitivity kernel calculated by adjoint method (modified from Liu and Tromp, 2006)

    图  2  在太平洋观测到的Pn波速度随方位角的变化(修改自Morris et al., 1969

    Figure  2.  The azimuthal variations of Pn waves observed in the Pacific Ocean (modified from Morris et al., 1969)

    图  3  日本东北部俯冲带的地震波速度结构、各向异性与动力学模型. (a)日本东北部的P波速度异常剖面(修改自Zhao et al., 1992). (b)利用双差层析成像获得的日本东北部的S波速度剖面(修改自Tsuji et al., 2008). (c)各向异性层析成像获得的日本东北部的P波速度异常与方位各向异性,下图中的颜色表示各向异性的快波方向(修改自Huang et al., 2011a). (d)地震学提示的日本东北部俯冲带的流体运移模型(修改自Hasegawa, 2018

    Figure  3.  Seismic velocity, anisotropy, and geodynamic model of the Northeast Japan subduction zone. (a) Cross-section of P wave velocity anomalies (modified from Zhao et al., 1992). (b) Cross-section of S wave velocities (modified from Tsuji et al., 2008). (c) P wave velocity anomalies and azimuthal anisotropy. Note that the color in the lower figure denotes the azimuthal anisotropy (modified from Huang et al., 2011a). (d) A model showing the fluid transportation in Northeast Japan subduction zone (modified from Hasegawa, 2008)

    图  4  地震层析成像获得的东亚和东南亚地区各个俯冲带的P波速度异常

    Figure  4.  P wave velocity anomalies of the subduction zones in East and Southeast Asia

    图  5  西太平洋俯冲带(a-c)(修改自Wei et al., 2015)和东南亚俯冲带(d-e)(修改自Huang et al., 2015b)的P波速度异常与方位各向异性(短线)

    Figure  5.  P wave velocity anomalies and azimuthal (short lines) of the subduction zones in East (a-c; modified from Wei et al., 2015) and Southeast Asia (d-e; modified from Huang et al., 2015b)

    图  6  日本东北部俯冲太平洋板片与上覆板片拼贴界面的地震波速度异常与各向异性. (a)板块作用界面的P波速度异常(修改自Huang and Zhao, 2013),圆圈表示1900—2011年6级以上的板间大地震,五角星表示2011年“3·11”大地震的前震(黄色)、主震及余震. (b)板块作用界面的P波速度异常及方位各向异性(短线)(修改自Liu and Zhao, 2017). (c)板块作用界面的P波速度异常及其与大地震破裂范围的对比(修改自Hua et al., 2020). (d)俯冲带各向异性与变形示意图(修改自Huang and Zhao, 2021

    Figure  6.  Seismic velocity and anisotropy on the megathrust zone between the subducting Pacific Plate and the overriding Eurasian Plate in Northeast Japan. (a) P-wave velocity anomalies along the plate interface (modified from Huang and Zhao, 2013). The circles denote large interplate earthquakes (M≥6.0) occurring during 1900—2011. The stars denote the foreshocks (yellow stars), mainshock, and aftershocks of the 2011 Tohoku-oki earthquake (MW9.0). (b) P wave velocity anomalies and azimuthal anisotropy along the plate interface (short lines; modified from Liu and Zhao, 2017). (c) Comparison of P wave velocity anomalies and rupture areas of large earthquakes along the plate interface (modified from Hua et al., 2020). (d) A carton showing the anisotropy and deformation in subduction zone (modified from Huang and Zhao, 2021)

    图  7  龙门山断裂带的地震波速度与各向异性. (a)经过汶川地震震源区的P波速度异常剖面(修改自Wei et al., 2010). (b)经过芦山地震的P波各向异性强度剖面(修改自Liu Y et al., 2021). (c-f)汶川地震和芦山地震发生后,龙门山断裂带的P波速度变化(修改自Pei et al., 2019

    Figure  7.  Seismic velocity and anisotropy under the Longmenshan fault zone. (a) Cross-section of P wave velocity anomalies through the source area of the Wenchuan earthquake (modified from Wei et al., 2010). (b) Cross-section of strength of P wave anisotropy through the Lushan earthquake (modified from Liu Y et al., 2021). (c-f) Temporal variations of the P wave velocities of the Longmenshan fault zone after the Wenchuan and Lushan earthquakes (modified from Pei et al., 2019)

    图  8  P波速度异常与方位各向异性耦合的理论测试(Huang et al., 2015a). (a)速度异常与方位各向异性输入模型. (b-d)地震入射方向为(22.5°、67.5°、112.5°)±15°时的反演模型

    Figure  8.  Synthetic tests of the trade-off between P wave velocity anomalies and azimuthal anisotropy (Huang et al., 2015a). (a) Input models. (b-d) Inverted models using the seismic rays from the specific directions of (22.5°, 67.5°, 112.5°)±15°

    图  9  P波速度异常与径向各向异性耦合的理论测试(Huang et al., 2015a). (a-d)速度异常与径向各向异性输入模型. (e-h)利用近水平射线反演得到的输出模型. (i-l)利用近垂直射线反演得到的输出模型

    Figure  9.  Synthetic tests of the trade-off between P wave velocity anomalies and radial anisotropy (Huang et al., 2015a). (a-d) Input models. (e-h) Inverted models with sub-horizontal rays. (i-l) Inverted models with sub-vertical rays

    图  10  利用(a)传统走时层析成像和(b)双差层析成像获得的美国南加州地区圣安德烈斯断裂带的P波速度结构(修改自Thurber and Ritsema, 2015

    Figure  10.  P wave velocity structures of the San Andres fault zone in Southern California obtained by (a) traditional travel-time tomography and (b) double difference tomography (modified from Thurber and Ritsema, 2015)

    图  11  近震走时数据与远震相对走时数据反演对俯冲太平洋板片形态的影响. (a)利用远震相对走时反演得到的俯冲太平洋板片图像. (b)利用近震走时反演得到的俯冲太平洋板片图像. (c)联合近震和远震数据得到的俯冲太平洋板片图像(修改自Chen et al., 2017

    Figure  11.  The geometry of the subducting Pacific slab using local and teleseismic datasets. (a~c) Show the subducting Pacific slab imaged with relative travel time residuals of teleseismic events, travel times of local events, and the joint datasets, respectively (modified from Chen et al., 2017)

    图  12  射线方法、有限频和全波形层析成像获得的太平洋俯冲板片的对比. (a,b)利用地震射线方法获得的结果(修改自Amaru, 2007; Wei et al., 2015);(c)有限频层析成像获得的结果(修改自Li et al., 2008a);(d)全波形层析成像方法获得的结果(修改自Tao et al., 2018

    Figure  12.  Comparison of the subducting Pacific slab imaged by (a, b) ray theory (modified from Amaru, 2007; Wei et al., 2015), (c) finite-frequency tomography (modified from Li et al., 2008a), and (d) full waveform inversion (modified from Tao et al., 2018)

  • [1] Aki K, Lee W H K. 1976. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model[J]. Journal of Geophysical Research, 81(23): 4381–4399. DOI: 10.1029/JB081i023p04381.
    [2] Amaru M L. 2007. Global travel time tomography with 3-D reference models[D]. Netherlands: Utrecht University.
    [3] Becker T W, Chevrot S, Schulte-Pelkum V, et al. 2006. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models[J]. Journal of Geophysical Research, 111(B8): B08309. DOI: 10.1029/2005JB004095.
    [4] Bi Y, Huang Z, Wang H, et al. 2020. Upper-mantle anisotropy and dynamics beneath northeast Asia: Insight from SKS and local S splitting analysis[J]. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009160. DOI: 10.1029/2020GC009160.
    [5] Boschi L, Dziewonski A M. 2000. Whole Earth tomography from delay times of P, adial anisotropy in the Mantle?[J]. Journal of Geophysical Research: Solid Earth, 105(B6): 13675–13696. DOI: 10.1029/2000JB900059.
    [6] Charléty J, Voronin S, Nolet G, et al. 2013. Global seismic tomography with sparsity constraints: Comparison with smoothing and damping regularization[J]. Journal of Geophysical Research: Solid Earth, 118(9): 4887–4899. DOI: 10.1002/jgrb.50326.
    [7] Chen C, Zhao D, Tian Y, et al. 2017. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia[J]. Geophysical Journal International, 209: 68–85. DOI: 10.1093/gji/ggw491.
    [8] Cormack A M. 1963. Representation of a function by its line integrals, with some radiological applications[J]. Journal of Applied Physics, 34(9): 2722–2727. DOI: 10.1063/1.1729798.
    [9] Cormack A M. 1964. Representation of a function by its line integrals, with some radiological applications. II[J]. Journal of Applied Physics, 35(10): 2908–2913. DOI: 10.1063/1.1713127.
    [10] Dahlen F A, Hung S H, Nolet G. 2000. Frechet kernels for finite-frequency traveltimes - I. theory[J]. Geophysical Journal International, 141: 157–174. doi: 10.1046/j.1365-246X.2000.00070.x
    [11] Du M, Lei J. 2019. Pn anisotropic tomography of Northeast China and its implications to mantle dynamics[J]. Journal Asian Earth Science, 171: 334-347. doi: 10.1016/j.jseaes.2018.08.033
    [12] Du M, Lei J, Zhao D, Lu H. 2022. Pn anisotropic tomography of Northeast Asia: New insight into subduction dynamics and volcanism[J]. Journal of Geophysical Research: Solid Earth, 127: e2021JB023080.
    [13] 段毅, 危自根, 杨小林, 等. 2019. 腾冲火山结构研究进展和展望[J]. 地球物理学进展, 34(4): 1288–1297 doi: 10.6038/pg2019CC0219

    Duan Y, Wei Z G, Yang X L, et al. 2019. Research progress and prospect of structure in Tengchong volcanic area[J]. Progress in Geophysics, 34( 4): 1288-1297(in Chinese). doi: 10.6038/pg2019CC0219
    [14] Dziewonski A M, Hager B H, O’Connell R J. 1977. Large-scale heterogeneities in the lower mantle[J]. Journal of Geophysical Research, 82(2): 239–255. DOI: 10.1029/JB082i002p00239.
    [15] Eberhart-Phillips D, Mark Henderson C. 2004. Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand[J]. Geophysical Journal International, 156(2): 237–254. DOI: 10.1111/j.1365-246X.2003.02044.x.
    [16] Engdahl E R, Lee W H K. 1976. Relocation of local earthquakes by seismic ray tracing[J]. Journal of Geophysical Research, 81(23): 4400–4406. DOI: 10.1029/JB081i023p04400.
    [17] Fan J, Zhao D. 2019. P-wave anisotropic tomography of the central and southern philippines[J]. Physics of the Earth and Planetary Interiors, 286: 154–164. DOI: 10.1016/j.pepi.2018.12.001.
    [18] Fan X, Chen Q-F, Ai Y, et al. 2021. Quaternary sodic and potassic intraplate volcanism in northeast China controlled by the underlying heterogeneous lithospheric structures[J]. Geology, 49(10): 1260–1264. DOI: 10.1130/G48932.1.
    [19] Fang H, Zhang H, Yao H, et al. 2016. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3557–3569. DOI: 10.1002/2015JB012702.
    [20] Fong D C-L, Saunders M. 2011. LSMR: An iterative algorithm for sparse least-squares problems[J]. SIAM Journal on Scientific Computing, 33(5): 2950–2971. DOI: 10.1137/10079687X.
    [21] Fukao Y, Obayashi M, Inoue H, et al. 1992. Subducting slabs stagnant in the mantle transition zone[J]. Journal of Geophysical Research: Solid Earth, 97: 4809–4822. doi: 10.1029/91JB02749
    [22] Fukao Y, Obayashi M, Nakakuki T, et al. 2009. Stagnant slab: A review[J]. Annual Review of Earth and Planetary Sciences, 37(1): 19–46. DOI: 10.1146/annurev.earth.36.031207.124224.
    [23] Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity[J]. Journal of Geophysical Research: Solid Earth, 118(11): 5920–5938. DOI: 10.1002/2013JB010466.
    [24] 高星. 2000. 地震层析成像研究的回顾与展望[J]. 地球物理学进展, 15(4): 41–45 doi: 10.3969/j.issn.1004-2903.2000.04.006

    Gao X. 2000. Advance and review in seismic tomography research[J]. Progress in Geophysics, 15(4): 41-45(in Chinese). doi: 10.3969/j.issn.1004-2903.2000.04.006
    [25] Golub G H, Reinsch C. 1971. Singular value decomposition and least squares solutions[J]. Numerical Mathematics, 14: 403–420.
    [26] Gou T, Zhao D, Huang Z, et al. 2020. Structural heterogeneity in source zones of the 2018 anchorage intraslab earthquake and the 1964 Alaska megathrust earthquake[J]. Geochemistry, Geophysics, Geosystems, 21(3): e2019GC008812. DOI: 10.1029/2019GC008812.
    [27] Hall R, Spakman W. 2015. Mantle structure and tectonic history of SE Asia[J]. Tectonophysics, 658: 14–45. DOI: 10.1016/j.tecto.2015.07.003.
    [28] Hasegawa A. 2018. Seismic imaging of mantle wedge corner flow and arc magmatism[J]. Proceedings of the Japan Academy, Series B, 94(5): 217-234. DOI: 10.2183/pjab.94.015.
    [29] 和锐, 杨建思, 张翼. 2007. 地震层析成像方法综述[J]. CT理论与应用研究, 16(1): 35−48

    He R, Yang J S, Zhang Y. 2007. A review on the technology of seismic tomography[J]. CT Theory and Applications, 16(1): 35-48 (in Chinese).
    [30] 贺日政, 高锐, 郑洪伟, 等. 2010. 地震波速层析成像方法研究进展[J]. 地质学报, 84(6): 840–846

    He R Z, Gao R, Zheng H W, et al. 2010. Progress in seismic tomography[J]. Acta Geologica Sinica, 84(6): 840–846(in Chinese).
    [31] Hearn T M. 1996. Anisotropic Pn tomography in the western United States[J]. Journal of Geophysical Research, 101: 8403–8414. DOI: 10.1029/96JB00114.
    [32] Hearn T, Wang S, Ni J, et al. 2004. Uppermost mantle velocities beneath China and surrounding regions[J]. Journal of Geophysical Research, 109(B11): B11301.
    [33] Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans[J]. Nature, 203(4945): 629–631. DOI: 10.1038/203629a0.
    [34] Hu S, Yao H, Huang H. 2020. Direct surface wave radial anisotropy tomography in the crust of the eastern Himalayan syntaxis[J]. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018257. https://doi.org/10.1029/2019JB018257
    [35] Hua Y, Zhao D, Toyokuni G, et al. 2020. Tomography of the source zone of the great 2011 Tohoku earthquake[J]. Nature Communications, 11(1): 1163. DOI: 10.1038/s41467-020-14745-8.
    [36] Huang H-H, Wu Y-M, Song X, et al. 2014. Joint VP and VS tomography of Taiwan: Implications for subduction-collision orogeny[J]. Earth and Planetary Science Letters, 392: 177–191. DOI: 10.1016/j.jpgl.2014.02.026.
    [37] Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research, 111(B9): B09305. DOI: 10.1029/2005JB004066.
    [38] Huang Z, Wang L, Zhao D, et al. 2010. Upper mantle structure and dynamics beneath Southeast China[J]. Physics of the Earth and Planetary Interiors, 182(3–4): 161–169. DOI: 10.1016/j.pepi.2010.07.010.
    [39] Huang Z, Zhao D, Wang L. 2011a. Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan[J]. Geochemistry, Geophysics, Geosystems, 12(1): Q01002. DOI: 10.1029/2010GC003343.
    [40] Huang Z, Zhao D, Wang L. 2011b. Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea[J]. Geophysical Journal International, 184(3): 1428–1444. DOI: 10.1111/j.1365-246X.2011.04934.x.
    [41] Huang Z, Zhao D. 2013. Mechanism of the 2011 Tohoku-oki earthquake (MW9.0) and tsunami: Insight from seismic tomography[J]. Journal of Asian Earth Sciences, 70–71: 160–168. DOI: 10.1016/j.jseaes.2013.03.010.
    [42] Huang Z, Zhao D, Hasegawa A, et al. 2013. Aseismic deep subduction of the Philippine sea plate and slab window[J]. Journal of Asian Earth Sciences, 75: 82–94. DOI: 10.1016/j.jseaes.2013.07.002.
    [43] Huang Z, Wang P, Zhao D, et al. 2014. Three-dimensional P wave azimuthal anisotropy in the lithosphere beneath China[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5686–5712. DOI: 10.1002/2014JB010963.
    [44] Huang Z, Zhao D, Liu X. 2015a. On the Trade-off between seismic anisotropy and heterogeneity: Numerical simulations and application to Northeast Japan[J]. Journal of Geophysical Research: Solid Earth, 120(5): 3255–3277. DOI: 10.1002/2014JB011784.
    [45] Huang Z, Zhao D, Wang L. 2015b. P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics[J]. Journal of Geophysical Research: Solid Earth, 120(7): 5154–5174. DOI: 10.1002/2015JB012098.
    [46] Huang Z, Tilmann F, Comte D, et al. 2019. P wave azimuthal anisotropic tomography in northern chile: Insight into deformation in the subduction zone[J]. Journal of Geophysical Research: Solid Earth, 124(1): 742–765. DOI: 10.1029/2018JB016389.
    [47] Huang Z, Zhao D. 2021. Mantle Convection in Subduction Zones: Insights from Seismic Anisotropy Tomography[M]//Marquardt H, Ballmer M, Cottaar S, et al. Geophysical Monograph Series. 1 edition. John Wiley & Sons, Inc. DOI:10.1002/9781119528609.ch11.
    [48] Ishise M, Oda H. 2005. Three-dimensional structure of P-wave anisotropy beneath the Tohoku district, northeast Japan[J]. Journal of Geophysical Research, 110(B7): B07304. DOI: 10.1029/2004JB003599.
    [49] Ishise M, Kawakatsu H, Shiomi K. 2012. Revision of the 3-D anisotropic velocity structure of the Japan islands using Hi-net data: Northeastern Japan[C]//Japan Geoscience Union Meeting, Japan.
    [50] Kind R, Yuan X, Kumar P. 2012. Seismic receiver functions and the lithosphere-asthenosphere boundary[J]. Tectonophysics, 536–537: 25–43. DOI: 10.1016/j.tecto.2012.03.005.
    [51] Koulakov I, Jakovlev A, Wu Y-M, et al. 2015a. Three-dimensional seismic anisotropy in the crust and uppermost mantle beneath the Taiwan area revealed by passive source tomography[J]. Journal of Geophysical Research: Solid Earth, 120(11): 7814–7829. DOI: 10.1002/2015JB012408.
    [52] Koulakov I, Kukarina E, Fathi I H, et al. 2015b. Anisotropic tomography of Hokkaido reveals delamination-induced flow above a subducting slab[J]. Journal of Geophysical Research: Solid Earth, 120(5): 3219–3239. DOI: 10.1002/2014JB011823.
    [53] Kufner S-K, Schurr B, Sippl C, et al. 2016. Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia)[J]. Earth and Planetary Science Letters, 435: 171–184. DOI: 10.1016/j.jpgl.2015.11.046.
    [54] Kufner S-K, Kakar N, Bezada M, et al. 2021. The Hindu Kush slab break-off as revealed by deep structure and crustal deformation[J]. Nature Communications, 12(1): 1685. DOI: 10.1038/s41467-021-21760-w.
    [55] Lebedev S, Chevrot S, Nolet G, van der Hilst R. 2000. New seismic evidence for a deep mantle origin of the S. China basalts (the Hainan plume?) and other observations in SE Asia[J]. Eos Transactions American Geophysical Union, 81: 48–148.
    [56] 雷栋, 胡祥云. 2006. 地震层析成像方法综述[J]. 地震研究, 29(4): 418–426 doi: 10.3969/j.issn.1000-0666.2006.04.018

    Lei D, Hu X Y. 2006. Review of seismic tomography methods[J]. Journal of Seismological Research, 29(4): 418–426(in Chinese). doi: 10.3969/j.issn.1000-0666.2006.04.018
    [57] Lei J S, Zhao D. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia[J]. Tectonophysics 397: 281-295.
    [58] Lei J S, Zhao D. 2006a. Global P-wave tomography: On the effect of various mantle and core phases[J]. Physics of the Earth and Planetary Interiors, 154: 44-69. doi: 10.1016/j.pepi.2005.09.001
    [59] Lei J S, Zhao D. 2006b. A new insight into the Hawaiian plume[J]. Earth and Planetary Science Letters, 241: 438-453. doi: 10.1016/j.jpgl.2005.11.038
    [60] Lei J S, Xie F, Lan C, et al. 2008. Seismic images under the Beijing region inferred from P and PmP data[J]. Physics of the Earth and Planetary Interiors, 168(3–4): 134–146. DOI: 10.1016/j.pepi.2008.06.005.
    [61] Lei J S, Zhao D. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0)[J]. Geochemistry, Geophysics, Geosystems, 10(10): Q10010. DOI: 10.1029/2009GC002590.
    [62] 雷建设, 赵大鹏, 苏金蓉, 等. 2009. 龙门山断裂带地壳精细结构与汶川地震发震机理[J]. 地球物理学报, 52(2): 339–345

    Lei J S, Zhao D P, Su J R, et al. 2009. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(2): 339–345(in Chinese).
    [63] Lei J S, Xie F, Fan Q, Santosh M. 2013. Seismic imaging of the deep structure under the Chinese volcanoes: An overview[J]. Physics of the Earth and Planetary Interiors, 224, 104-123. doi: 10.1016/j.pepi.2013.08.008
    [64] Lei J S, Li Y, Xie F, et al. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 119(3): 2174-2198. doi: 10.1002/2013JB010847
    [65] 雷建设, 赵大鹏, 徐锡伟, 等. 2018. 龙门山断裂带深部细结构与2008年汶川地震发震机理[J].科学通报, 63(19): 1906-1916

    Lei J S, Zhao D P, Xu X W, et al. 2018. Deep structure of the Longmenshan fault zone and mechanism of the 2008 Wenchuan earthquake[J]. Chinese Science Bulletin, 63: 1906-1916 (in Chinese).
    [66] Li C, Van der Hilst R D, Engdahl E R, et al. 2008a. A new global model for P wave speed variations in Earth’s mantle[J]. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. DOI: 10.1029/2007GC001806.
    [67] Li C, Van der Hilst R D, Meltzer A S, et al. 2008b. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 274(1–2): 157–168. DOI: 10.1016/j.jpgl.2008.07.016.
    [68] 李大虎, 丁志峰, 吴萍萍, 等. 2015. 鲜水河断裂带南东段的深部孕震环境与2014年康定MS6.3地震[J]. 地球物理学报, 58(6): 1941–1953 doi: 10.6038/cjg20150610

    Li D H, Ding Z F, Wu P P, et al. 2015. The deep seismogenic environment of the southeastern section of the Xianshuihe fault zone and the 2014 Kanding MS6.3 earthquake[J]. Chinese Journal of Geophysics, 58(6): 1941–1953(in Chinese). doi: 10.6038/cjg20150610
    [69] Liang C T, Song X D, Huang J L. 2004. Tomographic inversion of Pn travel times in China[J]. Journal of Geophysical Research: Solid Earth, 109: B11304.
    [70] Liang X, Chen Y, Tian X, et al. 2016. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using Body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 443: 162–175. DOI: 10.1016/j.jpgl.2016.03.029.
    [71] Liu C, Yao H, Yang H, et al. 2019. Direct inversion for three-dimensional shear wave speed azimuthal anisotropy based on surface wave ray tracing: methodology and application to yunnan, southwest China[J]. Journal of Geophysical Research: Solid Earth, 124(11): 11394–11413. DOI: 10.1029/2018JB016920.
    [72] Liu Q, Tromp J. 2006. Finite-frequency kernels based on adjoint methods[J]. Bulletin of the Seismological Society of America, 96(6): 2383–2397. DOI: 10.1785/0120060041.
    [73] Liu Q, Gu Y J. 2012. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 566–567: 31–66. DOI:10.1016/j.tecto.2012.07.006.
    [74] 刘启元, 李昱, 陈九辉, 等. 2009. 汶川MS8.0地震: 地壳上地幔S波速度结构的初步研究[J]. 地球物理学报, 52(2): 309–319

    Liu Q Y, Li Y, Chen J H, et al. 2009. Wenchuan MS8.0 earthquake: preliminary study of the S-wave velocity structure of the crust and upper mantle[J]. Chinese Journal of Geophysics, 52(2): 309–319(in Chinese).
    [75] Liu S, Suardi I, Zheng M, et al. 2019. Slab morphology beneath northern sumatra revealed by regional and teleseismic traveltime tomography[J]. Journal of Geophysical Research: Solid Earth, 124(10): 10544–10564. DOI: 10.1029/2019JB017625.
    [76] Liu S, Suardi I, Xu X, et al. 2021. The geometry of the subducted slab beneath sumatra revealed by regional and teleseismic traveltime tomography[J]. Journal of Geophysical Research: Solid Earth, 126(1): e2020JB020169. DOI: 10.1029/2020JB020169.
    [77] Liu X, Zhao D. 2016a. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data[J]. Physics of the Earth and Planetary Interiors, 252: 1–22. DOI: 10.1016/j.pepi.2016.01.002.
    [78] Liu X, Zhao D. 2016b. Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes[J]. Journal of Geophysical Research: Solid Earth, 121(7): 5086–5115. DOI: 10.1002/2016JB013116.
    [79] Liu X, Zhao D. 2017. Depth-varying azimuthal anisotropy in the Tohoku subduction channel[J]. Earth and Planetary Science Letters, 473: 33–43. DOI: 10.1016/j.jpgl.2017.05.034.
    [80] Liu X, Zhao D. 2018. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake[J]. Science Advances, 4(6): eaat4396. DOI: 10.1126/sciadv.aat4396.
    [81] Liu Y, Zhang H, Kendall J M, et al. 2021. Conjugate fault deformation revealed by aftershocks of the 2013 MW6.6 Lushan earthquake and seismic anisotropy tomography[J]. Geophysical Research Letters, 48(14): e2021GL092563. DOI: 10.1029/2021GL092563.
    [82] 刘伊克, 常旭. 2000. 地震层析成像反演中解的定量评价及其应用[J]. 地球物理学报, 43(2): 251–256 doi: 10.3321/j.issn:0001-5733.2000.02.013

    Liu Y K, Chang X. 2000. Quatitative assessment of inversion solution of seismic tomography and its applications[J]. Chinese Journal of Geophysics, 43(2): 251–256(in Chinese). doi: 10.3321/j.issn:0001-5733.2000.02.013
    [83] Ma J, Tian Y, Zhao D, et al. 2019. Mantle dynamics of western pacific and east Asia: New insights from P wave anisotropic tomography[J]. Geochemistry, Geophysics, Geosystems, 20(7): 3628–3658. DOI: 10.1029/2019GC008373.
    [84] Mainprice D. 2015. Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective[M/OL]//Treatise on Geophysics. Elsevier, 487-538[2022-03-19]. https://linkinghub.elsevier.com/retrieve/pii/B9780444538024000440. DOI:10.1016/B978-0-444-53802-4.00044-0.
    [85] Martin R, Giraud J, Ogarko V, et al. 2021. Three-dimensional gravity anomaly data inversion in the Pyrenees using compressional seismic velocity model as structural similarity constraints[J]. Geophysical Journal International, 225(2): 1063–1085. DOI: 10.1093/gji/ggaa414.
    [86] Matsubara M, Obara K, Kasahara K. 2008. Three-dimensional P- and S-wave velocity structures beneath the Japan islands obtained by high-density seismic stations by seismic tomography[J]. Tectonophysics, 454(1–4): 86–103. DOI: 10.1016/j.tecto.2008.04.016.
    [87] Mi Q, Lei J, Du M, et al. 2021. Pn anisotropic tomography and mantle dynamics underneath the South China Sea and surrounding areas[J]. Journal of Asian Earth Sciences, 214: 104796. doi: 10.1016/j.jseaes.2021.104796
    [88] Mishra O P, Zhao D, Umino N, et al. 2003. Tomography of northeast Japan forearc and its implications for interplate seismic coupling[J]. Geophysical Research Letters, 30(16): GL017736. DOI: 10.1029/2003GL017736.
    [89] Montelli R, Nolet G, Dahlen F A, et al. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle[J]. Science, 303(5656): 338–343. DOI: 10.1126/science.1092485.
    [90] Moorkamp M, Heincke B, Jegen M, et al. 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data: 3-D joint inversion[J]. Geophysical Journal International, 184(1): 477–493. DOI: 10.1111/j.1365-246X.2010.04856.x.
    [91] Morris G B, Raitt R W, Shor G G. 1969. Velocity anisotropy and delay-time maps of the mantle near Hawaii[J]. Journal of Geophysical Research, 74(17): 4300–4316. DOI: 10.1029/JB074i017p04300.
    [92] Munzarová H, Plomerová J, Kissling E. 2018. Novel anisotropic teleseismic body-wave tomography code AniTomo to illuminate heterogeneous anisotropic upper mantle: Part I — Theory and inversion tuning with realistic synthetic data[J]. Geophysical Journal International, 215(1): 524–545. DOI: 10.1093/gji/ggy296.
    [93] Nakajima J, Matsuzawa T, Hasegawa A, et al. 2001. Three-dimensional structure of VP, VS, and VP/VS beneath northeastern Japan: Implications for arc magmatism and fluids[J]. Journal of Geophysical Research: Solid Earth, 106(B10): 21843–21857. DOI: 10.1029/2000JB000008.
    [94] Nakajima J, Hasegawa A. 2007. Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism[J]. Journal of Geophysical Research, 112(B8): B08306. DOI: 10.1029/2006JB004770.
    [95] Nolet G. 2008. A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun[M]. Cambridge, UK: Cambridge University Press.
    [96] Obayashi M, Yoshimitsu J, Fukao Y. 2009. Tearing of stagnant slab[J]. Science, 324(5931): 1173–1175. DOI: 10.1126/science.1172496.
    [97] Paige C C, Saunders M A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software, 8(1): 43–71. DOI: 10.1145/355984.355989.
    [98] Pei S, Zhao J, Sun Y, et al. 2007. Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography[J]. Journal of Geophysical Research, 112(B12): B05312.
    [99] Pei S, Chen Y J, Feng B, et al. 2013. High-resolution seismic velocity structure and azimuthal anisotropy around the 2010 MS=7.1 Yushu earthquake, Qinghai, China from 2D tomography[J]. Tectonophysics, 584: 144-152. doi: 10.1016/j.tecto.2012.08.020
    [100] Pei S, Niu F, Ben-Zion Y, et al. 2019. Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault[J]. Nature Geoscience, 12(5): 387–392. DOI: 10.1038/s41561-019-0347-1.
    [101] Pesicek J D, Thurber C H, Widiyantoro S, et al. 2008. Complex slab subduction beneath northern sumatra[J]. Geophysical Research Letters, 35(20): L20303. DOI: 10.1029/2008GL035262.
    [102] Pesicek J D, Thurber C H, Widiyantoro S, et al. 2010. Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman islands and Burma: Sumatra, Andaman islands and Burma topography[J]. Geophysical Journal International, 182: 433–453. DOI: 10.1111/j.1365-246X.2010.04630.x.
    [103] Press F. 1968. Earth models obtained by Monte Carlo inversion[J]. Journal of Geophysical Research, 73(16): 5223–5234. DOI: 10.1029/JB073i016p05223.
    [104] Rawlinson N, Sambridge M. 2003. Seismic traveltime tomography of the crust and lithosphere[J]. Advances in Geophysics, 46: 81–198. DOI: 10.1016/S0065-2687(03)46002-0.
    [105] Rawlinson N, Pozgay S, Fishwick S. 2010. Seismic tomography: A window into deep earth[J]. Physics of the Earth and Planetary Interiors, 178(3–4): 101–135. DOI: 10.1016/j.pepi.2009.10.002.
    [106] Rawlinson N, Fichtner A, Sambridge M, et al. 2014. Seismic tomography and the assessment of uncertainty[J]. Advances in Geophysics, 55: 1–76. DOI: 10.1016/bs.agph.2014.08.001.
    [107] Rawlinson N, Spakman W. 2016. On the use of sensitivity tests in seismic tomography[J]. Geophysical Journal International, 205(2): 1221–1243. DOI: 10.1093/gji/ggw084.
    [108] Romanowicz B. 1991. Seismic Tomography of the Earth’s mantle[J]. Annual Review of Earth and Planetary Sciences, 19: 77–99. doi: 10.1146/annurev.ea.19.050191.000453
    [109] Sambridge M, Mosegaard K. 2002. Monte Carlo methods in geophysical inerse problems[J]. Reviews of Geophysics, 40(3): 3-1-3–29. DOI: 10.1029/2000RG000089.
    [110] Sambridge M, Faletič R. 2003. Adaptive whole earth tomography[J]. Geochemistry, Geophysics, Geosystems, 4(3): 1022. DOI: 10.1029/2001GC000213.
    [111] Shapiro N M, Capillo M, Stehly L, et al. , 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615–1618. DOI: 10.1126/science.1108339.
    [112] Simmons N A, Forte A M, Boschi L, et al. 2010. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds[J]. Journal of Geophysical Research, 115(B12): B12310. DOI: 10.1029/2010JB007631.
    [113] Sun A, Zhao D, Gao Y, et al. 2019. Crustal seismic imaging of Northeast Tibet using first and later phases of earthquakes and explosions[J]. Geophysical Journal International, 217: 405–421. DOI: 10.1093/gji/ggz031.
    [114] Tang Y, Obayashi M, Niu F, et al. 2014. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling[J]. Nature Geoscience, 7(6): 470–475. DOI: 10.1038/ngeo2166.
    [115] Tao K, Grand S P, Niu F. 2018. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography[J]. Geochemistry, Geophysics, Geosystems, 19(8): 2732–2763. DOI: 10.1029/2018GC007460.
    [116] Tape C, Liu Q, Maggi A, et al. 2009. Adjoint tomography of the southern California crust[J]. Science, 325(5943): 988–992. DOI: 10.1126/science.1175298.
    [117] Thurber C H. 1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California[J]. Journal of Geophysical Research, 88(B10): 8226. DOI: 10.1029/JB088iB10p08226.
    [118] Thurber C H, Aki K. 1987. Three-dimensional seismic imaging[J]. Annual Review of Earth and Planetary Sciences, 15(1): 115–139. DOI: 10.1146/annurev.ea.15.050187.000555.
    [119] Thurber C. 1993. Local Earthquake Tomography: Velocities and VP/ VS—Theory[M]//Seismic Tomography: Theory and practice. London: Chapman and Hall.
    [120] Thurber C, Ritsema J. 2015. Theory and Observations-Seismic Tomography and Inverse Methods[M]//Treatise on Geophysics, 307–337. DOI:10.1016/B978-0-444-53802-4.00009-9.
    [121] Tian F, Lei J, Xu X. 2020. Teleseismic P-wave crustal tomography of the Weifang segment on the Tanlu fault zone: A case study based on short-period dense seismic array experiment[J]. Physics of the Earth and Planetary Interiors, 306: 106521. doi: 10.1016/j.pepi.2020.106521
    [122] 田有, 马锦程, 刘财, 等. 2019. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报, 62(3): 1071–1082 doi: 10.6038/cjg2019M0061

    Tian Y, Ma J C, Liu C, et al. 2019. Effects of subduction of the western Pacific plate on tectonic evolution of Northeast China and geodynamic implications[J]. Chinese Journal of Geophysics, 62(3): 1071–1082(in Chinese). doi: 10.6038/cjg2019M0061
    [123] Tromp J, Tape C, Liu Q. 2004. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels[J]. Geophysical Journal International, 160(1): 195–216. DOI: 10.1111/j.1365-246X.2004.02453.x.
    [124] Tsuji Y, Nakajima J, Hasegawa A. 2008. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications for water transportation in subduction zones[J]. Geophysical Research Letters, 35(14): L14308. DOI: 10.1029/2008GL034461.
    [125] Um J, Thurber C. 1987. A fast algorithm for two-point seismic ray tracing[J]. Bulletin of the Seismological Society of America, 77(3): 972–986. doi: 10.1785/BSSA0770030972
    [126] Van der Hist R, Engdahl R, Spakman W, et al. 1991. Tomographic imaging of subducted lithosphere below northwest Pacific island Arcs[J]. Nature, 353(6339): 37–43. DOI: 10.1038/353037a0.
    [127] Van der Voo R, Spakman W, Bijwaard H. 1999. Tethyan subducted slabs under India[J]. Earth and Planetary Science Letters, 171(1): 7–20. DOI: 10.1016/S0012-821X(99)00131-4.
    [128] VanderBeek B P, Faccenda M. 2021. Imaging upper mantle anisotropy with teleseismic P-wave delays: Insights from tomographic reconstructions of subduction simulations[J]. Geophysical Journal International, 225(3): 2097–2119. DOI: 10.1093/gji/ggab081.
    [129] Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353–1368. DOI: 10.1785/0120000006.
    [130] Wang H, Zhao D, Huang Z, et al. 2018. Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data[J]. Geophysical Journal International, 214(2): 1151–1163. DOI: 10.1093/gji/ggy177.
    [131] Wang H, Huang Z. 2020. Seismic tomography in the southern margin of the Sichuan basin: Insight into the plateau-craton interaction and seismotectonics in the SE Tibetan plateau[J]. Journal of Asian Earth Sciences, 199: 104464. DOI: 10.1016/j.jseaes.2020.104464.
    [132] Wang J, Zhao D. 2008. P-wave anisotropic tomography beneath Northeast Japan[J]. Physics of the Earth and Planetary Interiors, 170(1–2): 115–133. DOI: 10.1016/j.pepi.2008.07.042.
    [133] Wang J, Zhao D. 2013. P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones[J]. Geophysical Journal International, 193(3): 1166–1181. DOI: 10.1093/gji/ggt086.
    [134] 王伟平, 杨建思, 彭朝勇, 等, 2019. 2017年九寨沟MS7.0地震震源区速度结构与余震分布[J]. 地震学报, 41(1): 1–12. Wang W P, Yang J S, Peng C Y, et al. 2019. Velocity structures and aftershock distribution in the source region of the 2017 Jiuzhaigou MS7.0 earthquake[J]. Acta Seismologica Sinica, 41(1): 1−12(in Chinese).
    [135] Wang Z, Zhao D, Wang J, et al. 2006. Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan[J]. Geophysical Research Letters, 33(18): L18306. DOI: 10.1029/2006GL027166.
    [136] Wang Z, Zhao D, Gao R, et al. 2019. Complex subduction beneath the Tibetan plateau: A slab warping model[J]. Physics of the Earth and Planetary Interiors, 292: 42–54. DOI: 10.1016/j.pepi.2019.04.007.
    [137] Wang Z, Zhao D. 2021. 3D anisotropic structure of the Japan subduction zone[J]. Science Advances, 7(4): eabc9620. DOI: 10.1126/sciadv.abc9620.
    [138] Wei W, Sun R, Shi Y. 2010. P-wave tomographic images beneath southeastern Tibet: investigating the mechanism of the 2008 Wenchuan earthquake[J]. Science China Earth Sciences, 53(9): 1252–1259. DOI: 10.1007/s11430-010-4037-5.
    [139] Wei W, Xu J, Zhao D, et al. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 60: 88–103. DOI: 10.1016/j.jseaes.2012.08.001.
    [140] Wei W, Zhao D, Xu J. 2013. P-wave anisotropic tomography in Southeast Tibet: New insight into the lower crustal flow and seismotectonics[J]. Physics of the Earth and Planetary Interiors, 222: 47–57. DOI: 10.1016/j.pepi.2013.07.002.
    [141] Wei W, Zhao D, Xu J, et al. 2015. P and S wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism: Tomography and anisotropy of the slab[J]. Journal of Geophysical Research: Solid Earth, 120(3): 1642–1666. DOI: 10.1002/2014JB011254.
    [142] Wei W, Zhao D. 2016. Tomography of the source zone of the 2015 M 7.8 Nepal earthquake[J]. Physics of the Earth and Planetary Interiors, 253: 58–63. DOI: 10.1016/j.pepi.2016.01.008.
    [143] Wei W, Zhao D, Xu J, et al. 2016. Depth variations of P-wave azimuthal anisotropy beneath mainland China[J]. Scientific Reports, 6(1): 29614. DOI: 10.1038/srep29614.
    [144] West M, Gao W, Grand S. 2004. A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U. S. [J]. Geophysical Research Letters, 31(15): L15615. DOI: 10.1029/2004GL020373.
    [145] Widiyantoro S, Van der Hilst R. 1996. Structure and evolution of lithospheric slab beneath the Sunda Arc, Indonesia[J]. Science, 271(5255): 1566–1570. DOI: 10.1126/science.271.5255.1566.
    [146] Widiyantoro S, Hilst R. 1997. Mantle structure beneath indonesia inferred from high-resolution tomographic imaging[J]. Geophysical Journal International, 130(1): 167–182. DOI: 10.1111/j.1365-246X.1997.tb00996.x.
    [147] 吴建平, 黄媛, 张天中, 等, 2009. 汶川MS8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报, 52(2): 320–328

    Wu J P, Huang Y, Zhang T Z, et al. 2009. Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region[J]. Chinese Journal of Geophysics, 52(2): 320–328(in Chinese).
    [148] Xia S, Zhao D, Qiu X, et al. 2007. Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data[J]. Geophysical Research Letters, 34(10): L10309. DOI: 10.1029/2007GL030026.
    [149] 杨文采. 2002. 评地球物理反演的发展趋向[J]. 地学前缘, 9(4): 389–396 doi: 10.3321/j.issn:1005-2321.2002.04.019

    Yang W C. 2002. A perspective to development of geophysical inversions[J]. Earth Science Frontiers, 9(4): 389–396(in Chinese). doi: 10.3321/j.issn:1005-2321.2002.04.019
    [150] 杨晓春, 李小凡, 张美根. 2001. 地震波反演方法研究的某些进展及其数学基础[J]. 地球物理学进展, 16(4): 96–109 doi: 10.3969/j.issn.1004-2903.2001.04.013

    Yang X C, Li X F, Zhang M G. 2001. Progress and mathematical basis of investigations of seismic inversion[J]. Progress in Geophysics, 16(4): 96–109(in Chinese). doi: 10.3969/j.issn.1004-2903.2001.04.013
    [151] Yao J, Liu S, Wei S, et al. 2021. Slab models beneath central myanmar revealed by a joint inversion of regional and teleseismic traveltime data[J]. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020164. DOI: 10.1029/2020JB020164.
    [152] 张风雪, 吴庆举, 李永华, 等. 2010. FMM射线追踪方法在地震学正演和反演中的应用[J]. 地球物理学进展, 25(4): 1197–1205 doi: 10.3969/j.issn.1004-2903.2010.04.008

    Zhang F X, Wu Q J, Li Y H, et al. 2010. Application of FMM ray tracing to forward and inversion problems of seismology[J]. Progress in Geophysics, 25(4): 1197–1205(in Chinese). doi: 10.3969/j.issn.1004-2903.2010.04.008
    [153] Zhang H, Thurber C H. 2003. Double-difference tomography: The method and its application to the Hayward fault, California[J]. Bulletin of the Seismological Society of America, 93(5): 1875–1889. DOI: 10.1785/0120020190.
    [154] Zhang H, Thurber C H, Shelly D, et al. 2004. High-resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography[J]. Geology, 32(4): 361–364. DOI: 10.1130/G20261.2.
    [155] Zhang H, Thurber C. 2005. Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04303. DOI: 10.1029/2004JB003186.
    [156] Zhang H, Thurber C, Bedrosian P. 2009. Joint inversion for VP , VS , and VP/VS at SAFOD, Parkfield, California[J]. Geochemistry, Geophysics, Geosystems, 10(11): Q11002. DOI: 10.1029/2009GC002709.
    [157] Zhao D, Hasegawa A, Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research, 97(B13): 19909. DOI: 10.1029/92JB00603.
    [158] Zhao D, Hasegawa A, Kanamori H. 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events[J]. Journal of Geophysical Research: Solid Earth, 99(B11): 22313–22329. DOI: 10.1029/94JB01149.
    [159] Zhao D, Ochi F, Hasegawa A, et al. 2000. Evidence for the location and cause of large crustal earthquakes in Japan[J]. Journal of Geophysical Research: Solid Earth, 105(B6): 13579–13594. DOI: 10.1029/2000JB900026.
    [160] Zhao D. 2001a. New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A review[J]. The Island Arc, 10(1): 68–84. DOI: 10.1046/j.1440-1738.2001.00291.x.
    [161] Zhao D. 2001b. Seismic structure and origin of hotspots and mantle plumes[J]. Earth and Planetary Science Letters, 192: 251–265. doi: 10.1016/S0012-821X(01)00465-4
    [162] Zhao D, Mishra O P, Sanda R. 2002. Influence of fluids and magma on earthquakes: Seismological evidence[J]. Physics of the Earth and Planetary Interiors, 132(4): 249–267. DOI: 10.1016/S0031-9201(02)00082-1.
    [163] Zhao D. 2004. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics[J]. Physics of the Earth and Planetary Interiors, 146(1–2): 3–34. DOI: 10.1016/j.pepi.2003.07.032.
    [164] 赵大鹏, 雷建设, 唐荣余. 2004. 中国东北长白山火山的起源: 地震层析成像证据[J]. 科学通报, 49(14): 1439–1446

    Zhao D P, Lei J S, Tang R Y, 2004. Origin of the Changbaishan Volcan: evidence from seismic tomography[J]. Chinese Science Bulletin, 49(14): 1439–1446(in Chinese).
    [165] Zhao D, Todo S, Lei J. 2005. Local earthquake reflection tomography of the Landers aftershock area[J]. Earth and Planetary Science Letters, 235(3–4): 623–631. DOI: 10.1016/j.jpgl.2005.04.039.
    [166] Zhao D, Wang Z, Umino N, et al. 2007a. Tomographic imaging outside a seismic network: Application to the northeast Japan arc[J]. Bulletin of the Seismological Society of America, 97(4): 1121–1132. DOI: 10.1785/0120050256.
    [167] Zhao D, Maruyama S, Omori S. 2007b. Mantle dynamics of western Pacific and east Asia: Insight from seismic tomography and mineral physics[J]. Gondwana Research, 11(1–2): 120–131. DOI: 10.1016/j.gr.2006.06.006.
    [168] Zhao D, Tian Y, Lei J, et al. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 173(3–4): 197–206. DOI: 10.1016/j.pepi.2008.11.009.
    [169] Zhao D, Kitagawa H, Toyokuni G. 2015. A water wall in the Tohoku forearc causing large crustal earthquakes[J]. Geophysical Journal International, 200(1): 149–172. DOI: 10.1093/gji/ggu381.
    [170] Zhao D, Yu S, Liu X. 2016. Seismic anisotropy tomography: New insight into subduction dynamics[J]. Gondwana Research, 33: 24–43. DOI: 10.1016/j.gr.2015.05.008.
    [171] Zhao D, Fujisawa M, Toyokuni G. 2017. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake(MW7.9)[J]. Scientific Reports, 7(1): 44487. DOI: 10.1038/srep44487.
    [172] Zhao D. 2019. Importance of later phases in seismic tomography[J]. Physics of the Earth and Planetary Interiors, 296: 106314. DOI: 10.1016/j.pepi.2019.106314.
    [173] Zhao D, Toyokuni G, Kurata K. 2021a. Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea[J]. Geophysical Journal International, 225(1): 572–588. DOI: 10.1093/gji/ggaa605.
    [174] Zhao D, Wang J, Huang Z, et al. 2021b. Seismic structure and subduction dynamics of the western Japan arc[J]. Tectonophysics, 802: 228743. DOI: 10.1016/j.tecto.2021.228743.
    [175] 赵烽帆, 张明辉, 徐涛. 2014. 地震体波走时层析成像方法研究综述[J]. 地球物理学进展, 29(3): 1090–1101 doi: 10.6038/pg20140312

    Zhang F F, Zhang M H, Xu T. 2014. A review of body wave traveltime tomography methods[J]. Progress in Geophysics, 29(3): 1090–1101(in Chinese). doi: 10.6038/pg20140312
    [176] 郑洪伟, 李廷栋, 高锐, 等. 2007. 印度板块岩石圈地幔向北俯冲到羌塘地体之下的远震P波层析成像证据[J]. 地球物理学报, 50(5): 1223–1232 doi: 10.1002/cjg2.1141

    Zheng HW, Li TD, Gao R, et al. 2007. Teleseismic P-wave tomography evidence for the Indian lithospheric mantle subducting northward beneath the Qiangtang terrane[J]. Chinese Journal of Geophysics, 50(5): 1223–1232(in Chinese). doi: 10.1002/cjg2.1141
  • 加载中
图(12)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  147
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 录用日期:  2022-03-21
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-07-11

目录

    /

    返回文章
    返回