Nonlinear interaction between particles and ultralow frequency waves
-
摘要: 超低频波在日地能量传输和磁层—电离层耦合过程中都扮演着十分重要的角色,其在调节整个太阳—地球系统的能量流方面的研究一直是空间物理领域最重要的研究方向之一. 超低频波是带电粒子在内磁层辐射带中加速和扩散的主要原因之一,磁层中的带电粒子具有典型的垂直于磁场的漂移运动和平行于磁场的弹跳运动,超低频波的频率范围能够覆盖带电粒子的漂移或弹跳频率,因此其与粒子之间会发生共振,超低频波正是通过与电子或离子发生漂移共振或漂移弹跳共振来完成能量的传递,从而实现对带电粒子的加速. 自漂移共振理论提出以来,线性分析方法一直沿用至今,即假定粒子运动遵循未扰轨道,轨道因能量改变而造成的扰动一直被忽略不计. 这一假设只有在粒子能量变化远小于粒子能量本身时才有效,而实际观测中经常存在振幅较大或持续时间较长的超低频波使得粒子能量变化很大,线性理论不再适用. 本文结合理论分析、卫星观测总结了极向模和环向模超低频波与内磁层带电粒子的非线性漂移共振作用,给出了线性方法与非线性方法的使用范围,并从观测上给出了识别非线性漂移共振发生的方法.Abstract: One of the most important questions in space physics is how the energy of the solar wind is transmitted to energetic particles in the Earth's magnetosphere, part of which is in the form of ultra-low-frequency (ULF) electromagnetic waves in the mHz frequency range. More specifically, ULF waves can provide diagnostics of the magnetosphere. For example, ionospheric conductance and mass density structure can be derived; substorm onset can be timed; and geomagnetic field lines can be mapped. ULF waves can also modify the magnetosphere such as through nonlinear effects allowing Kelvin-Helmholtz surface wave energy at the magnetopause to penetrate into magnetosphere, and radial diffusion, which plays an essential role in flux enhancement and particle acceleration of the radiation belts. Hannes Alfvén first proposed the existence of transverse "electrohydrodynamic" waves in the magnetized plasma. The magnetohydrodynamic (MHD) theory was first applied to explain the observed geomagnetic pulsations in Earth's magnetosphere, which has been confirmed by spacecraft observations and ground-based magnetometers. ULF waves are usually categorized into poloidal and toroidal modes by different directions of the perturbed electromagnetic field. Magnetic line oscillations in the radial direction yields azimuthal electric fields (
$ {E}_{\varphi } $ ) and are referred to as poloidal waves, while the motion of field lines in the azimuthal direction yields electric field oscillations in the radial direction ($ {E}_{r} $ ) which are referred to as toroidal waves. Efficient interaction between ULF waves and charged particles requires comparable periods of waves and particle's drift motion. An acceleration mechanism capable of a continuous energy exchange between ULF waves and charged particles is wave-particle drift resonance. When such resonance occurs, the azimuthal drift speed of a resonant particle matches the wave propagation speed, and the particle experiences a constant phase of the wave electric field. This process enables a sustained energy exchange between ULF waves and charged particles, which provides a major source of particle acceleration and diffusion in the Van Allen radiation belts. The conventional drift resonance theory assumes that the particle trajectories are unperturbed despite their energy gain or loss from ULF waves. This assumption is usually invalid in Earth's magnetosphere because ULF waves can have larger amplitudes and/or durations. The large wave-particle energy exchange can modify the particle trajectory and cause significant nonlinear effects. This paper mainly reviews the nonlinear drift resonance between poloidal/toroidal ULF waves and charged particles in the inner magnetosphere. The particle behavior can be described by a pendulum equation in poloidal ULF waves, with the nonlinear trapping frequency determined by the ULF wave amplitude. We further predict, based on the newly-developed theory, the observable signatures of nonlinear drift resonance such as rolled-up structures in the energy spectrum of particle fluxes. After considering how this manifests in particle data with finite energy resolution, we compare the predicted signatures with Van Allen Probes observations. Their good agreement provides the first observational identification of the nonlinear drift resonance, which highlights the importance of nonlinear effects in magnetospheric particle dynamics under ULF waves. Drift resonance between particles and toroidal ULF waves can occur even without the noon-midnight asymmetry of background magnetic field. This effect originates from the wave-carried compressional magnetic field oscillations, which turn out to play a key role in the energy exchange between toroidal ULF waves and charged particles. The resulting particle motion can be described by a modified pendulum equation with solutions depending on the wave number. These findings demonstrate that toroidal ULF waves, like their poloidal counterparts, play an important role in magnetospheric particle dynamics. This is significant because the new derivation allows a large body of existing work and understanding on the pendulum equation to be brought to bear on the problem of ULF wave-particle interactions in the inner magnetosphere. As particle detector technology improves, more nonlinear features will become observable, allowing further tests of the theory presented here.-
Key words:
- ULF wave /
- nonlinear drift resonance /
- pendulum equation /
- rolled-up structures
-
图 1 超低频波场中电子的相空间轨迹. 左列和右列分别对应不同的波幅. 横轴表示电子在波的静止参考系中的位置
$ \zeta $ . 前三栏纵轴分别表示$ \theta $ 、电子能量和$ L $ 值. 最后一栏纵轴显示了波电场和相应的静电势Figure 1. Phase portrait of sample electron trajectories in the ultralow frequency wave field. The left and the right columns correspond to the cases with different wave amplitudes. The horizontal axis represents
$ \zeta $ , the phase of electron location in the rest frame of the waves. The vertical axes represent (a, e)$ \theta $ , (b, f ) electron energy, (c, g) L location, and (d, h) the profiles of the electric wave field and the corresponding electrostatic potential图 3 理论预测的电子响应. (a)超低频波持续增长的电场;(b)线性理论计算的电子能量变化谱图;(c)线性理论计算的电子剩余相空间密度谱图;(d)非线性理论计算的电子能量变化谱图;(e)非线性理论计算的电子剩余相空间密度谱图;(f~h)对图(e)栏中的31.5 keV、53.8 keV 和79.8 keV 能档的小波谱图. 右图与左图形式相同. 但图(i)显示了超低频波携带有限时间尺度的电场
Figure 3. Predicted electron signatures at a fixed, virtual spacecraft location. The left and right columns correspond to ULF waves with increasing amplitudes and with a finite lifespan, respectively. (a, i) The electric wave field; energy spectrum of the electron energy gain/loss from ULF waves, obtained from (b, j) the linear and (d, l) the nonlinear theories; energy spectrum of the electron residual PSD at each energy channel, obtained from (c, k) the linear and (e, m) the nonlinear theories; (f~h) and (n~p) wavelet power spectrum of the electron residual PSD obtained from the nonlinear theory, in the 31.5 keV, 53.8 keV and 79.8 keV energy channels
图 4 Van Allen Probes卫星2014年6月7日的超低频波事件的观测. (a)电场
$ {E}_{y} $ 和$ {E}_{z} $ ;(b)$ {E}_{y} $ 小波功率谱;(c)多个能档的90°投掷角的电子通量;(d)电子剩余通量;(e~g)31.5 keV、53.8 keV 和79.8 keV 能档的电子剩余通量的小波功率谱Figure 4. Van Allen Probe A observations of an ULF wave event on 7 June 2014. (a) The electric field
$ {E}_{y} $ and$ {E}_{z} $ ; (b) Wavelet power spectrum of$ {E}_{y}; $ (c) 90° pitch angle electron fluxes at multiple energy channels; (d) Energy spectrum of the electron residual fluxes; (e~g) Wavelet power spectra of electron residual fluxes in the 31.5 keV , 53.8 keV and 79.8 keV energy channels -
[1] Anderson B J, Engebretson M J, Rounds S P, et al. 1990. A statistical study of Pc 3-5 pulsations observed by the AmMPTE/CCE magnetic fields experiment 1[J]. Occurrence distributions, 95: 10495-10523. DOI: 10.1029/JA095iA07p10495. [2] Chen L, Hasegawa A. 1974. A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance[J]. Journal of Geophysical Research, 79(7): 1024-1032. DOI: 10.1029/JA079i007p01024. [3] Chen Y, Reeves G D, Friedel R H W. 2007. The energization of relativistic electrons in the outer Van Allen radiation belt[J]. Nature Physics, 3(9): 614-617. DOI: 10.1038/nphys655. [4] Claudepierre S G, Mann I R, Takahashi K, et al. 2013. Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons[J]. Geophysical Research Letters, 40(17): 4491-4497. DOI: 10.1002/grl.50901. [5] Cummings W D, O'Sullivan R J, Coleman P J. 1969. Standing Alfvén waves in the magnetosphere[J]. Journal of Geophysical Research, 74(3): 778-793. DOI: 10.1029/JA074i003p00778. [6] Dai L, Takahashi K, Wygant J R, et al. 2013. Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction[J]. Geophysical Research Letters, 40(16): 4127-4132. DOI: 10.1002/grl.50800. [7] Degeling A W, Ozeke L G, Rankin R, et al. 2008. Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves[J]. Journal of Geophysical Research: Space Physics, 113(A2): A02208. DOI: 10.1029/2007ja012411. [8] Degeling A W, Rankin R. 2008. Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 113(A10): A10220. DOI: 10.1029/2008ja013254. [9] Elkington S R, Hudson M K, Chan A A. 1999. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations[J]. Geophysical Research Letters, 26(21): 3273-3276. DOI: 10.1029/1999gl003659. [10] Elkington S R. 2003. Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field[J]. Journal of Geophysical Research, 108(A3): 1116. DOI: 10.1029/2001ja009202. [11] Foster J C, Wygant J R, Hudson M K, et al. 2015. Shock-induced prompt relativistic electron acceleration in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 120(3): 1661-1674. DOI: 10.1002/2014ja020642. [12] Glaßmeier K H, Volpers H, Baumjohann W. 1984. Ionospheric Joule dissipation as a damping mechanism for high latitude ULF pulsations: Observational evidence[J]. Planetary and Space Science, 32(11): 1463-1466. DOI: 10.1016/0032-0633(84)90088-6. [13] Hao Y X, Zong Q G, Wang Y F, et al. 2014. Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail[J]. Journal of Geophysical Research: Space Physics, 119(10): 8262-8273. DOI: 10.1002/2014ja020023. [14] Hao Y X, Zong Q G, Zhou X Z, et al. 2017. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions[J]. Geophysical Research Letters, 44(15): 7618-7627. DOI: 10.1002/2017gl074006. [15] Horne R B, Thorne R M, Shprits Y Y, et al. 2005. Wave acceleration of electrons in the Van Allen radiation belts[J]. Nature, 437(7056): 227-230. DOI: 10.1038/nature03939. [16] Kazue T, McPherron R L. 1984. Standing hydromagnetic oscillations in the magnetosphere[J]. Planetary and Space Science, 32(11): 1343-1359. DOI: 10.1016/0032-0633(84)90078-3. [17] Kivelson M G, Southwood D J. 1985. Resonant ULF waves: A new interpretation[J]. Geophysical Research Letters, 12(1): 49-52. DOI: 10.1029/GL012i001p00049. [18] Li L, Zhou X Z, Zong Q G, et al. 2017a. Charged particle behavior in localized ultralow frequency waves: Theory and observations[J]. Geophysical Research Letters, 44(12): 5900-5908. DOI: 10.1002/2017gl073392. [19] Li L, Zhou X Z, Zong Q G, et al. 2017b. Ultralow frequency wave characteristics extracted from particle data: Application of IGSO observations[J]. Science China Technological Sciences, 60(3): 419-424. DOI: 10.1007/s11431-016-0702-4. [20] Li L, Zhou X Z, Omura Y, Wet al. 2018. Nonlinear drift resonance between charged particles and ultralow frequency waves: Theory and observations[J]. Geophysical Research Letters, 45(17): 8773-8782. DOI: 10.1029/2018gl079038. [21] Li L, Omura Y, Zhou X Z, et al. 2020. Roles of magnetospheric convection on nonlinear drift resonance between electrons and ULF waves[J]. Journal of Geophysical Research: Space Physics, 125(6): e2020JA027787. DOI: 10.1029/2020ja027787. [22] Li L, Zhou X Z, Omura Y, et al. 2021. Drift resonance between particles and compressional toroidal ULF waves in dipole magnetic field[J]. Journal of Geophysical Research: Space Physics, 126(10): e2020JA028842. DOI: 10.1029/2020ja028842. [23] Liu H, Zong Q G, Zhou X Z, et al. 2016. Compressional ULF wave modulation of energetic particles in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 121(7): 6262-6276. DOI: 10.1002/2016ja022706. [24] Mann I R, Lee E A, Claudepierre S G, et al. 2013. Discovery of the action of a geophysical synchrotron in the Earth's Van Allen radiation belts[J]. Nature Communications, 4(1): 2795. DOI: 10.1038/ncomms3795. [25] Northrop T G. 1963. Adiabatic charged-particle motion[J]. Reviews of Geophysics, 1(3): 283-304. DOI: 10.1029/RG001i003p00283. [26] Sarris T E, Li X, Temerin M, et al. 2017. On the relationship between electron flux oscillations and ULF wave-driven radial transport[J]. Journal of Geophysical Research: Space Physics, 122(9): 9306-9319. DOI: 10.1002/2016ja023741. [27] Schulz M, Lanzerotti L J. 1974. Particle Diffusion in the Radiation Belts[M]//Physics and Chemistry in Space,doi: 10.1007/978-3-642-65675-0 [28] Shen X C, Zong Q G, Shi Q Q, et al. 2015. Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The time history of events and macroscale interactions during substorms (THEMIS) observations[J]. Journal of Geophysical Research: Space Physics, 120(9): 7179-7190. DOI: 10.1002/2014ja020913. [29] Southwood D J, Kivelson M G. 1981. Charged particle behavior in low-frequency geomagnetic pulsations 1. Transverse waves[J]. Journal of Geophysical Research, 86(A7): 5643-5655. DOI: 10.1029/JA086iA07p05643. [30] Ukhorskiy A Y. 2005. Impact of toroidal ULF waves on the outer radiation belt electrons[J]. Journal of Geophysical Research, 110(A10): A10202. doi: 10.1029/2005ja011017 [31] Zhou X Z, Wang Z H, Zong Q G, et al. 2015. Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts[J]. Geophysical Research Letters, 42(15): 6199-6204. DOI: 10.1002/2015gl064988. [32] Zhou X Z, Wang Z H, Zong Q G, et al. 2016. Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations[J]. Journal of Geophysical Research: Space Physics, 121(4): 3254-3263. DOI: 10.1002/2016ja022447. [33] Zong Q G, Zhou X Z, Li X, et al. 2007. Ultralow frequency modulation of energetic particles in the dayside magnetosphere[J]. Geophysical Research Letters, 34(12): L12105. DOI: 10.1029/2007gl029915. [34] Zong Q G, Zhou X Z, Wang Y F, et al. 2009. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt[J]. Journal of Geophysical Research: Space Physics, 114(A10): A10204. DOI: 10.1029/2009ja014393. [35] Zong Q, Rankin R, Zhou X. 2017. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth's magnetosphere[J]. Reviews of Modern Plasma Physics, 1(1): 10. DOI: 10.1007/s41614-017-0011-4. -