• ISSN 2097-1893
  • CN 10-1855/P

超低频波与带电粒子的非线性相互作用

李莉 周煦之 宗秋刚

引用本文: 李莉,周煦之,宗秋刚. 2022. 超低频波与带电粒子的非线性相互作用. 地球与行星物理论评,53(4):443-453
Li L, Zhou X Z, Zong Q G. 2022. Nonlinear interaction between particles and ultralow frequency waves. Reviews of Geophysics and Planetary Physics, 53(4): 443-453

超低频波与带电粒子的非线性相互作用

doi: 10.19975/j.dqyxx.2022-012
基金项目: 国家自然科学基金资助项目(42174184);中国博士后科学基金面上资助项目(2021M700196)
详细信息
    通讯作者:

    李莉(1993-),女,博士后,主要从事内磁层中的波粒相互作用方面的理论、观测和模拟研究. E-mail:ispat.lily@pku.edu.cn

  • 中图分类号: P353

Nonlinear interaction between particles and ultralow frequency waves

Funds: Supported by the National Natural Science Foundation of China (Grant No. 42174184) and the China Postdoctoral Science Foundation (Grant No. 2021M700196)
  • 摘要: 超低频波在日地能量传输和磁层—电离层耦合过程中都扮演着十分重要的角色,其在调节整个太阳—地球系统的能量流方面的研究一直是空间物理领域最重要的研究方向之一. 超低频波是带电粒子在内磁层辐射带中加速和扩散的主要原因之一,磁层中的带电粒子具有典型的垂直于磁场的漂移运动和平行于磁场的弹跳运动,超低频波的频率范围能够覆盖带电粒子的漂移或弹跳频率,因此其与粒子之间会发生共振,超低频波正是通过与电子或离子发生漂移共振或漂移弹跳共振来完成能量的传递,从而实现对带电粒子的加速. 自漂移共振理论提出以来,线性分析方法一直沿用至今,即假定粒子运动遵循未扰轨道,轨道因能量改变而造成的扰动一直被忽略不计. 这一假设只有在粒子能量变化远小于粒子能量本身时才有效,而实际观测中经常存在振幅较大或持续时间较长的超低频波使得粒子能量变化很大,线性理论不再适用. 本文结合理论分析、卫星观测总结了极向模和环向模超低频波与内磁层带电粒子的非线性漂移共振作用,给出了线性方法与非线性方法的使用范围,并从观测上给出了识别非线性漂移共振发生的方法.

     

  • 图  1  超低频波场中电子的相空间轨迹. 左列和右列分别对应不同的波幅. 横轴表示电子在波的静止参考系中的位置$ \zeta $. 前三栏纵轴分别表示$ \theta $、电子能量和$ L $值. 最后一栏纵轴显示了波电场和相应的静电势

    Figure  1.  Phase portrait of sample electron trajectories in the ultralow frequency wave field. The left and the right columns correspond to the cases with different wave amplitudes. The horizontal axis represents $ \zeta $, the phase of electron location in the rest frame of the waves. The vertical axes represent (a, e) $ \theta $, (b, f ) electron energy, (c, g) L location, and (d, h) the profiles of the electric wave field and the corresponding electrostatic potential

    图  2  电子在超低频波场中的相空间轨迹,分别对应于方程(28)、(29)和(27)

    Figure  2.  Contour maps of the equations (28), (29) and (27) for toroidal ULF wave. Top panels and bottom panels show the three- and two-dimensional electron trajectories, respectively. Values of C1, C2 and C are indicated by different colors

    图  3  理论预测的电子响应. (a)超低频波持续增长的电场;(b)线性理论计算的电子能量变化谱图;(c)线性理论计算的电子剩余相空间密度谱图;(d)非线性理论计算的电子能量变化谱图;(e)非线性理论计算的电子剩余相空间密度谱图;(f~h)对图(e)栏中的31.5 keV、53.8 keV 和79.8 keV 能档的小波谱图. 右图与左图形式相同. 但图(i)显示了超低频波携带有限时间尺度的电场

    Figure  3.  Predicted electron signatures at a fixed, virtual spacecraft location. The left and right columns correspond to ULF waves with increasing amplitudes and with a finite lifespan, respectively. (a, i) The electric wave field; energy spectrum of the electron energy gain/loss from ULF waves, obtained from (b, j) the linear and (d, l) the nonlinear theories; energy spectrum of the electron residual PSD at each energy channel, obtained from (c, k) the linear and (e, m) the nonlinear theories; (f~h) and (n~p) wavelet power spectrum of the electron residual PSD obtained from the nonlinear theory, in the 31.5 keV, 53.8 keV and 79.8 keV energy channels

    图  4  Van Allen Probes卫星2014年6月7日的超低频波事件的观测. (a)电场$ {E}_{y} $$ {E}_{z} $;(b)$ {E}_{y} $小波功率谱;(c)多个能档的90°投掷角的电子通量;(d)电子剩余通量;(e~g)31.5 keV、53.8 keV 和79.8 keV 能档的电子剩余通量的小波功率谱

    Figure  4.  Van Allen Probe A observations of an ULF wave event on 7 June 2014. (a) The electric field $ {E}_{y} $ and $ {E}_{z} $; (b) Wavelet power spectrum of $ {E}_{y}; $ (c) 90° pitch angle electron fluxes at multiple energy channels; (d) Energy spectrum of the electron residual fluxes; (e~g) Wavelet power spectra of electron residual fluxes in the 31.5 keV , 53.8 keV and 79.8 keV energy channels

  • [1] Anderson B J, Engebretson M J, Rounds S P, et al. 1990. A statistical study of Pc 3-5 pulsations observed by the AmMPTE/CCE magnetic fields experiment 1[J]. Occurrence distributions, 95: 10495-10523. DOI: 10.1029/JA095iA07p10495.
    [2] Chen L, Hasegawa A. 1974. A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance[J]. Journal of Geophysical Research, 79(7): 1024-1032. DOI: 10.1029/JA079i007p01024.
    [3] Chen Y, Reeves G D, Friedel R H W. 2007. The energization of relativistic electrons in the outer Van Allen radiation belt[J]. Nature Physics, 3(9): 614-617. DOI: 10.1038/nphys655.
    [4] Claudepierre S G, Mann I R, Takahashi K, et al. 2013. Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons[J]. Geophysical Research Letters, 40(17): 4491-4497. DOI: 10.1002/grl.50901.
    [5] Cummings W D, O'Sullivan R J, Coleman P J. 1969. Standing Alfvén waves in the magnetosphere[J]. Journal of Geophysical Research, 74(3): 778-793. DOI: 10.1029/JA074i003p00778.
    [6] Dai L, Takahashi K, Wygant J R, et al. 2013. Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction[J]. Geophysical Research Letters, 40(16): 4127-4132. DOI: 10.1002/grl.50800.
    [7] Degeling A W, Ozeke L G, Rankin R, et al. 2008. Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves[J]. Journal of Geophysical Research: Space Physics, 113(A2): A02208. DOI: 10.1029/2007ja012411.
    [8] Degeling A W, Rankin R. 2008. Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 113(A10): A10220. DOI: 10.1029/2008ja013254.
    [9] Elkington S R, Hudson M K, Chan A A. 1999. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations[J]. Geophysical Research Letters, 26(21): 3273-3276. DOI: 10.1029/1999gl003659.
    [10] Elkington S R. 2003. Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field[J]. Journal of Geophysical Research, 108(A3): 1116. DOI: 10.1029/2001ja009202.
    [11] Foster J C, Wygant J R, Hudson M K, et al. 2015. Shock-induced prompt relativistic electron acceleration in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 120(3): 1661-1674. DOI: 10.1002/2014ja020642.
    [12] Glaßmeier K H, Volpers H, Baumjohann W. 1984. Ionospheric Joule dissipation as a damping mechanism for high latitude ULF pulsations: Observational evidence[J]. Planetary and Space Science, 32(11): 1463-1466. DOI: 10.1016/0032-0633(84)90088-6.
    [13] Hao Y X, Zong Q G, Wang Y F, et al. 2014. Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail[J]. Journal of Geophysical Research: Space Physics, 119(10): 8262-8273. DOI: 10.1002/2014ja020023.
    [14] Hao Y X, Zong Q G, Zhou X Z, et al. 2017. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions[J]. Geophysical Research Letters, 44(15): 7618-7627. DOI: 10.1002/2017gl074006.
    [15] Horne R B, Thorne R M, Shprits Y Y, et al. 2005. Wave acceleration of electrons in the Van Allen radiation belts[J]. Nature, 437(7056): 227-230. DOI: 10.1038/nature03939.
    [16] Kazue T, McPherron R L. 1984. Standing hydromagnetic oscillations in the magnetosphere[J]. Planetary and Space Science, 32(11): 1343-1359. DOI: 10.1016/0032-0633(84)90078-3.
    [17] Kivelson M G, Southwood D J. 1985. Resonant ULF waves: A new interpretation[J]. Geophysical Research Letters, 12(1): 49-52. DOI: 10.1029/GL012i001p00049.
    [18] Li L, Zhou X Z, Zong Q G, et al. 2017a. Charged particle behavior in localized ultralow frequency waves: Theory and observations[J]. Geophysical Research Letters, 44(12): 5900-5908. DOI: 10.1002/2017gl073392.
    [19] Li L, Zhou X Z, Zong Q G, et al. 2017b. Ultralow frequency wave characteristics extracted from particle data: Application of IGSO observations[J]. Science China Technological Sciences, 60(3): 419-424. DOI: 10.1007/s11431-016-0702-4.
    [20] Li L, Zhou X Z, Omura Y, Wet al. 2018. Nonlinear drift resonance between charged particles and ultralow frequency waves: Theory and observations[J]. Geophysical Research Letters, 45(17): 8773-8782. DOI: 10.1029/2018gl079038.
    [21] Li L, Omura Y, Zhou X Z, et al. 2020. Roles of magnetospheric convection on nonlinear drift resonance between electrons and ULF waves[J]. Journal of Geophysical Research: Space Physics, 125(6): e2020JA027787. DOI: 10.1029/2020ja027787.
    [22] Li L, Zhou X Z, Omura Y, et al. 2021. Drift resonance between particles and compressional toroidal ULF waves in dipole magnetic field[J]. Journal of Geophysical Research: Space Physics, 126(10): e2020JA028842. DOI: 10.1029/2020ja028842.
    [23] Liu H, Zong Q G, Zhou X Z, et al. 2016. Compressional ULF wave modulation of energetic particles in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 121(7): 6262-6276. DOI: 10.1002/2016ja022706.
    [24] Mann I R, Lee E A, Claudepierre S G, et al. 2013. Discovery of the action of a geophysical synchrotron in the Earth's Van Allen radiation belts[J]. Nature Communications, 4(1): 2795. DOI: 10.1038/ncomms3795.
    [25] Northrop T G. 1963. Adiabatic charged-particle motion[J]. Reviews of Geophysics, 1(3): 283-304. DOI: 10.1029/RG001i003p00283.
    [26] Sarris T E, Li X, Temerin M, et al. 2017. On the relationship between electron flux oscillations and ULF wave-driven radial transport[J]. Journal of Geophysical Research: Space Physics, 122(9): 9306-9319. DOI: 10.1002/2016ja023741.
    [27] Schulz M, Lanzerotti L J. 1974. Particle Diffusion in the Radiation Belts[M]//Physics and Chemistry in Space,doi: 10.1007/978-3-642-65675-0
    [28] Shen X C, Zong Q G, Shi Q Q, et al. 2015. Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The time history of events and macroscale interactions during substorms (THEMIS) observations[J]. Journal of Geophysical Research: Space Physics, 120(9): 7179-7190. DOI: 10.1002/2014ja020913.
    [29] Southwood D J, Kivelson M G. 1981. Charged particle behavior in low-frequency geomagnetic pulsations 1. Transverse waves[J]. Journal of Geophysical Research, 86(A7): 5643-5655. DOI: 10.1029/JA086iA07p05643.
    [30] Ukhorskiy A Y. 2005. Impact of toroidal ULF waves on the outer radiation belt electrons[J]. Journal of Geophysical Research, 110(A10): A10202. doi: 10.1029/2005ja011017
    [31] Zhou X Z, Wang Z H, Zong Q G, et al. 2015. Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts[J]. Geophysical Research Letters, 42(15): 6199-6204. DOI: 10.1002/2015gl064988.
    [32] Zhou X Z, Wang Z H, Zong Q G, et al. 2016. Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations[J]. Journal of Geophysical Research: Space Physics, 121(4): 3254-3263. DOI: 10.1002/2016ja022447.
    [33] Zong Q G, Zhou X Z, Li X, et al. 2007. Ultralow frequency modulation of energetic particles in the dayside magnetosphere[J]. Geophysical Research Letters, 34(12): L12105. DOI: 10.1029/2007gl029915.
    [34] Zong Q G, Zhou X Z, Wang Y F, et al. 2009. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt[J]. Journal of Geophysical Research: Space Physics, 114(A10): A10204. DOI: 10.1029/2009ja014393.
    [35] Zong Q, Rankin R, Zhou X. 2017. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth's magnetosphere[J]. Reviews of Modern Plasma Physics, 1(1): 10. DOI: 10.1007/s41614-017-0011-4.
  • 加载中
图(4)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  201
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-30
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2022-05-11

目录

    /

    返回文章
    返回