• ISSN 2097-1893
  • CN 10-1855/P

浅地表面波成像技术研究进展与展望

汪利民 夏江海 罗银河 卞爱飞

引用本文: 汪利民,夏江海,罗银河,卞爱飞. 2022. 浅地表面波成像技术研究进展与展望. 地球与行星物理论评,53(6):613-655
Wang L M, Xia J H, Luo Y H, Bian A F. 2022. Progress and prospect of surface-wave imaging techniques in near-surface applications. Reviews of Geophysics and Planetary Physics, 53(6): 613-655 (in Chinese)

浅地表面波成像技术研究进展与展望

doi: 10.19975/j.dqyxx.2022-008
基金项目: 国家自然科学基金青年基金资助项目(41804142)
详细信息
    作者简介:

    汪利民(1983-),男,副教授,主要从事主被动源地震面波勘探方法的研究和教学工作. E-mail:Liminwang_1983@126.com

  • 中图分类号: P315

Progress and prospect of surface-wave imaging techniques in near-surface applications

Funds: Supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 41804142)
  • 摘要: 基于主动源和被动源的面波成像技术近年来发展迅速,已在全球和区域尺度的地球内部圈层精细结构成像、油气田勘探与开发、浅地表地质调查、工程质量超声检测、环境污染治理成效监测等领域开展了广泛的应用研究. 关于面波成像技术的研究成果,涉及到了从理论到应用的众多方面. 本文简要回顾了主要基于瑞利波和勒夫波的浅地表面波成像技术的发展历程,较为详细地调研并综述了高阶模式面波的应用、多道面波波形反演、被动源面波成像、多分量面波成像等技术的研究进展. 并简要分析了其他关于面波信号采集与处理技术的研究情况,如基于高速铁路噪声信号的高铁地震学和基于光信号在光纤内部后向瑞利散射原理的分布式光纤声波传感技术. 最后对浅地表面波成像技术的发展前景进行了简要地展望.

     

  • 图  1  四层速度递增模型(Model 1)、四层含软弱夹层模型(Model 2)、四层含硬夹层模型(Model 3)示意图

    Figure  1.  Plane-layered model with vertically increasing veloceties (Model 1), Plane-layered model with soft interlayer (Model 2), Plane-layered model with hard interlayer (Model 3)

    图  2  四层模型垂直分量(Z)和径向分量(R)合成多道瑞利波记录频散能谱图. (a,b)四层速度递增模型结果;(c,d)四层含软弱夹层模型结果;(e,f)四层含硬夹层模型结果. M0表示基阶模式波;M1至M4分别表示对应的高阶模式波;图中彩色点线为快速标量传递算法(凡友华等,2002)所计算的对应模型的各阶模式理论频散曲线

    Figure  2.  Dispersion energy curves for synthetic vertical component (Z) and radial component (R) of plane-layered models. (a, b) Represent the results for Model 1; (c, d) Represent the results for Model 2; (e, f) Represent the results for Model 3. M0 represents the fundamental mode. M1, M2, M3 and M4 represent the first to the fourth higher modes. The dot lines represent the corresponding analytical dispersion curves of Rayleigh waves, which were calculated by the fast scalar-transfer algorithm ( Fan et al., 2002)

    图  3  四层模型切向分量(T)合成多道勒夫波记录频散能谱图. (a)四层速度递增模型结果;(b)四层含软弱夹层模型结果;(c)四层含硬夹层模型结果. M0表示基阶模式波;M1至M4分别表示各高阶模式波;图中点线为Knopoff算法(Schwab and Knopoff, 1972)所计算的各模型多阶模式理论频散曲线

    Figure  3.  Dispersion energy curves for synthetic transversal component (T) of plane-layered models. (a) Represents the result for Model 1; (b) Represents the result for Model 2; (c) Represents the result for Model 3. M0 represents the fundamental mode Love-wave dispersion curve. M1, M2, M3, and M4 represent the first to fourth higher modes Love-wave dispersion curves. The dot lines represent the corresponding analytical Love-wave dispersion curves, which were calculated by the Knopoff algorithm (Schwab and Knopoff, 1972)

    图  4  叠加效果对比(修改自 Cheng et al., 2015). (a)传统方式叠加结果;(b)信噪比加权叠加结果

    Figure  4.  Example of quality control using SNR weighting (modified from Cheng et al., 2015). (a) The CVSG with original stacking results; (b) The CVSG with stacking results that have been selected by quality control using SNR

    图  5  实施选择性叠加判别准则前后效果对比(修改自 Cheng et al., 2019). (a)未实施选择性叠加准则获得频散结果;(b)实施选择性叠加准则后获得的频散结果;(c)同测线的主动源面波记录;(d)同测线主动源记录频散测量结果

    Figure  5.  Comparison of dispersion measurement before and after data selection (modified from Cheng et al., 2019). (a) Dispersion measurement before data selection; (b) Dispersion measurement after data selection; (c) Wavefield of the active surface wave in the x-t domain; (d) Dispersion measurement of the active surface wave

    图  6  (a)由铁路列车噪声信号所恢复的虚震源面波炮集;(b)从图(a)所示的虚震源记录中提取的含基阶模式和高阶模式的面波频散能量图;(c)反演图(b)中0~8 Hz基阶模式频散曲线获得的1D横波速度模型(修改自Quiros et al., 2016

    Figure  6.  (a) Virtual-shot gather with station 5 as the source; (b) Dispersion curve for the virtual-shot gather at receiver 5, with the fundamental mode (FM) and a higher mode (HM) labeled; (c) 1D shear wave velocity model obtained from the inversion in the frequency range 0~8 Hz of the dispersion curve from the fundamental mode (modified from Quiros et al., 2016)

    表  1  模型参数表

    Table  1.   Physical parameters for Plane-laered models of Fig. 1

    参数 速度递增模型含软弱夹层模型含硬夹层模型
    层1层2层3层4层1层2层3层4层1层2层3层4
    VP/ (m·s−1) 800 1 200 1 800 2 000 1 200 800 1 800 2 000 800 2 000 1 200 1 800
    VS/ (m·s−1) 200 400 600 800 400 200 600 800 200 800 400 600
    ρ/(kg·m−3) 1 820 1 860 1 910 2 000 1 860 1 820 1 910 2 000 1 820 2 000 1 860 1 910
    h/m 4 4 4 4 4 4 4 4 4
    下载: 导出CSV

    表  2  3C震源与3C检波器联合激发与接收的多分量地震数据中面波类型

    Table  2.   Surface waves types stimulated by 3C sources and acqusited by 3C receivers

    震源激发方向检波器极化方向面波类型
    SzZ瑞利波
    SzR瑞利波
    SzT------
    SrZ瑞利波
    SrR瑞利波
    SrT------
    StZ------
    StR------
    StT勒夫波
    下载: 导出CSV
  • [1] Abo-Zena A. 1979. Dispersion function computation for unlimited frequency values[J]. Geophysical Journal International, 58(1): 91-105. doi: 10.1111/j.1365-246X.1979.tb01011.x
    [2] Aki K. 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 35: 415-456.
    [3] Aki K, Richards P G. 1980. Quantitative Seismology[M]. San Fransisco: W. H. Freeman and Company.
    [4] Alterlman Z, Karal J F C. 1968. Propagation of elastic waves in layered media by finite-difference methods[J]. Bulletin of the Seismological Society of America, 58: 367-398.
    [5] Ardhuin F, Gualtieri L, Stutzmann E. 2015. How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophysical Research Letters, 42: 765-772. doi: 10.1002/2014GL062782
    [6] Bakulin A, Calvert R. 2004. Virtual source: New method for imaging and 4D below complex overburden[C]//The 74th Annual International Meeting, SEG, Expanded Abstracts, 2477-2480.
    [7] 包乾宗, 许杰, 许明瑞. 2019. 高铁地震信号视频特征对比分析[J]. 北京大学学报(自然科学版), 55(5): 805-812

    Bao Q Z, Xu J, Xu M R. 2019. Comparative analysis of time-frequency characteristics of seismic signal induced by high-speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5): 805-812(in Chinese).
    [8] 鲍铁钊, 宁杰远, 张献兵. 2019. 高架桥下方高铁地震波场的特征量提取[J]. 北京大学学报(自然科学版), 55(5): 839-849

    Bao T Z, Ning J Y, Zhang X B. 2019. Extraction of charateristics of wavefield under viaduct produced by high-speed rail[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5): 839-849(in Chinese).
    [9] Baskir E, Weller C E. 1975. Sourceless reflection seismic exploration[J]. Geophysics, 40: 158-159.
    [10] Beaty K S, Schmitt D R, Sacchi M. 2002. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 151(2): 622-631. doi: 10.1046/j.1365-246X.2002.01809.x
    [11] Behm M, Snieder R. 2013. Love waves from local traffic noise interferometry[J]. Leading Edge, 32: 628-632. doi: 10.1190/tle32060628.1
    [12] Behm M, Leahy G M, Snieder R. 2014. Retrieval of local surface wave velocities from traffic noise—an example from the La Barge basin (Wyoming)[J]. Geophysical Prospecting, 62: 223-243. doi: 10.1111/1365-2478.12080
    [13] Benioff H. 1935. A linear strain seismograph[J]. Bulletin of the Seismological Society of America, 25(4): 283-309. doi: 10.1785/BSSA0250040283
    [14] Bensen G D, Ritzwoller M H, Barmin M P, et al., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169: 1239–1260.
    [15] Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. Journal of the Acoustical Society of America, 28: 168-178. doi: 10.1121/1.1908239
    [16] Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II Higher frequency range[J]. Journal of the Acoustical Society of America, 28: 179-191. doi: 10.1121/1.1908241
    [17] Boaga J, Cassiani G, Strobbia C L, et al. 2013. Mode misidentification in Rayleigh waves: Ellipticity as a cause and a cure[J]. Geophysics, 78(4): EN17-EN28. doi: 10.1190/geo2012-0194.1
    [18] Bodet L, Abranham O, Clorennec D. 2009. Near-offset effects on Rayleigh-wave dispersion measurements: Physical modeling[J]. Journal of Applied Geophysics, 68: 95-103. doi: 10.1016/j.jappgeo.2009.02.012
    [19] Bohlen T, Lorang U, Rabbel W, et al. 2007. Rayleigh-to-shear wave conversion at the tunnel face-from 3D-FD modeling to ahead-of-drill exploration[J]. Geophysics, 72(6): 67-79. doi: 10.1190/1.2785978
    [20] Bohlen T, Forbriger T, Groos L, et al. 2015. Applications of elastic full waveform inversion to shallow seismic surface waves[C]//EGU General Assembly Conference Abstract.
    [21] Bonnefoy-Claudet S, Cotton F, Bard P-Y. 2006. The nature of noise wavefield and its applications for site effects studies: A literature review[J]. Earth-Science Reviews, 79: 205-227. doi: 10.1016/j.earscirev.2006.07.004
    [22] Borisov D, Modrak R, Gao F, et al. 2018. 3D elastic full waveform inversion of surface waves in the presence of irregular topography using an envelope-based misfit function[J]. Geophysics, 83(1): R1-R11. doi: 10.1190/geo2017-0081.1
    [23] Brenguier F, Shapiro N M, Campillo M, et al. 2007. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations[J]. Geophysical Research Letters, 34: L02305.
    [24] Brenguier F, Campillo M, Hadziioannou C, et al. 2008a. Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations[J]. Science, 321(5895): 1478-1481. doi: 10.1126/science.1160943
    [25] Brenguier F, Shapiro N M, Campillo M, et al. 2008b. Towards forecasting volcanic eruptions using seismic noise[J]. Nature Geosciences, 1(2): 126-30. doi: 10.1038/ngeo104
    [26] Buchen C W, Ben-Hador R. 1996. Free-mode surface-wave computations[J]. Geophysical Journal International, 124: 869-887. doi: 10.1111/j.1365-246X.1996.tb05642.x
    [27] Calderón-Macías C, Luke B. 2007. Addressing non-uniqueness in inversion of Rayleigh-wave data for shallow profiles containing stiff layers[J]. Geophysics, 72(1): U1-U10. doi: 10.1190/1.2374854
    [28] 曹健, 陈景波. 2019. 移动线源的Green函数求解及辐射能量分析: 高铁地震信号简化建模[J]. 地球物理学报, 62(6): 2303-2312 doi: 10.6038/cjg2019M0654

    Cao J, Chen J B. 2019. Solution of Green function from a moving line source and radiation energy analysis: A simplified modeling of seismic signal induced by high-speed train[J]. Chinese Journal of Geophysics, 62(6): 2303-2312 (in Chinese). doi: 10.6038/cjg2019M0654
    [29] Cao M T, Moreno C, Quintelal P. 2007. Simulation of Rayleigh waves in cracked plates[J]. Mathematical Methods in the Applied Sciences, 30: 15-42. doi: 10.1002/mma.774
    [30] Capon J. 1969. High resolution frequency wavenumber analysis[J]. Proceeding of the IEEE, 57: 1408-1418. doi: 10.1109/PROC.1969.7278
    [31] Cercato M. 2007. Computation of partial derivatives of Rayleigh-wave phase velocity using second-order subdeterminants[J]. Geophysical Journal International, 170: 217-238. doi: 10.1111/j.1365-246X.2007.03383.x
    [32] 柴华友, 吴慧明, 张电吉, 等. 2008. 弹性介质中表面波理论及其在岩土工程中应用[M]. 北京: 科学出版社, 253-260

    Chai H Y, Wu H M, Zhang D J, et al. 2008. Surface Waves in Elastic Media and Their Applications in Geotechnical Engineering[M]. Beijing: Science Press, 253-260 (in Chinese).
    [33] Chen J, Ning J, Chen W, et al. 2019. Distributed acoustic sensing coupling noise removal based on sparse optimization[J]. Interpretation, 7(2): T373-382. doi: 10.1190/INT-2018-0080.1
    [34] 陈龙珠, 黄秋菊, 夏唐代. 1998. 饱和地基中瑞利波的弥散特性[J]. 岩土工程学报, 20(3): 6-9 doi: 10.3321/j.issn:1000-4548.1998.03.003

    Chen L Z, Huang Q J, Xia T D. 1998. Dispersion of Rayleigh wave in a saturated soil ground[J]. Chinese Journal of Geotechnical Engineering, 20(3): 6-9 (in Chinese). doi: 10.3321/j.issn:1000-4548.1998.03.003
    [35] 陈棋福, 李丽, 李纲, 等. 2004. 列车振动的地震记录信号特征[J]. 地震学报, 6: 651-659 doi: 10.3321/j.issn:0253-3782.2004.06.011

    Chen Q F, Li L, Li G, et al. 2004. Seismic features of vibration induced by train[J]. Acta Seismologica Sinica, 26(6): 651-659(in Chinese). doi: 10.3321/j.issn:0253-3782.2004.06.011
    [36] 陈棋福, 刘澜波, 王伟君, 等. 2008. 利用地脉动探测北京城区的地震动场地响应[J]. 科学通报, 53(18): 2229-2235 doi: 10.3321/j.issn:0023-074X.2008.18.013

    Chen Q F, Liu L B, Wang W J, et al. 2008. Detection of ground motion site response in Beijing urban area using microtremor[J]. Chinese Science Bulltine, 53(18): 2229-2235(in Chinese). doi: 10.3321/j.issn:0023-074X.2008.18.013
    [37] Chen X H, Zhang H Y, Zhou C J, et al. 2021. Using ambient noise tomography and MAPS for high resolution stratigraphic identification in Hangzhou urban area[J]. Journal of Applied Geophysics, 189: 104327. doi: 10.1016/j.jappgeo.2021.104327
    [38] Chen X F. 1993. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 115: 391-409. doi: 10.1111/j.1365-246X.1993.tb01194.x
    [39] 陈颙, 陈龙生, 于晟. 2003. 城市地球物理学发展展望[J]. 大地测量与地球动力学, 3(4): 1-4

    Chen Y, Chen L S, Yu S. 2003. Urban geophysics: A new discipline of earth science[J]. Journal of Geodesy and Geodynamics, 3(4): 1-4(in Chinese).
    [40] 陈云敏, 吴世明. 1991. 成层地基的Rayleigh波特征方程的解[J]. 浙江大学学报, 25(1): 40-52

    Chen Y M, Wu S M, 1991. A new method to solve characteristic equation[J]. Journal of Zhejiang University (Natural Science), 25(1): 40-52 (in Chinese).
    [41] 陈运泰. 1974a. 多层弹性半空间中的地震波(一)[J]. 地球物理学报, 17(1): 20-43

    Chen Y T. 1974a. Seismic waves in multilayered elastic half-space (I)[J]. Chinese Journal of Geophysics, 17(1): 20-43(in Chinese).
    [42] 陈运泰. 1974b. 多层弹性半空间中的地震波(二)[J]. 地球物理学报, 17(3): 173-185

    Chen Y T. 1974b. Seismic waves in multilayered elastic half-space (II)[J]. Chinese Journal of Geophysics, 17(3): 173-185 (in Chinese).
    [43] Cheng F, Xia J H, Xu Y X, et al. 2015. A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves[J]. Journal of Applied Geophysics, 117: 126-135. doi: 10.1016/j.jappgeo.2015.04.005
    [44] Cheng F, Xia J H, Luo Y H, et al. 2016. Multichannel analysis of passive surface waves based on crosscorrelations[J]. Geophysics, 81(5): EN57-EN66. doi: 10.1190/geo2015-0505.1
    [45] Cheng F, Xia J H, Xu Z B, et al. 2018. Frequency-wavenumber (FK)-based data selection in high-frequency passive surface wave survey[J]. Surveys in Geophysics, 39: 661-682. doi: 10.1007/s10712-018-9473-3
    [46] Cheng F, Xia J H, Behm M, et al. 2019. Automated data selection in the Tau-p domain: Application to passive surface wave imaging[J]. Surveys in Geophysics, 40: 1211-1228. doi: 10.1007/s10712-019-09530-2
    [47] Cheng F, Chi B X, Lindsey N J, et al. 2021a. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization[J]. Scientific Reports, 11: 5613. https://doi.org/10.1038/s41598-021-84845-y.
    [48] Cheng F, Xia J H, Ajo-Franklin J B, et al. 2021b. High-resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra-short observation[J]. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB021827.
    [49] Chiang C M, Mostafa A F. 1981. Wave-induced responses in a fluid-filled poro-elastic solid with a free surface boundary layer theory[J]. Geophysical Journal Royal Astronomical Society, 66: 597-631. doi: 10.1111/j.1365-246X.1981.tb04892.x
    [50] Claerbout J F. 1968. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 33: 264. doi: 10.1190/1.1439927
    [51] Cho Y S. 2003. Non-destructive testing of high strength concrete using spectral analysis of surface waves[J]. NDT&E International, 36(4): 229-235.
    [52] Cole S. 1995. Passive seismic and drill-bit experiments using 2D arrays[D]. Stanford: Stanford University.
    [53] Crase E, Pica A, Nobel M. 1990. Robust elastic nonlinear waveform inversion: Application to real data[J]. Geophysics, 55(5): 527-538. doi: 10.1190/1.1442864
    [54] 崔永福, 彭更新, 吴国忱, 等. 2016. 全波形反演在缝洞型储层速度建模中的应用[J]. 地球物理学报, 59(7): 2713-2725 doi: 10.6038/cjg20160734

    Cui Y F, Peng G X, Wu G C, et al. 2016. Application of full waveform inversion velocity model-building technology for the fractured-vuggy reservoir[J]. Chinese Journal of Geophysics, 59(7): 2713-2725(in Chinese). doi: 10.6038/cjg20160734
    [55] Dai T, Xia J, Ning L, et al. 2021. Deep learning for extracting dispersion curves[J]. Surveys in Geophysics. 42: 69–95. doi: 10.1007/s10712-020-09615-3
    [56] 戴文杰. 2018. 矢量波数变换方法在背景噪声成像上的应用[D]. 合肥: 中国科学技术大学.

    Dai W J. 2018. Application of vector wavenumber transformation method in ambient noise tomography[D]. Hefei: University of Science and Technology of China (in Chinese).
    [57] 戴文杰, 潘磊, 王建楠, 等. 2021. 频率—贝塞尔变换方法在巢湖滩涂浅层勘探上的应用[J]. 物探化探计算技术, 43(3): 290-295 doi: 10.3969/j.issn.1001-1749.2021.03.04

    Dai W J, Pan L, Wang J N, et al. 2021. Application of frequency-bessel transform method in shallow exploration of the beach of Chaohu lake[J]. Computing Techniques for Geophysical and Geochemical Exploration, 43(3): 290-295 (in Chinese). doi: 10.3969/j.issn.1001-1749.2021.03.04
    [58] Dal Moro G, Pipan M, Gabrielli P. 2007. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation[J]. Journal of Applied Geophysics, 61(1): 39-55. doi: 10.1016/j.jappgeo.2006.04.002
    [59] Dal Moro G, Ferigo F. 2011. Joint analysis of Rayleigh- and Love-wave dispersion: Issues, criteria and improvement[J]. Journal of Applied Geophysics, 75(3): 573-589. doi: 10.1016/j.jappgeo.2011.09.008
    [60] Dal Moro G, Keller L. 2013. Unambiguous determination of the VS profile via joint analysis of multi-component active and passive seismic data[C]//Proceedings of the Near Surface Geoscience 2013 19th European Meeting of Environmental and Engineering Geophysics.
    [61] Dal Moro G, Moura R M M, Moustafa S S. 2015. Multi-component joint analysis of surface waves[J]. Journal of Applied Geophysics, 119: 128-138. doi: 10.1016/j.jappgeo.2015.05.014
    [62] Dal Moro G, Keller L, Al-Arifi N S, et al. 2016. Shear-wave velocity profiling according to three alterative approaches: A comparative case study[J]. Journal of Applied Geophysics, 134: 112-124. doi: 10.1016/j.jappgeo.2016.08.011
    [63] Dal Moro G, Al-Arifi N, Moustafa S S. 2017. Analysis of Rayleigh-wave particle motion from active seismics[J]. Bulletin of the Seismological Society of America, 107(1): 51-62. doi: 10.1785/0120160063
    [64] Dal Moro G, Moustafa S S, Al-Arifi N S. 2018. Improved holistic analysis of Rayleigh waves for single- and multi-offset data: Joint inversion of Rayleigh-wave particle motion and vertical- and radial-component velocity spectra[J]. Pure and Applied Geophysics, 175(1): 67-88. doi: 10.1007/s00024-017-1694-8
    [65] De Nil D. 2005. Characteristics of surface waves in media with significant vertical variations in elasto-dynamic properties[J]. Journal of Environmental and Engineering Geophysics, 10(3): 263-274. doi: 10.2113/JEEG10.3.263
    [66] Degrande G, Schillemans L. 2001. Free field vibrations during the passage of a Thalys high-speed train at variable speed[J]. Journal of Sound and Vibration, 247(1): 131–144. doi: 10.1006/jsvi.2001.3718
    [67] Ditzel A, Herman G C, Holscher P, et al. 2001. Elastic waves generated by high-speed trains[J]. Journal of Computational Acoustics, 9(3): 833-840. doi: 10.1142/S0218396X01001133
    [68] Dorman J, Ewing M. 1962. Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York-Pennsylvania area[J]. Journal of Geophysical Research, 67(13): 5227-5241. doi: 10.1029/JZ067i013p05227
    [69] Dou S, Lindsey N, Wagner A M, et al. 2017. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study[J]. Scientific Reports, 7(1): 11620. doi: 10.1038/s41598-017-11986-4
    [70] Draganov D, Wapenaar K, Thorbecke J. 2006. Seismic interferometry: Reconstructing the Earth’s reflection response[J]. Geophysics, 71(4): SI61–SI170. doi: 10.1190/1.2209947
    [71] Draganov D, Wapenaar K, Mulder W, et al. 2007. Retrieval of reflections from seismic background-noise measurements[J]. Geophysical Research Letters, 34: L04305.
    [72] Draganov D, Campman X, Thorbecke J, et al. 2009. Reflection images from ambient seismic noise[J]. Geophysics, 74(5): A63-A67. doi: 10.1190/1.3193529
    [73] Du Z. 2002. Waveform inversion for lateral heterogeneities using multimode surface waves[J]. Geophysical Journal International, 149(2): 300-312. doi: 10.1046/j.1365-246X.2002.01674.x
    [74] Duvall T L, Jefferies S M, Harvey J W, et al. 1993. Time-distance helioseismology[J]. Nature, 362: 430-432. doi: 10.1038/362430a0
    [75] Edme P, Muyzert E, Kragh E. 2014. Efficient land seismic acquisition sampling using rotational data[C]//Expanded Abstract of 76th EAGE Conference and Exhibition.
    [76] Eker A M, Akg N H, Kockar M K. 2012. Local site characterization and seismic zonation study by utilizing active and passive surface wave methods: A case study for the northern side of Ankara, Turkey[J]. Engineering Geology, 151: 64-81. doi: 10.1016/j.enggeo.2012.09.002
    [77] Ekström G. 2001. Time domain analysis of Earth’s long-period background seismic radiation[J]. Journal of Geophysical Research, 106: 26483-26493. doi: 10.1029/2000JB000086
    [78] Estrella H F, Gonzalez J A. 2003. SPAC: An alternative method to estimate earthquake site effects in Maxico City[J]. Geofisica Internacional, 42(2): 227-236. doi: 10.22201/igeof.00167169p.2003.42.2.267
    [79] 凡友华. 2001. 层状介质中瑞利面波频散曲线的正反演研究[D]. 哈尔滨: 哈尔滨工业大学.

    Fan Y H. 2001. Reserch on forward-deduction and inversion of dispersion curves of Rayleigh waves in multilayered media[J]. Harbin: Harbin Institute of Technology (in Chinese).
    [80] 凡友华, 刘家琦. 2001. 层状介质中瑞雷面波的频散研究[J]. 哈尔滨工业大学学报, 33(5): 577-581 doi: 10.3321/j.issn:0367-6234.2001.05.001

    Fan Y H, Liu J Q. 2001. Research on the dispersion of Rayleigh waves in multilayered media[J]. Journal of Harbin Institute of Technology, 33(5): 577-581(in Chinese). doi: 10.3321/j.issn:0367-6234.2001.05.001
    [81] 凡友华, 刘家琦, 肖柏勋. 2002. 计算瑞利波频散曲线的快速矢量算法[J]. 湖南大学学报. 29(5): 25-30.

    Fan Y H, Liu J Q, Xiao B X. 2002. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University (Natural Sciences Edition), 29(5), 25-30 (in Chinese).
    [82] 凡友华, 陈晓非, 刘雪峰, 等. 2007. Rayleigh波的频散方程高频近似分解和多模式激发数目[J]. 地球物理学报, 50(1): 233-239 doi: 10.3321/j.issn:0001-5733.2007.01.029

    Fan Y H, Chen X F, Liu X F, et al. 2007. Approximate decomposition of the dispersion equation at high frequencies and the number of multimodes for Rayleigh waves[J]. Chinese Journal of Geophysics, 50(1): 233-239(in Chinese). doi: 10.3321/j.issn:0001-5733.2007.01.029
    [83] Fang H J, Yao H J, Zhang H J, et al. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application[J]. Geophysical Journal International, 201: 1251-1263. doi: 10.1093/gji/ggv080
    [84] Feng S K, Takeshi S, Hiroaki Y. 2005. Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations[J]. Exploration Geophysics, 36: 26-33. doi: 10.1071/EG05026
    [85] Folger D S, Doser D, Velasco I, et al. 2005. Determining subsurface structure from microtremors using a passive circular array[C]//Eos Trans. AGU 2005 Fall Meeting, 86(52).
    [86] Forghani F, Snieder R. 2010. Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry[J]. Leading Edge, 29: 790–794.
    [87] Foti S, Lai C, Rix G, et al. 2014. Surface Wave Methods for Near Surface Site Characterization[M]. Boca Raton: CRC Press, 393-402.
    [88] 傅磊, 刘四新. 2016. 基于交叉梯度约束的地震初至纵波和瑞雷面波联合反演[J]. 地球物理学报, 59(12): 4464-4472 doi: 10.6038/cjg20161209

    Fu L, Liu S X. 2016. Joint inversion of first arrival P waves and Rayleigh waves based on cross-gradient constraint[J]. Chinese Journal of Geophysics, 59(12): 4464-4472(in Chinese). doi: 10.6038/cjg20161209
    [89] Fuchs F, Bokelmann G, AlpArray Working Group, et al. 2018. Equidistant spectral lines in train vibrations[J]. Seismological Research Letters, 89(1): 56–66. doi: 10.1785/0220170092
    [90] Galiana-Merino J J, Parolai S, Rosaherranz J. 2011. Seismic wave characterization using complex trace analysis in the stationary wavelet packet domain[J]. Soil Dynamics and Earthquake Engineering, 31(11): 1565-1578. doi: 10.1016/j.soildyn.2011.06.009
    [91] 高广运, 李志毅, 邱畅. 2005. 弹性半空间不规则异质体引起的瑞利波散射[J]. 岩土工程学报, 27(4): 378-382 doi: 10.3321/j.issn:1000-4548.2005.04.003

    Gao G Y, Li Z Y, Qiu C. 2005. Scattering of Rayleigh wave from irregular obstacles in elastic half-space[J]. Chinese Journal of Geothechnical Engineering, 27(4): 378-382 (in Chinese). doi: 10.3321/j.issn:1000-4548.2005.04.003
    [92] Gao L L, Xia J H, Pan Y D. 2014. Misidentification caused by leaky surface wave in high-frequency surface wave method[J]. Geophysical Journal International, 199(3): 1452-1462. doi: 10.1093/gji/ggu337
    [93] Gao L L, Pan Y D. 2018. Source signature estimation from multimode surface waves via mode-separated virtual real source method[J]. Geophysical Journal International, 213: 1177-1186. doi: 10.1093/gji/ggy063
    [94] Gao L L, Pan Y D, Bohlen T. 2020. 2-D multiparameter viscoelastic shallow-seismic full-waveform inversion: reconstruction tests and first field-data application[J]. Geophysical Journal International, 222: 560-571. doi: 10.1093/gji/ggaa198
    [95] Gao L L, Pan Y D, Rieder A, et al. 2021. Multiparameter viscoelastic full-waveform inversion of shallow-seismic surface waves with a pre-conditioned truncated Newton method[J]. Geophysical Journal International, 227: 2044–2057. doi: 10.1093/gji/ggab311
    [96] García-Jerez A, Seivane H, Navarro M, et al. 2019. Joint analysis of Rayleigh-wave dispersion curves and diffuse-field HVSR for site characterization: The case of El-Ejido town (SE Spain)[J]. Soil Dynamics and Earthquake Engineering, 121: 102-120. doi: 10.1016/j.soildyn.2019.02.023
    [97] Gouveia F, Lopes I, Gomes R C. 2016. Deeper VS profile from joint analysis of Rayleigh wave data[J]. Engineering Geology, 202: 85-98. doi: 10.1016/j.enggeo.2016.01.006
    [98] Gribler G, Liberty L M, Mikesell T D, et al. 2016. Isolating retrograde and prograde Rayleigh-wave modes using a polarity mute[J]. Geophysics, 81(5): V379-V385. doi: 10.1190/geo2015-0683.1
    [99] Groos L, Schafer M, Forbriger T, et al. 2014. The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves[J]. Geophysics, 79(6): R247-R261. doi: 10.1190/geo2013-0462.1
    [100] Groos L, Schfer M, Forbriger T, et al. 2017. Application of a complete workflow for 2D elastic full-wave inversion to recorded shallow-seismic Rayleigh waves[J]. Geophysics, 82(2): R109-R117. doi: 10.1190/geo2016-0284.1
    [101] Gu N, Wang K D, Gao J, et al. 2019. Shallow crustal structure of the Tanlu fault zone near Chao lake by direct surface wave tomography from local dense array ambient noise analysis[J]. Pure and Applied Geophysics, 176: 1193-1206. doi: 10.1007/s00024-018-2041-4
    [102] Guan B, Mi B B, Zhang H Y, et al. 2021. Selection of noise sources and short-time passive surface wave imaging-A case study on fault investigation[J]. Journal of Applied Geophysics, 194: 104437. doi: 10.1016/j.jappgeo.2021.104437
    [103] 管建博, 李宇, 殷裁云, 等. 2021. 基于拟Hessian梯度预处理算子的勒夫波全波形反演[J]. 煤田地质与勘探, 49(4): 49-59 doi: 10.3969/j.issn.1001-1986.2021.04.007

    Guan J B, Li Y, Yin C Y. et al. 2021. Love wave full waveform inversion via Pseudo-Hessian gradient preconditioning operator[J]. Coal Geology & Exploration, 49(4): 49-59(in Chinese). doi: 10.3969/j.issn.1001-1986.2021.04.007
    [104] Halliday D, Curtis A, Kragh E. 2008. Seismic surface waves in a suburban environment: active and passive interferometric methods[J]. Leading Edge, 27: 210-218. doi: 10.1190/1.2840369
    [105] Harkrider D G. 1964. Surface waves in multilayered elastic media I Rayleigh and Love waves from buried sources in a multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 54(2): 627-679. doi: 10.1785/BSSA0540020627
    [106] Harmankaya U, Kaslilar A, Thorbeck J, et al. 2013. Locating near-surface scattering using non-physical scattered waves resulting from seismic interferometry[J]. Journal of Applied Geophysics, 91: 66-81. doi: 10.1016/j.jappgeo.2013.02.004
    [107] Hartog A H, Kotov O I, Liokumovich L B. 2013. The optics of distributed vibration sensing[C]//93rd Ann. Internat Mtg. , Soc. Expi. Geophys. , Expanded Abstracts.
    [108] Haskell N A. 1953. The dispersion of surface waves on multilayered medium[J]. Bulletin of the Seismological Society of America, 43(1): 17-34. doi: 10.1785/BSSA0430010017
    [109] Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Reviews of Geophysics, 1: 177-210. doi: 10.1029/RG001i002p00177
    [110] Haubrich R A, Munk W H, Snodgrass F E. 1963. Comparative spectra of microseisms and swell[J]. Bulletin of the Seismological Society of America, 53: 27-37. doi: 10.1785/BSSA0530010027
    [111] Haubrich R A, McCamy K. 1969. Microseisms: Coastal and pelagic sources[J]. Reviews of Geophysics, 7(3): 539-571 doi: 10.1029/RG007i003p00539
    [112] Hayashi K, Martin A, Hatayama K. et al. 2013. Estimating deep S-wave velocity structure in the Los Angles Basin using a passive surface-wave method[J]. The Leading Edge, 32(6): 620-626. doi: 10.1190/tle32060620.1
    [113] 何耀锋, 陈蔚天, 陈晓非. 2006. 利用广义反射—透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题[J]. 地球物理学报, 49(4): 1074-1081 doi: 10.3321/j.issn:0001-5733.2006.04.020

    He Y F, Chen W T, Chen X F. 2006. Normal mode computation by the generalized reflection-transmission coefficient method in planar layered half space[J]. Chinese Journal of Geophysics, 49(4): 1074-1081(in Chinese). doi: 10.3321/j.issn:0001-5733.2006.04.020
    [114] 何正勤, 丁志峰, 贾辉, 等. 2007. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 50(2): 492-498 doi: 10.3321/j.issn:0001-5733.2007.02.021

    He Z Q, Ding Z F, Jia H, et al. 2007. To determine the velocity structure of shallow crust with surface wave information in microtremous[J]. Chinese Journal of Geophysics, 50(2): 492-498 (in Chinese). doi: 10.3321/j.issn:0001-5733.2007.02.021
    [115] 和振兴, 翟婉明. 2007. 高速列车作用下板式轨道引起的地面振动[J]. 中国铁道科学, 28(2): 7-11 doi: 10.3321/j.issn:1001-4632.2007.02.002

    He Z X, Zhai W M. 2007. Ground vibration generated by high speed trains along slab tracks[J]. China Railway Science, 28(2): 7-11 (in Chinese). doi: 10.3321/j.issn:1001-4632.2007.02.002
    [116] Hestholm S O, Ruud B O, Husebye E S. 1999. 3D versus 2D finite-difference seismic synthetics including real surface topography[J]. Physics of the Earth and Planetary Interiors, 113: 339-354. doi: 10.1016/S0031-9201(99)00010-2
    [117] Hevin G, Abraham O, Pedersen H A, et al. 1998. Characterisation of surface cracks with Rayleigh waves: a numerical model[J]. Nondestructive Testing and Evaluation International, 31(4): 289-297.
    [118] Hiroshi A, Koji T. 2004. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bulletin of the Seismological Society of America, 94(1): 53-63. doi: 10.1785/0120030028
    [119] 胡光辉, 张固澜, 孙思宇, 等. 2019. 高铁地震信号直达波波形反演建模[J]. 地球物理学报, 62(12): 4817-4824 doi: 10.6038/cjg2019N0163

    Hu G H, Zhang G L, Sun S Y, et al. 2019. FWI of high-speed-train seismic first arrival signal[J]. Chinese Journal of Geophysics, 62(12): 4817-4824 (in Chinese). doi: 10.6038/cjg2019N0163
    [120] Hu J, Qiu H R, Zhang H J, et al. 2020. Using deep learning to derive shear wave velocity models from surface wave dispersion[J]. Seismological Research Letters, 91 (3): 1738–1751. doi: 10.1785/0220190222
    [121] Hu S Q, Luo S, Yao H J. 2020. The frequency-Bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 125: e2020JB019630.
    [122] Husler M, Schmelzbach C, Sollberger D. 2018. The Galperin source: A novel efficient multicomponent seismic source[J]. Geophysics, 83(6): P19-P27. doi: 10.1190/geo2018-0020.1
    [123] Igel H, Schreiber U, Flaws A, et al. 2005. Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003[J]. Geophysical Journal International, 32: L08309.
    [124] Ikeda T, Matsuoka T. 2013. Computation of Rayleigh waves on transversely isotropic media by the reduced delta matrix method[J]. Bulletin of the Seismological Society of America, 103(3): 2083-2093. doi: 10.1785/0120120207
    [125] Ikeda T, Matsouka T, Tsuji T, et al. 2015. Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves[J]. Geophysics, 80(1): EN1-EN11.
    [126] Imai T, Tonouchi K. 1982. Correlation of N-value with S-wave velocity and shear modulus[C]// Proceedings of the Second European Symposium on Penetration Testing, 67-72.
    [127] Ivanov J, Miller R D, Xia J H, et al. 2006. Joint inversion of refractions with surface waves: An inverse solution to the refraction-traveltime problem[J]. Geophysics, 71(6): R131-R138. doi: 10.1190/1.2360226
    [128] 蒋一然, 鲍铁钊, 宁杰远, 等. 2019a. 高架桥下方高铁地震信号频谱特征研究 [J]. 北京大学学报(自然科学版), 55(5): 829-838

    Jiang Y R, Bao T Z, Ning J Y, et al. 2019a. Spectral characteristics of high-speed rail seismic signal under viaduct[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5): 829-838(in Chinese).
    [129] 蒋一然, 梁萱, 宁杰远, 等. 2019b. 高铁地震 4D 地频图及其可用性研究[J]. 北京大学学报(自然科学版), 55(5): 850-858

    Jiang Y R, Liang X, Ning J Y, et al. 2019b. 4D ground frequency map: Concept and application[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5): 850-858 (in Chinese).
    [130] John P. 1961. Rayleigh waves in a porous, elastic, saturated solid[J]. The Journal of the Acoustical Society of American, 33(7): 625-630.
    [131] Jones J. 1961. Rayleigh wave in a porous elastic saturated solid[J]. Journal of the Acoustical Society of America, 33: 959-962. doi: 10.1121/1.1908865
    [132] Kang T S, Shin J S. 2006. Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea[J]. Geophysical Research Letters, 33: L17303. doi: 10.1029/2006GL027044
    [133] Kaynia A M, Madshus C, Zackrisson P. 2000. Ground vibration from high-speed trains: Prediction and countermeasure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 126: 531-537. doi: 10.1061/(ASCE)1090-0241(2000)126:6(531)
    [134] Kennett B L N. 1974. Reflection rays and reverberations[J]. Bulletin of the Seismological Society of America, 64(6): 1685-1696. doi: 10.1785/BSSA0640061685
    [135] Kennett B L N, Clarke T J. 1983. Seismic waves in stratified half-space IV: P-SV wave decoupling and surface wave dispersion[J]. Geophysical Journal International, 72(3): 633-645. doi: 10.1111/j.1365-246X.1983.tb02824.x
    [136] Knapmeyer-Endrun B, Golombek M P, Ohrnberger M. 2017. Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed insight landing site in Elysium Planitia, Mars[J]. Space Science Reviews, 211: 339-382. doi: 10.1007/s11214-016-0300-1
    [137] Knopoff L. 1964. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 54(1): 431-438. doi: 10.1785/BSSA0540010431
    [138] Köhn D, Meier T, Fehr M, et al. 2016. Application of 2D elastic Rayleigh waveform inversion to ultrasonic laboratory and field data[J]. Near Surface Geophysics, 14(5): 461-476.
    [139] Koper K D, Seats K, Benz H. 2010. On the composition of Earth’s short-period seismic noise field[J]. Bulletin of the Seismological Society of America, 100: 606-617. doi: 10.1785/0120090120
    [140] Lancelle C. 2016. Distributed acoustic sensing for imaging near-surface geology and monitoring traffic at Garner Valley, California[D]. The University of Wisconsin-Madison.
    [141] Lee W K, Celebi M, Todorovska M, et al. 2007. Rotational seismology and engineering applications[C]//Proceedings for the first international workshop. Menlo Park: US Geological Survey, 1-46.
    [142] Lee W K, Celebi M, Todorovska M, et al. 2009. Introduction to the special issue on rotational seismology and engineering applications[J]. Bulletin of the Seismological Society of America, 99(2B): 945-957. doi: 10.1785/0120080344
    [143] Lehujeur M, Vergne J, Maggi A, et al. 2016. Ambient noise tomography with non-uniform noise sources and low aperture networks: Case study of deep geothermal reservoirs in northern Alsace, France[J]. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 208(1): 193-210.
    [144] Lehujeur M, Vergne J, Schmittbuhl J, et al. 2018. Reservoir imaging using ambient noise correlation from a dense seismic network[J]. Journal of Geophysical Research: Solid Earth, 123(8): 6671-6686.
    [145] Lei Y H, Shen H Y, Li X X, et al. 2019. Inversion of Rayleigh wave dispersion curves via adaptive GA and nested DLS[J]. Geophysical Journal International, 218(1): 547-559. doi: 10.1093/gji/ggz171
    [146] Lerner-Lam A L, Jordan T J. 1983. Earth structure from fundamental and higher-mode waveform analysis[J]. Geophysical Journal international, 75(3): 759-797. doi: 10.1111/j.1365-246X.1983.tb05009.x
    [147] Levshin A L. 1985. Effects of lateral inhomogeneities on surface waves amplitude measurements[J]. Annual Geophysics, 3(4): 511 -518.
    [148] Levshin A L, Ritzwoller M, Shapriro N. 2005. The use of crustal higher modes to constrain crustal structure across Central Asia[J]. Geophysical Journal International, 160(3): 961-972. doi: 10.1111/j.1365-246X.2005.02535.x
    [149] Li C, Yao H J, Fang H J. et al. 2016. 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China[J]. Seismological Research Letters, 87(4): 882-892. doi: 10.1785/0220150257
    [150] Li G L, Niu F L, Yang Y J, et al. 2019. Joint inversion of Rayleigh wave phase velocity, particle motion, and teleseismic body wave data for sedimentary structures[J]. Geophysical Research Letters, 46(12): 6469-6478. doi: 10.1029/2019GL082746
    [151] 黎汉民. 2018. 矢量波数变换方法在浅层勘探中的应用[D]. 合肥: 中国科学技术大学.

    Li H M. 2018. Application of vector wavenumber transformation method in shallow layer exploration[D]. Hefei: University of Science and Technology of China (in Chinese).
    [152] Li J, Lin F C, Allam A, et al. 2019. Wave equation dispersion inversion of surface waves recorded on irregular topography[J]. Geophysical Journal International, 217(1): 346-360. doi: 10.1093/gji/ggz005
    [153] 李丽, 彭文涛, 李纲, 等. 2004. 可作为新震源的列车振动及实验研究[J]. 地球物理学报, 47(4): 680-684 doi: 10.3321/j.issn:0001-5733.2004.04.019

    Li L, Peng W T, Li G, et al. 2004. Vibration induced by trains: a new seismic source and relative test[J]. Chinese Journal of Geophysics, 47(4): 680-684 (in Chinese). doi: 10.3321/j.issn:0001-5733.2004.04.019
    [154] Li X X, Li Q C. 2016. Near-surface ambient noise tomography in the Baogutu copper deposit area[J]. Journal of Geophysics and Engineering, 13(6): 868-874. doi: 10.1088/1742-2132/13/6/868
    [155] 李欣欣, 李庆春. 2017. 利用改进的F-K变换法提取瑞雷波的频散曲线[J]. 地球物理学进展, 32(1): 191-197 doi: 10.6038/pg20170126

    Li X X, Li Q C. 2017. Rayleigh wave dispersion curve imaging using improved F-K transform approach[J]. Progress in Geophysics, 32(1): 191-197(in Chinese). doi: 10.6038/pg20170126
    [156] 李雪燕. 2019. 城市微动高阶面波在浅层成像中的应用[D]. 合肥: 中国科学技术大学.

    Li X Y. 2019. Application of higher-mode surface wave in shallow imaging[D]. Hefei: University of Science and Technology of China (in Chinese).
    [157] 李雪燕, 陈晓非, 杨振涛, 等. 2020. 城市微动高阶面波在浅层勘探中国的应用: 以苏州河地区为例[J]. 地球物理学报, 63(1): 247-255 doi: 10.6038/cjg2020N0202

    Li X Y, Chen X F, Yang Z T, et al. 2020. Application of high-order surface waves in shallow exploration: An example of the Suzhou river, Shanghai[J]. Chinese Journal of Geophysics, 63(1): 247-255(in Chinese). doi: 10.6038/cjg2020N0202
    [158] 李幼铭, 束沛镒. 1982. 层状介质中地震面波频散函数和体波广义反射系数的计算[J]. 地球物理学报, 25(2): 130-139 doi: 10.3321/j.issn:0001-5733.1982.02.004

    Li Y M, Shu P Y. 1982. On surface wave dispersion and body wave generalized reflection coefficient computations for layered media[J]. Chinese Journal of Geophysics, 25(2): 130-139(in Chinese). doi: 10.3321/j.issn:0001-5733.1982.02.004
    [159] Li Z H, Van Der Baan M. 2017. Tutorial on rotational seismology and its applications in exploration geophysics rotational seismology for exploration[J]. Geophysics, 82(5): W17-W30. doi: 10.1190/geo2016-0497.1
    [160] Li Z, Shi C, Chen X. 2021. Constrains on crustal P wave structure with leaking mode dispersion curves[J]. Geophysical Research Letters,DOI: 10.1029/2020GL091782.
    [161] Li Z Y, Kovachki N, Azizzadenesheli K, et al. 2021. Fourier neural operator for parametric partial differential equations[C]//Ninth International Conference on Learning Representations, 1-16.
    [162] Liang Q, Chen C, Zeng C, et al. 2008. Inversion stability analysis of multimode Rayleigh-wave dispersion curves using low-velocity-layer models[J]. Near Surface Geophysics, 6(3): 157-165. doi: 10.3997/1873-0604.2007040
    [163] Lin C J, Huang H P, Pham N D, et al. 2011. Rotational motions for teleseismic surface waves[J]. Geophysical Research Letters, 38: L15301.
    [164] Lin F C, Schmandt B, Tsai V C. 2012. Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust[J]. Geophysical Research Letters, 39(12): L12303.
    [165] Lin F C, Li D, Clayton R W, et al. 2013a. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 78: Q45-Q56. doi: 10.1190/geo2012-0453.1
    [166] Lin F C, Tsai V C, Schmandt B, et al. 2013b. Extracting seismic core phases with array interferometry[J]. Geophysical Research Letters, 40: 1049-1053. doi: 10.1002/grl.50237
    [167] 林融冰, 曾祥方, 宋政宏, 等. 2020. 分布式光纤声波传感系统在近地表成像中的应用 II: 背景噪声成像[J]. 地球物理学报, 63(4): 1622-1629 doi: 10.6038/cjg2020N0272

    Lin R B, Zeng X F, Song Z H. et al. 2020. Distributed acoustic sensing for imaging shallow structure II: Ambient noise tomography[J]. Chinese Journal of Geophysics, 63(4): 1622-1629(in Chinese). doi: 10.6038/cjg2020N0272
    [168] Lindsey N J, Martin E R, Dreger D S, et al. 2017. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 44(23): 11792-11799.
    [169] Liu H P, David M B, William B J, et al. 2000. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles[J]. Bulletin of the Seismological Society of America, 90(3): 666-678. doi: 10.1785/0119980186
    [170] 刘江平, 侯卫生, 许顺芳. 2003. 相邻道Rayleigh波法及在防渗墙强度检测中的应用[J]. 人民长江. 34(2): 34-36 doi: 10.3969/j.issn.1001-4179.2003.02.015

    Liu J P, Hou W S, Xu S F. 2003. Adjacent-channel transient Rayleigh wave method and its application in compression strength test of water-tight wall[J]. Yangtze River, 34(2): 34-36(in Chinese). doi: 10.3969/j.issn.1001-4179.2003.02.015
    [171] 刘磊, 蒋一然. 2019. 大量高铁地震事件的属性体提取与特性分析[J]. 地球物理学报, 62(6): 2313-2320 doi: 10.6038/cjg2019M0682

    Liu L, Jiang Y R. 2019. Attribution extraction and feature analysis for large amount of high-speed-train seismic events[J]. Chinese Journal of Geophysics, 62(6): 2313-2320(in Chinese). doi: 10.6038/cjg2019M0682
    [172] 刘强. 2009. 基于瑞雷波理论的公路无损检测方法研究[D]. 西安: 长安大学.

    Liu Q. 2009. Study on the non-destructive detection method in highway subgrade based on Rayleigh wave theory[D]. Xi'an: Chang'an University (in Chinese).
    [173] 刘庆华, 鲁来玉, 王凯明. 2015. 主动源和被动源面波浅堪方法综述[J]. 地球物理学进展, 30(6): 2906-2922 doi: 10.6038/pg20150660

    Liu Q H, Lu L Y, Wang K M. 2015. Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophysics, 30(6): 2906-2922 (in Chinese). doi: 10.6038/pg20150660
    [174] Liu Y, Xia J H, Cheng F, et al. 2020. Pseudo-linear-array analysis of passive surface waves based on beamforming[J]. Geophysical Journal International, 221(1): 640–650. doi: 10.1093/gji/ggaa024
    [175] Liu Y, Xia J H, Xi C Q, et al. 2021. Improving the retrieval of high-frequency surface waves from ambient noise through multichannel-coherency-weighted stack[J]. Geophysical Journal International, 227(2): 776–785. doi: 10.1093/gji/ggab253
    [176] Liu Y H, Zhang H J, Fang H J, et al. 2018. Ambient noise tomography of three-dimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array[J]. Journal of Applied Geophysics, 159: 209–217. doi: 10.1016/j.jappgeo.2018.08.009
    [177] Liu Y H, Zhang Y H, Nilot E, et al. 2021. Detection of a shallow-buried rock obstruction using 2D full waveform inversion[J]. Soil Dynamics and Earthquake Engineering, 143: 106644. doi: 10.1016/j.soildyn.2021.106644
    [178] 刘耀威, 恩和得力海, 张耕耘, 等. 2021. 面波全波形反演在地下浅埋障碍物探查中的应用[J]. 地球物理学进展, 36(4): 1702-1710 doi: 10.6038/pg2021EE0320

    Liu Y W, Enhedelihai, Zhang G Y, et al. 2021. Application of surface wave based full wave inversion on detection of shallow-buried obstruction[J]. Progress in Geophysics, 36(4): 1702-1710 (in Chinese). doi: 10.6038/pg2021EE0320
    [179] 刘云帧, 王振东. 1996. 瞬态面波法的数据采集处理系统及其应用实例[J]. 物探与化探, 20(1): 28-34

    Liu Y Z, Wang Z D. 1996. Data collection and processing system of transient surface wave method and examples of its application[J]. Geophysical and Geochemical Exploration, 20(1): 28-34(in Chinese).
    [180] 刘志坤, 黄金莉. 2010. 利用背景噪声互相关研究汶川地震震源区地震波速度变化[J]. 地球物理学报, 53(4): 853-863 doi: 10.3969/j.issn.0001-5733.2010.04.010

    Liu Z K, Huang J L. 2010. Temporal changes of seismic velocity around the Wenchuan earthquake fault zone from ambient seismic noise correlation[J]. Chinese Journal of Geophysics, 53(4): 853-863(in Chinese). doi: 10.3969/j.issn.0001-5733.2010.04.010
    [181] Lobkis O I, Weaver R L. 2001. On the emergence of the Green’s function in the correlations of a diffuse field[J]. Journal of the Acoustical Society of America, 110: 3011-3017. doi: 10.1121/1.1417528
    [182] Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society of London, 243: 1-35.
    [183] Love A E H. 1911. Some Problems of Geodynamics[M]. Cambridge University Press.
    [184] 陆东福. 2021. 打造中国高铁亮丽名片[R]. 一带一路报道(中英文), 5, 93-97

    Lu D F. 2021. Create a bright business card for high-speed railway of China[R]. The Belt and Road Reports, 5, 93-97.
    [185] Lu J, Wang Y, Yang C Y. 2010. Instantaneous polarization filtering focused on suppression of surface waves[J]. Applied Geophysics, 7(1): 88-97. doi: 10.1007/s11770-010-0001-6
    [186] Lu J, Wang Y Y, Yang Y Y, et al. 2017. Pre-stack separation of PP and split PS waves in HTI media[J]. Geophysical Journal International, 210(1): 510-524. doi: 10.1093/gji/ggx187
    [187] 鲁来玉, 张碧星, 汪承灏. 2006. 基于瑞利波高阶模式反演的试验研究[J]. 地球物理学报, 49(4): 1082-1091 doi: 10.3321/j.issn:0001-5733.2006.04.021

    Lu L Y, Zhang B X, Wang C H. 2006. Experiment and inversion studies on Rayleigh wave considering higher modes[J]. Chinese Journal of Geophysics, 49(4): 1082-1091(in Chinese). doi: 10.3321/j.issn:0001-5733.2006.04.021
    [188] 鲁来玉. 2007. 近地表面波的散射研究[D]. 北京: 中国地震局地球物理研究所.

    Lu L Y. 2007. Research on scattering of Surface wave in near surface[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese).
    [189] Lu L Y, Wang C H, Zhang B X. 2007. Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: Numerical and laboratory study[J]. Geophysical Journal International, 168(3): 1235-1246. doi: 10.1111/j.1365-246X.2006.03258.x
    [190] Luo Y H, Xia J H, Liu J P, et al. 2007. Joint inversion of high-frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 62(4): 375-384. doi: 10.1016/j.jappgeo.2007.02.004
    [191] Luo Y H, Xia J H, Miller R D, et al. 2008. Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform[J]. Pure and Applied Geophysics, 165(5): 903-922. doi: 10.1007/s00024-008-0338-4
    [192] 罗银河, 夏江海, 刘江平, 等. 2008. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报, 51(1): 242-249 doi: 10.3321/j.issn:0001-5733.2008.01.030

    Luo Y H, Xia J H, Liu J P, et al. 2008. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal of Geophysics, 51(1): 242-249 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.01.030
    [193] Luo Y H, Xia J H, Miller R D, et al. 2009. Rayleigh-wave mode separation by high-resolution linear Radon transform[J]. Geophysical Journal International, 179: 254-264. doi: 10.1111/j.1365-246X.2009.04277.x
    [194] Luo Y H, Xia J H, Xu Y X, et al. 2010. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications[J]. Pure and Applied Geophysics, 167(12): 1525-1536. doi: 10.1007/s00024-010-0144-7
    [195] Luo Y H, Xia J H, Xu Y X, Zeng C. 2011. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications[J]. Journal of Applied Geophysics, 74: 157-165. doi: 10.1016/j.jappgeo.2011.04.002
    [196] Luo Y H, Huang Y, Yang Y J, et al. 2022. Constructing shear velocity models from surface wave dispersion curves using deep learning[J]. Journal of Applied Geophysics, 196: 104524. doi: 10.1016/j.jappgeo.2021.104524
    [197] Ma Y, Clayton R W, Li D. 2016. Higher-mode ambient-noise Rayleigh waves in sedimentary basins[J]. Geophysical Journal International, 206(3): 1634-1644. doi: 10.1093/gji/ggw235
    [198] Mainsant G, Larose E, Brönnimann C, et al. 2012. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction[J]. Journal of Geophysical Research, 117: F01030.
    [199] Masoni I, Brossier R, Boelle J L. 2014. Robust full waveform inversion of surface waves[C]// SEG Technical Program Expanded Abstract, 1126-1130.
    [200] Martins J E, Ruigrok E, Draganov D, et al. 2019. Imaging Torfajökull’s magmatic plumbing system with seismic interferometry and phase velocity surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 124(3): 2920-2940. doi: 10.1029/2018JB016002
    [201] Martins J E, Weemstra C, Ruigrok E. et al. 2020. 3D S-wave velocity imaging of Reykjanes Peninsula high-enthalpy geothermal fields with ambient tomography[J]. Journal of Volcanology and Geothermal Research, 391: 106685. doi: 10.1016/j.jvolgeores.2019.106685
    [202] Mateeva A, Lopez J, Chalenski D, et al. 2017. 4D DAS VSP as a tool for frequent seismic monitoring in deep water[J]. The Leading Edge, 36(12): 995-1000. doi: 10.1190/tle36120995.1
    [203] Matsuoka T, Shiraishi K, Onishi K, et al. 2006. Application of seismic interferometry to subsurface imaging (1)[C]//Proceedings of 10th International Symposium on RAEG, Kyoto University Geophysical Society, 35-38.
    [204] Matsushima T, Okada H. 1990. Determination of deep geological structures under Urban areas using long-period microtremors[J]. Butsuri-Tansa, 43(1): 21-23.
    [205] Meier U, Shapiro N M, Brenguier F. 2010. Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise[J]. Geophysical Journal International, 181(2): 985-996.
    [206] Menke W. 1979. Comment on ‘Dispersion function computation for unlimited frequency values’ by Anas-Zena[J]. Geophysical Journal of the Royal Astronomical Society, 59(2): 315-323. doi: 10.1111/j.1365-246X.1979.tb06769.x
    [207] Mestayer J, Cox B, Wills P, et al. 2011. Field trials of distributed acoustic sensing for geophysical monitoring[C]//81st Ann. Internat Mtg., Soc. Expi. Geophys. , Expanded Abstracts, 4253-4257.
    [208] Meza-Fajardo K C, Papageorigiou A S, Semblat J. 2015. Identification and extraction of surface waves from three-component seismograms based on the normalized inner product[J]. Bulletin of the Seismological Society of America, 105(1): 210-229. doi: 10.1785/0120140012
    [209] Mi B B, Xia J H, Shen C, et al. 2017. Horizontal resolution of multichannel analysis of surface waves[J]. Geophysics, 82(3): EN51-EN66. doi: 10.1190/geo2016-0202.1
    [210] Mi B B, Xia J H, Shen C, Wang L M. 2018. Dispersion energy analysis of Rayleigh and Love waves in the presence of low-velocity layers in near-surface seismic surveys[J]. Surveys in Geophysics, 39: 271–288. doi: 10.1007/s10712-017-9440-4
    [211] Mi B B, Hu Y, Xia J H, et al. 2019. Estimation of horizontal-to-vertical spectral ratios (ellipticity) of Rayleigh waves from multi-station active-seismic records[J]. Geophysics, 84(6): EN81-EN92. doi: 10.1190/geo2018-0651.1
    [212] Mi B B, Xia J H, Bradford J H, et al. 2020. Estimating near-surface shear wave velocity structures via multichannel analysis of Rayleigh and Love waves: An experiment at the Boise hydrogeophysical research site[J]. Surveys in Geophysics, 41(2): 323-341. doi: 10.1007/s10712-019-09582-4
    [213] Mi B B, Xia J H, Tian G, et al. 2022. Near-surface imaging from traffic-induced surface waves with dense linear arrays: An application in the urban area of Hangzhou, China[J]. Geophysics, 87(2): B145-B158. doi: 10.1190/geo2021-0184.1
    [214] Milana G, Barb, S, Del P E, et al. 1996. Site response from ambient noise measurements: New perspective from an array study in central Italy[J]. Bulletin of the Seismological Society of America, 86(1): 320-328.
    [215] Miller R D, Xia J H, Park C B, et al. 1999. Multichannel analysis of surface waves to map bedrock[J]. The Leading Edge, 18(2): 1392-1396.
    [216] Misiek R, Liebig A, Gyulai A, et al. 1997. A joint inversion algorithm to process geoelectric and surface wave seismic data, Part II: Application[J]. Geophysical Prospecting, 45: 65-85. doi: 10.1046/j.1365-2478.1997.3190241.x
    [217] Miyazawa M, Snieder R, Venkataraman A. 2008. Application of seismic interferometry to extract P- and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada[J]. Geophysics, 73: D35-D40. doi: 10.1190/1.2937172
    [218] Morton S L, Peterie S L, Ivanov J, et al. 2017. Joint interpretation of multicomponent surface-wave data for tunnel detection[C]//Expanded Abstracts of 87th Annual Internat SEG Mtg, 5458-5464.
    [219] Mun S, Bao Y Q. Li H. 2015. Generation of Rayleigh-wave dispersion images from multichannel seismic data using sparse signal reconstruction[J]. Geophysical Journal International, 203: 818-827. doi: 10.1093/gji/ggv348
    [220] Nakata N, Snider R. 2011. Near-surface weakening in Japan after the 2011 Tohoku-oki earthquake[J]. Geophysical Research Letters, 38: L17302.
    [221] Nakata N, Snieder R, Tsuji T, et al. 2011. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence[J]. Geophysics, 76: SA97-SA106. doi: 10.1190/geo2010-0188.1
    [222] Nakata N, Snider R. 2012. Estimating near-surface shear-wave velocities in Japan by applying seismic interferometry to KiK-net data[J]. Journal of Geophysical Research, 117: B01308.
    [223] Nasseri-Moghaddam A, Cascante G, Phillips C, et al. 2007. Effects of underground cavities on Rayleigh waves field and numerical experiments[J]. Soil Dynamics and Earthquake Engineering, 27: 300-313. doi: 10.1016/j.soildyn.2006.09.002
    [224] Nazarian S, Stokoe K H, Hudson W R. 1983. Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems[M]//National Research Council. Transport Research Record No. 930. Washington D C: Falmer Press.
    [225] Ning L, Dai T Y, Wang L M, et al. 2018. Numerical investigation of Rayleigh-wave propagation on canyon topography using finite difference method[J]. Journal of Applied Geophysics, 159: 350-361. doi: 10.1016/j.jappgeo.2018.09.007
    [226] Ning L, Dai T Y, Liu Y, et al. 2021. Application of multichannel analysis of passive surface waves method for fault investigation[J]. Journal of Applied Geophysics, 192: 104382. doi: 10.1016/j.jappgeo.2021.104382
    [227] Nishida K, Kobayashi N, Fukao Y. 2000. Resonant oscillations between the solid earth and the atmosphere[J]. Science, 287: 2244-2246. doi: 10.1126/science.287.5461.2244
    [228] Nishida K, Montagner J P, Kawakatsu H. 2009. Global surface wave tomography using seismic hum[J]. Science, 326: 112-112. doi: 10.1126/science.1176389
    [229] Obermann A, Kraft T, Larose E, et al. 2015. Potential of ambient noise techniques to monitor the St. Gallen geothermal site (Switzerland)[J]. Journal of Geophysical Research: Solid Earth, 120(6): 4301-4316. doi: 10.1002/2014JB011817
    [230] 欧阳联华, 王家林. 2002. 一种高频面波频散函数的快速算法-改进的Abo-Zena法[J]. 物探化探计算技术, 24(3): 204-214 doi: 10.3969/j.issn.1001-1749.2002.03.003

    Ouyang L H, Wang J L. 2002. The modified Abo-Zena method-A fast algorithm for dispersion calculation of high frequency surface wave[J]. Computing Techniques for Geophysical and Geochemical Exploration, 24(3): 204-214 (in Chinese). doi: 10.3969/j.issn.1001-1749.2002.03.003
    [231] Pan Y D, Xia J H, Xu Y X, et al. 2016a. Multichannel analysis of Love waves in a 3D seismic acquisition system[J]. Geophysics, 81(5): EN67-EN74. doi: 10.1190/geo2015-0261.1
    [232] Pan Y D, Xia J H, Xu Y X, et al. 2016b. Delineating shallow S-wave velocity structure using multiple ambient-noise surface-wave methods: An example from Western Junggar, China[J]. Bulletin of the Seismological Society of America, 106(2): 327-336. doi: 10.1785/0120150014
    [233] Pan Y D, Xia J H, Xu Y X, et al. 2016c. Love-wave waveform inversion in time domain for shallow shear-wave velocity[J]. Geophysics, 81(1): R1-R14. doi: 10.1190/geo2014-0225.1
    [234] Pan Y D, Schaneng S, Steinweg T, et al. 2018a. Estimating S-wave velocities from 3D 9-component shallow seismic data using local Rayleigh-wave dispersion curves - A field study[J]. Journal of Applied Geophysics, 159: 532-539. doi: 10.1016/j.jappgeo.2018.09.037
    [235] Pan Y D, Gao L L, Bohlen T. 2018b. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography[J]. Journal of Applied Geophysics, 152: 77-85. doi: 10.1016/j.jappgeo.2018.03.006
    [236] Pan Y D, Gao L L, Bohlen T. 2019. High-resolution characterization of near-surface structures by surface wave inversions: From dispersion curve to full waveform[J]. Surveys in Geophysics, 40(2): 167-195. doi: 10.1007/s10712-019-09508-0
    [237] Pan Y D, Gao L L. 2020. Random objective waveform inversion of surface waves[J]. Geophysics, 85(4): 1-13.
    [238] Pan Y D, Gao L L, Shigapov R. 2020. Multi-objective waveform inversion of shallow seismic wavefields[J]. Geophysical Journal International, 220: 1619-1631. doi: 10.1093/gji/ggz539
    [239] Pan Y D, Gao L L, Bohlen T. 2021. Random-objective waveform inversion of 3D-9C shallow-seismic field data[J]. Journal of Geophysical Research: Solid Earth, 126: e2021JB022036.
    [240] Pang J Y, Cheng F, Shen C, et al. 2019. Automatic passive data selection in time domain for imaging near-surface surface waves[J]. Journal of Applied Geophysics, 162: 108–117. doi: 10.1016/j.jappgeo.2018.12.018
    [241] Park C B, Miller R D, Xia J H, 1998. Imaging dispersion curves of surface waves on multi-channel record[C]//Technical Program with Biographies SEG, 68th Annual Meeting, New Orleans, LA. , 1377-1380.
    [242] Park C B, Miller R D, Xia J H. 1999. Multichannel analysis of surface waves[J]. Geophysics, 64(3): 800-808. doi: 10.1190/1.1444590
    [243] Park C B, Miller R D, Ryden N, et al. 2006. Combined use of active and passive surface waves[J]. Journal of Environmental and Engineering Geophysics, 10(3): 323-334.
    [244] Parker T, Shatalin S, Farhadiroushan M. 2014. Distributed acoustic sensing-a new tool for seismic applications[J]. First Break, 32(2): 61-69.
    [245] Parolai S. 2009. Determination of dispersive phase velocities by complex seismic trace analysis of surface waves (CASW)[J]. Soil Dynamics and Earthquake Engineering, 29: 517-524. doi: 10.1016/j.soildyn.2008.05.008
    [246] 裴正林. 2004. 三维各向异性介质中弹性波方程交错网格有限差分法模拟[J]. 石油大学学报(自然科学版), 28(5): 23-29

    Pei Z L. 2004. Three-dimensional numerical simulation of elastic wave propagation in 3D anisotropic media with staggered-grid high-order difference method[J]. Journal of the University of Petroleum, China, 28(5): 23-29 (in Chinese).
    [247] Pérez Solano C, Donno D, Chauris H. 2014. Alternative waveform inversion for surface wave analysis in 2D media[J]. Geophysical Journal International, 198(3): 1359-1372. doi: 10.1093/gji/ggu211
    [248] Picozzi M, Parolai S, Bindi D, et al. 2009. Characterization of shallow geology by high-frequency seismic noise tomography[J]. Geophysical Journal International, 176: 164-174. doi: 10.1111/j.1365-246X.2008.03966.x
    [249] Poletto F B, Miranda F. 2004. Seismic While Drilling: Fundamentals of Drill-Bit Seismic Exploration[M]. Elsevier, 35.
    [250] Poli P, Pedersen H A, Campillo M. 2011. Emergence of body waves from cross-correlation of short period seismic noise[J]. Geophysical Journal International, 188: 549-558.
    [251] 秦臻, 张才, 郑晓东. 2010. 高精度有限差分瑞雷面波模拟及频散特征提取[J]. 石油地球物理勘探. 45(l): 40-46

    Qin Z, Zhang C, Zhen X D. 2010. High precision finite difference Rayleigh wave simulation and frequency dispersion characteristics extraction[J]. Oil Geophysical Prospecting, 45(1): 40-46(in Chinese).
    [252] Qiu X M, Wang Y, Wang C. 2019. Rayleigh-wave dispersion analysis using complex-vector seismic data[J]. Near Surface Geophysics, 17(5): 487-499. doi: 10.1002/nsg.12060
    [253] 邱新明. 2020. 多分量地震数据面波频散分析及矢量处理方法研究[D]. 北京: 中国地质大学(北京).

    Qiu X M. 2020. Surface wave dispersion analysis and vector-processing methods for multi-component seismic data[D]. Beijing: China Unversity of Geosciences (Beijing) (in Chinese).
    [254] 邱新明, 王赟, 韦永祥, 等. 2021. 多分量面波研究进展[J]. 石油物探, 60(1): 46-56 doi: 10.3969/j.issn.1000-1441.2021.01.005

    Qiu X M, Wang Y, Wei Y X. et al. 2021. Advancements in multi-component surface waves: A review[J]. Geophysical Prospecting for Petroleum, 60(1): 46-56(in Chinese). doi: 10.3969/j.issn.1000-1441.2021.01.005
    [255] Quiros D A, Brown L D, Kim D. 2016. Seismic interferometry of railroad induced ground motions: Body and surface wave imaging[J]. Geophysical Journal International, 205: 301-313. doi: 10.1093/gji/ggw033
    [256] Rayleigh L. 1885. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1(1): 4-11.
    [257] Rector J W, Marion B P. 1991. The use of drill-bit energy as a downhole seismic source[J]. Geophysics, 56: 628-634. doi: 10.1190/1.1443079
    [258] Rene R, Fitter J, Forsyth P, et al. 1986. Multicomponent seismic studies using complex trace analysis[J]. Geophysics, 51(6): 1235-1251. doi: 10.1190/1.1442177
    [259] Renalier F, Jongmans D, Campillo M, et al. 2010. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation[J]. Journal of Geophysical Research, 115: F03032.
    [260] Ridder S D, Curtis A, Maddision J. 2017. Frequency domain full wave field inversion for ambient seismic surface wave noise[C]//SEG International Exposition and 87th Annual Meeting.
    [261] Rosebaum J H. 1964. A note on the computation of Rayleigh wave dispersion curves for layered elastic media[J]. Bulletin of the Seismological Society of America, 53(3): 1013-1019.
    [262] Roux P, Sabra K G, Gerstoft P, et al. 2005. P-waves from cross-correlation of seismic noise[J]. Geophysical Research Letters, 32: L19303.
    [263] Ruigrok E, Campman X, Wapenaar K. 2011. Extraction of P-wave reflections from microseisms[J]. Comptes Rendus Geoscience, 343(8-9): 512-525. doi: 10.1016/j.crte.2011.02.006
    [264] Ryberg T. 2011. Body wave observations from cross-correlations of ambient seismic noise: A case study from the Karoo, RSA[J]. Geophysical Research Letters, 38: L13311.
    [265] Ryden N, Park C B. 2006. Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra[J]. Geophysics, 71(4): R49-R58. doi: 10.1190/1.2204964
    [266] Safani J, O’Neill A, Matsuoka T, SanadaY. 2005. Applications of Love wave dispersion for improved shear-wave velocity imaging[J]. Journal of Environmental and Engineering Geophysics, 10(2): 135-150. doi: 10.2113/JEEG10.2.135
    [267] Safani J, O'Neill A, Matsuoka T. 2006. Love wave modeling and inversion for low velocity layer cases[C]//Proceedings of the symposium on the application of geophysics to engineering and environmental problems (SAGEEP). Annual Meeting of the Environmental and Engineering Geophysical Society (EEGS) Seattle, W A, 1181-1190.
    [268] Sambridge M. 1999a. Geophysical inversion with a neighborhood algorithm: I. Searching a parameter space[J]. Geophysical Journal International, 138(2): 479-494. doi: 10.1046/j.1365-246X.1999.00876.x
    [269] Sambridge M. 1999b. Geophysical inversion with a neighborhood algorithm: II. Appraising the ensemble[J]. Geophysical Journal International, 138(3): 727-746. doi: 10.1046/j.1365-246x.1999.00900.x
    [270] Satoh T, Kawase H, Iwata T, et al. 2001. S-wave velocity structure of the Taichung Basin, Taiwan, estimated from array and single-station records of microtremors[J]. Bulletin of the Seismological Society of America, 91(5): 1267-1282.
    [271] Scherbaum F, Hinzen K G, Ohrnberger M. 2003. Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations[J]. Geophysical Journal International, 152(2): 597-162.
    [272] Schuster G. 2001. Theory of daylight/interferometric imaging: Tutorial[C]//63rd Conference & Technical Exhibition, European Association of Geoscientists and Engineers, Extended Abstracts, Session A32.
    [273] Schuster G T, Yu J, Sheng J, et al. 2004. Interferometric/daylight seismic imaging[J]. Geophysical Journal International, 157: 838-852. doi: 10.1111/j.1365-246X.2004.02251.x
    [274] Schwab F A, Knopoff L. 1972. Fast Surface Wave and Free Mode Computations[M]//Bolt B A. Methods in Computational Physics. New York: Academic Press, 87–180.
    [275] Sens-Schönfelder C, Wegler U. 2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia[J]. Geophysical Research Letters, 33: L21302. doi: 10.1029/2006GL027797
    [276] Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307: 1615-1618. doi: 10.1126/science.1108339
    [277] Shen C, Wang A, Wang L M, et al. 2015. Resolution equivalence of dispersion-imaging methods for noise-free high-frequency surface-wave data[J]. Journal of Applied Geophysics, 122: 167-171. doi: 10.1016/j.jappgeo.2015.09.019
    [278] 石耀霖, 金文. 1995. 面波频散反演地球内部构造的遗传算法[J]. 地球物理学报, 38(2): 189-198 doi: 10.3321/j.issn:0001-5733.1995.02.007

    Shi Y L, Jin W. 1995. Genetic algorithms inversion of lithospheric structure from surface wave dispersion[J]. Chinese Journal of Geophysics, 38(2): 189-198(in Chinese). doi: 10.3321/j.issn:0001-5733.1995.02.007
    [279] Shiraishi K, Tanaka M, Onishi K, et al. 2006. Application of seismic interferometry to subsurface imaging (2)[C]//Proceedings of 10th International Symposium on RAEG, Kyoto University Geophysical Society.
    [280] Snieder R. 1988. Large-scale waveform inversion of surface waves for lateral heterogeneity. Part 2: Application to surface waves in Europe and the Mediterranean[J]. Journal of Geophysical Research, 93(B10): 12067-12080. doi: 10.1029/JB093iB10p12067
    [281] Snieder R, Grêt A, Douma H, et al. 2002. Coda wave interferometry for estimating nonlinear behavior in seismic velocity[J]. Science, 295: 2253-2255. doi: 10.1126/science.1070015
    [282] Snieder R. 2004. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical Review E, 69: 46610. doi: 10.1103/PhysRevE.69.046610
    [283] Socco L V, Foti S, Boiero D. 2010. Surface-wave analysis for building near-surface velocity models-established approaches and new perspectives[J]. Geophysics, 75(5): A83-A102.
    [284] Sollberger D, Greenhalgh S A, Schm-elzbach C, et al. 2017. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications[J]. Geophysical Journal International, 213(1): 77-97.
    [285] 宋先海, 肖柏勋, 张学强, 等. 2003. 用改进的τ-p变换算法提取瞬态Rayleigh波频散曲线[J]. 物探和化探, 27(4): 292-295.

    Song X H, Xiao B X, Zhang X Q, et al. 2003. The application of improvedτ-p transform algorithm to the extraction of dispersion curve of transient Rayleigh wave[J]. Geophysical and Geochemeical Exploration, 27(4), 292-295 (in Chinese).
    [286] Song X H, Gu H M. 2007. Utilization of multimode surface wave dispersion for characterizing roadbed structure[J]. Journal of Applied Geophysics, 63(2): 59-67. doi: 10.1016/j.jappgeo.2007.04.001
    [287] Song X H, Gu H M, Liu J P, et al. 2007. Estimating of shallow subsurface shear-wave velocity by inverting fundamental and higher-mode Rayleigh waves[J]. Soil Dynamics and Earthquake Engineering, 27(7): 599-607. doi: 10.1016/j.soildyn.2006.12.003
    [288] Song X H, Gu H M, Zhang X Q, et al. 2008. Pattern search alogrithms for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J]. Computers & Geosciences, 34(6): 611-624.
    [289] Song X H, Li D, Gu H M, et al. 2009. Insights into performance of pattern search algorithms for high-frequency surface wave analysis[J]. Computers & Geosciences, 35(8): 1603-1619.
    [290] 宋先海, 李端有, 顾汉明, 等. 2010. Rayleigh波勘探理论及其应用[M]. 北京: 中国水利水电出版社.

    Song X H, Li D Y, Gu H M, et al. 2010. Rayleigh Waves Theory and Application[M]. Beijing: China Water & Power Press (in Chinese).
    [291] Song X H, Tang L, Lv X, et al. 2012a. Shuffled complex evolution approach for effective and efficient surface wave analysis[J]. Computers & Geosciences, 42: 7-17.
    [292] Song X H, Tang L, Lv X, et al. 2012b. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 84: 1-13. doi: 10.1016/j.jappgeo.2012.05.011
    [293] Song X H, Li L, Zhang X Q, et al. 2014a. Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 109: 47-61. doi: 10.1016/j.jappgeo.2014.07.014
    [294] Song X H, Li L, Zhang X Q, et al, 2014b. An implementation of differential search algorithm (DSA) for inversion of surface wave data[J]. Journal of Applied Geophysics, 111: 334-345.
    [295] Song X H, Zhang X Q, Zhao S, et al. 2015a. Backtracking search algorithm for effective and efficient surface wave analysis[J]. Journal of Applied Geophysics, 114: 19-31. doi: 10.1016/j.jappgeo.2015.01.002
    [296] Song X H, Gu HM, Tang L, et al. 2015b. Application of artificial bee colony algorithm on surface wave data[J]. Computer & Geosciences, 83: 219-230.
    [297] Song X H, Tang L, Zhao S, et al. 2015c. Grey Wolf Optimizer for parameter estimation in surface waves[J]. Soil Dynamics and Earthquake Engineering, 75: 147-157. doi: 10.1016/j.soildyn.2015.04.004
    [298] 宋先海, 张学强, 王一鸣, 等. 2020. 近地表弹性介质瑞雷波勘探研究进展与展望[J]. 地质科技通报, 39(5): 173-182

    Song X H, Zhang X Q, Wang Y M, et al. 2020. Recent advances and prospects of near surface elastic Rayleigh waves[J]. Bulltin of Geological Science and Technology, 39(5): 173-182(in Chinese).
    [299] Song Y Y, Castagna J P, Black R A, et al. 1989. Sensitivity of near-surface shear-wave velocity determination from Rayleigh and Love waves[C]// Technical Program with Biographies, the 59th Annual Meeting of the Society of Exploration Geophysicists, Dallas, Texas, 509-512.
    [300] 宋仲和, 谭承业. 1965. 用瑞雷和乐夫面波群速度确定我国地壳厚度[J]. 地球物理学报, 14(1): 33-44

    Song Z H, Tan C Y. 1965. Determination of crustal thickness in China by group velocity of Rayleigh and Love waves[J]. Chinese Journal of Geophysics, 14(1): 33-44 (in Chinese).
    [301] Song Z H, Zeng X F, Thurber C, et al. 2019. Imaging shallow structure with active-source surface wave signal recorded by distributed acoustic sensing[J]. Earthquake Science, 31: 207-213.
    [302] 宋政宏, 曾祥方, 徐善辉, 等. 2020. 分布式光纤声波传感系统在近地表成像中的应用I: 主动源高频面波[J]. 地球物理学报, 63(2): 532-540 doi: 10.6038/cjg2020N0184

    Song Z H, Zeng X F, Xu S H, et al. 2020. Distributed acoustic sensing for imaging shallow structure I: active source survey[J]. Chinese Journal of Geophysics, 63(2): 532-540 (in Chinese). doi: 10.6038/cjg2020N0184
    [303] Song Z H, Zeng X F, Xie J, et al. 2021a. Sensing shallow structure and traffic noise with fiber-optic internet cables in an urban area[J]. Survey in Geophysics, 42: 1401-1423. doi: 10.1007/s10712-021-09678-w
    [304] Song Z H, Zeng X F, Thurber C. 2021b. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by DAS[J]. Geophysics, 86(1): EN1-EN12. doi: 10.1190/geo2019-0691.1
    [305] 苏悦, 杨振涛, 杨博, 等. 2020. 基于矢量波数变换法的主动源瑞雷波多模式提取方法在近地表地层结构探测中的应用研究[J]. 北京大学学报(自然科学版), 56(3): 427-435

    Su Y, Yang Z T, Yang B, et al. 2020. Application research of active source Rayleigh wave multi-mode extraction method based on vector wavenumber transformation method in near surface stratigraphic structure detection[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 56(3): 427-435(in Chinese).
    [306] Sun L X, Zhang Z, Wang Y. 2018. Six-component elastic-wave simulation and analysis[C]// Proceedings of the EGU General Assembly Conference Abstracts, 2018EGUGA. 2014930S.
    [307] Tajuddin M. 1984. Rayleigh waves in poroelastic half space[J]. Journal of the Acoustical Society of America, 75(3): 682-684. doi: 10.1121/1.390578
    [308] 唐圣松. 2009. 起伏二维地表模型瑞雷波场正演研究[D]. 长沙: 中南大学.

    Tang S S. 2009. Study on Rayleigh-wave filed forward of two-dimensional rolling ground model[D]. Changsha: Central South University (in Chinese).
    [309] Tanimoto T. 2001. Continuous free oscillations: Atmosphere-solid earth coupling[J]. Annual Review of Earth and Planetary Sciences, 29: 563-584. doi: 10.1146/annurev.earth.29.1.563
    [310] 陶夏新, 刘曾武, 郭明珠, 等. 2001. 工程场地条件评定中的地脉动研究[J]. 地震工程与工程振动, 21(4): 18-23.

    Tao X X, Liu Z W, Guo M Z, et al. 2001. A review of microtremor study in engineering site rating[J]. Earthquake Engineering and Engineering Vibration, 21(4), 18-23 (in Chinese).
    [311] Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 49(8): 1259-1266. doi: 10.1190/1.1441754
    [312] Tarantola A. 1986. A strategy for nonlinear elastic inversion of seismic reflection data[J]. Geophysics, 51(10): 1893-1903. doi: 10.1190/1.1442046
    [313] Tarantola A. 1988. Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation[J]. Pageoph, 128: 365-399. doi: 10.1007/BF01772605
    [314] Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Geophysics, 21(1): 89-93.
    [315] Thrower E N. 1965. The computation of elastic waves in layered media[J]. Journal of Sound and Vibration, 2: 210 - 226. doi: 10.1016/0022-460X(65)90109-4
    [316] Tillmann A. 2005. An unsupervised wavelet transform method for simultaneous inversion of multimode surface waves[J]. Journal of Environmental and Engineering Geophysics, 10(3): 287-294. doi: 10.2113/JEEG10.3.287
    [317] Tokimatsu K, Tamura S, Kojima H. 1992. Effects of multiple modes on Rayleigh wave dispersion characteristics[J]. Journal of Geotechnical Engineering, 118: 1529-1543. doi: 10.1061/(ASCE)0733-9410(1992)118:10(1529)
    [318] Toksöz M N, LaCoss R T. 1968. Microseisms: Mode structure and sources[J]. Science, 159: 872-873. doi: 10.1126/science.159.3817.872
    [319] Tonegawa T, Fukao Y, Nishida K, et al. 2013. A temporal change of shear wave anisotropy within the marine sedimentary layer associated with the 2011 Tohoku-oki earthquake[J]. Journal of Geophysical Research, 118(2): 607-615. doi: 10.1002/jgrb.50074
    [320] Traer J, Gerstoft P. 2014. A unified theory of microseisms and hum[J]. Journal of Geophysical Research, 119: 3317-3339. doi: 10.1002/2013JB010504
    [321] Tran K T, McVay M. 2012. Site characterization using Gauss-Newton inversion of 2D full seismic waveform in the time domain[J]. Soil Dynamics and Earthquake Engineering, 43: 16-24. doi: 10.1016/j.soildyn.2012.07.004
    [322] Vera R I, Bonar D, Sacchi M. 2012. Microseismic data denoising using a 3C group sparsity constrained time-frequency transform[J]. Geophysics, 77(2): V21-V29. doi: 10.1190/geo2011-0260.1
    [323] 王娟娟, 姚华建, 王伟涛, 等. 2018. 基于背景噪声成像方法的新疆呼图壁储气库近地表速度结构研究[J]. 地球物理学报, 61(11): 4436-4447 doi: 10.6038/cjg2018M0025

    Wang J J, Yao H J, Wang W T. 2018. Study of the near-surface velocity structure of the Hutubi gas strorage area in Xinjiang from ambient noise tomography[J]. Chinese Journal of Geophysics, 61(11): 4436-4447(in Chinese). doi: 10.6038/cjg2018M0025
    [324] 王建楠. 2017. 背景噪声提取高阶频散曲线的矢量波数变换法[D]. 合肥: 中国科学技术大学.

    Wang J N. 2017. Vector wavenumber transformation method to extract multimode dispersion cruves from ambient seismic noise[D]. Hefei: University of Science and Technology of China (in Chinese).
    [325] Wang J N, Wu G X, Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 124: 3708-3723. doi: 10.1029/2018JB016595
    [326] Wang L M, Luo Y H, Xu Y X. 2012. Numerical investigation of Rayleigh-wave propagation on topography surface[J]. Journal of Applied Geophysics, 86: 88-97. doi: 10.1016/j.jappgeo.2012.08.001
    [327] 汪利民. 2013. 起伏地表三维高频瑞雷面波传播特性研究[D]. 武汉: 中国地质大学(武汉).

    Wang L M. 2013. Propagation of high-frequency Rayleigh waves in 3D medium with topography[D]. Wuhan: China University of Geosciences (in Chinese).
    [328] Wang L M, Xu Y X, Xia J H, et al. 2015a. Effect of near-surface topography on high-frequency propagation[J]. Journal of Applied Geophysics, 116: 93-103. doi: 10.1016/j.jappgeo.2015.02.028
    [329] Wang L M, Xu Y X, Luo Y H. 2015b. Numerical investigation of 3D multichannel analysis of surface wave method[J]. Journal of Applied Geophysics, 119: 156-169. doi: 10.1016/j.jappgeo.2015.05.018
    [330] 王伟君, 刘澜波, 陈棋福, 等. 2009. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 52(6): 1515-1525 doi: 10.3969/j.issn.0001-5733.2009.06.013

    Wang W J, Liu L B, Chen Q F. et al. 2009. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 52(6): 1515-1525(in Chinese). doi: 10.3969/j.issn.0001-5733.2009.06.013
    [331] 王晓凯, 陈文超, 温景充, 等. 2019a. 高铁震源地震信号的挤压时频分析应用[J]. 地球物理学报, 62(6): 2328-2335

    Wang X K, Chen W K, Wen J C, et al. 2019a. The application of synchrosqueezing time-frequency analysis in high-speed train induced seismic data processing[J]. Chinese Journal of Geophysics, 62(6): 2328-2335(in Chinese).
    [332] 王晓凯, 陈建友, 陈文超, 等. 2019b. 高铁震源地震信号的稀疏化建模[J]. 地球物理学报, 62(6): 2336-2343

    Wang X K, Chen J Y, Chen W C, et al. 2019b. Sparse modeling of seismic signals produced by high-speed trains[J]. Chinese Journal of Geophysics, 62(6): 2336-2343(in Chinese).
    [333] 王晓凯, 王保利, 陈文超, 等. 2019c. 利用单检波器数据估计高铁列车运行速度[J]. 北京大学学报(自然科学版), 55(5): 798-804.

    Wang X K, Wang B L, Chen W C, et al. 2019c. Using the data from one receiver to estimate running velocity of high-speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5), 798-804 (in Chinese).
    [334] Wang Y, Richard D. 2017. A focusing study of near surface full-waveform inversion based on wave mode separation[C]//SEG International Exposition and 87th Annual Meeting.
    [335] 王振东. 1986. 微动的空间自相关方法及其使用技术[J]. 物探与化探, 10(2): 123-133

    Wang Z D. 1986. The micromotional spatial autocorrelation method and its practical technique[J]. Geophysical and Geochemical exploration, 10(2): 123-133(in Chinese).
    [336] 王振东. 1998. 双源面波勘探构想[J]. 中国地质, 4: 47-48

    Wang Z D. 1998. Conception of surface-wave method based on active and passive seismic source[J]. Geology in China, 4: 47-48(in Chinese).
    [337] Wapenaar K. 2003. Synthesis of an inhomogeneous medium from its acoustic transmission response[J]. Geophysics, 68: 1756-1759. doi: 10.1190/1.1620649
    [338] Wapenaar K. 2004. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation[J]. Physical Review Letters, 93: 254301. doi: 10.1103/PhysRevLett.93.254301
    [339] Wapenaar K, Fokkema J. 2006. Green’s function representations for seismic interferometry[J]. Geophysics, 71: SI33-SI46. doi: 10.1190/1.2213955
    [340] Waston H T. 1970. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 60 (1): 161-166. doi: 10.1785/BSSA0600010161
    [341] Webb S C. 2007. The Earth’s ‘hum’ is driven by ocean waves over the continental shelves[J]. Nature, 445: 754-756. doi: 10.1038/nature05536
    [342] Webb S C. 2008. The Earth’s hum: The excitation of Earth normal modes by ocean waves[J]. Geophysical Journal International, 174: 542-566. doi: 10.1111/j.1365-246X.2008.03801.x
    [343] 温景充, 鲍铁钊, 冯永革, 等. 2019a. 北京大学道路地震学观测台阵设计及数据特点[J]. 北京大学学报(自然科学版), 55(5): 791-797

    Wen J C, Bao T Z, Feng Y G, et al. 2019a. PKU ROSE Array: A road seismological array deployed by Peking University[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5): 791-797 (in Chinese).
    [344] 温景充, 宁杰远, 张献兵. 2019b. 高铁地震波场特点的理论分析[J]. 北京大学学报(自然科学版), 55(5): 813-822.

    Wen J C, Ning J Y, Zhang X B. 2019b. Theoretical analysis on the characteristics of seismic wave field produced by high-speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5), 813-822 (in Chinese).
    [345] 温景充, 宁杰远. 2019. 高铁波场等效震源时间函数反演方法研究[J]. 北京大学学报(自然科学版), 55(5): 823-828

    Wen J C, Ning J Y. 2019. Inversion of effective source time function of the high-speed-rail wavefield[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(5): 823-828 (in Chinese).
    [346] 温景充, 石永祥, 宁杰远. 2021. 高铁地震面波相速度频散曲线提取[J]. 地球物理学报, 64(9): 3246-3256 doi: 10.6038/cjg2021P0252

    Wen J C, Shi Y X, Ning J Y. 2021. Measurement of high-speed rail surface-wave phase-velocity dispersion[J]. Chinese Journal of Geophysics, 64(9): 3246-3256 (in Chinese). doi: 10.6038/cjg2021P0252
    [347] Willis M, Ajo-Franklin J, Roy B. 2017. Introduction to this special section: Geophysical applications of fiber-optic distributed sensing[J]. The Leading Edge, 36(12): 973-974. doi: 10.1190/tle36120973.1
    [348] Winsborrow G, Huwsa D G, Muyzertb E. 2003. Acquisition and inversion of Love wave data to measure the lateral variability of geo-acoustic properties of marine sediments[J]. Journal of Applied Geophysics, 54: 71-84. doi: 10.1016/j.jappgeo.2003.07.001
    [349] Wittkamp F, Bohlen T. 2016. Field data application of individual and joint 2D elastic full waveform inversion of Rayleigh and Love waves[C]//Near Surface Geoscience 2016 European Meeting of Environmental and Engineering Geophysics.
    [350] 伍敦仕, 孙成禹, 林美言. 2017a. 基于互相关相移的主动源地震面波频散成像方法[J]. 地球物理学进展, 32(4): 1693-1700

    Wu D S, Sun C Y, Lin M Y. 2017a. Active seismic surface wave dispersion imaging method based on cross-correlation and phase-shifting[J]. Progress in Geophysics, 32(4): 1693-1700 (in Chinese).
    [351] 伍敦仕, 孙成禹, 林美言. 2017b. 基于频率—速度域多重信号分类的面波高分辨率频散成像方法[J]. 石油物探, 56(1): 141-149

    Wu D S, Sun C Y, Lin M Y. 2017b. High resolution dispersion imaging of surface waves based on multiple signal classification in frequency-velocity domain[J]. Geophysical Prospecting for Petroleum, 56(1): 141-149 (in Chinese).
    [352] Wu D S, Wang X W, Su Q, et al. 2019. A MATLAB package for calculating partial derivatives of surface-wave dispersion curves by a reduced delta matrix method[J]. Applied Sciences, 9(23): 1-21.
    [353] 吴高雄. 2020. 基于频率—贝塞尔变换方法从背景噪声中提取高阶面波频散曲线并反演美国大陆三维横波速度结构[D]. 合肥: 中国科学技术大学.

    Wu G X. 2020. Extraction of higher mode dispersion curve from ambient noise based on frequency-Bessel transform method and inversion of 3D shear velocity model in the US continent[D]. Hefei: University of Science and Technology of China (in Chinese).
    [354] 吴华礼. 2019. 基于频率—贝塞尔变换法的关东盆地S波速度成像[D]. 合肥: 中国科学技术大学.

    Wu H L. 2019. S-wave velocity structure in the Kanto basin from Frequency-Bessel transformation method[D]. Hefei: University of Science and Technology of China (in Chinese).
    [355] 吴华礼, 陈晓非, 潘磊. 2019. 基于频率—贝塞尔变换法的关东盆地S波速度成像[J]. 地球物理学报, 62(9): 3400-3407 doi: 10.6038/cjg2019N0205

    Wu H L, Chen X F, Pan L. 2019. S-wave velocity imaging of the Kanto basin in Japan using the frequency-Bessel transformation mehod[J]. Chinese Journal of Geophysics, 62(9): 3400-3407 (in Chinese). doi: 10.6038/cjg2019N0205
    [356] Wu T X, Thompson D J. 2001. Vibration analysis of railwaytrack with multiple wheels on the rail[J]. Journal of Sound and Vibration, 239(1): 69-97. doi: 10.1006/jsvi.2000.3157
    [357] Xi C Q, Xia J H, Mi B B. et al. 2021. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 225(2): 1271–1280. doi: 10.1093/gji/ggab008
    [358] Xia J H, Miller R D, Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 64(3): 691-700. doi: 10.1190/1.1444578
    [359] Xia J H, Miller R D, Park C B. 2000. Advantage of calculating shear-wave velocity from surface waves with higher modes[C]//Technical Program with Biographies, the 70th Annual Meeting of the Society of Exploration Geophysicists, Calgary, Canada, 1295-1298.
    [360] Xia J H, Miller R D, Park C B, et al. 2002a. A pitfall in shallow shear-wave refraction surveying[J]. Journal of Applied Geophysics, 51(1): 1-9. doi: 10.1016/S0926-9851(02)00197-0
    [361] Xia J H, Miller R D, Park C B, et al. 2002b. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements[J]. Soil Dynamics and Earthquake Engineering, 22(3): 181-190. doi: 10.1016/S0267-7261(02)00008-8
    [362] Xia J H, Miller R D, Park C B, et al. 2002c. Determining Q of near-surface materials from Rayleigh waves[J]. Journal of Applied Geophysics, 51: 121-129. doi: 10.1016/S0926-9851(02)00228-8
    [363] Xia J H, Miller R D, Park C B, et al. 2003. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 52(1): 45-57. doi: 10.1016/S0926-9851(02)00239-2
    [364] Xia J H, Chen C, Li P H, et al. 2004. Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique[J]. Geotechnique, 54(1): 17-27. doi: 10.1680/geot.2004.54.1.17
    [365] Xia J H, Chen C, Tian G, et al. 2005. Resolution of high-frequency Rayleigh-wave data[J]. Journal of Environmental and Engineering Geophysics, 10(2): 99-110. doi: 10.2113/JEEG10.2.99
    [366] Xia J H, Xu Y X, Miller R D, Chen C. 2006a. Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh wave phase velocity[J]. Surveys in Geophysics, 27(1): 1-17. doi: 10.1007/s10712-005-7261-3
    [367] Xia J H, Xu Y X, Chen C, et al. 2006b. Simple equations guide high-frequency surface-wave investigation techniques[J]. Soil Dynamics and Earthquake Engineering, 26(5): 395-403. doi: 10.1016/j.soildyn.2005.11.001
    [368] Xia J H, Xu Y X, Miller R D. 2007. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 164(5): 941-956. doi: 10.1007/s00024-007-0204-9
    [369] Xia J H, Miller R D, Xu Y X. 2008. Data-resolution matrix and model-resolution matrix for Rayleigh-wave inversion using a damped least-square method[J]. Pure and Applied Geophysics, 165(7): 1227-1248. doi: 10.1007/s00024-008-0364-2
    [370] Xia J H, Xu Y X, Miller R D, Zeng C. 2010. A trade-off solution between model resolution and covariance in surface-wave inversion[J]. Pure and Applied Geophysics, 167(12): 1537-1547. doi: 10.1007/s00024-010-0107-z
    [371] Xia J H, Xu Y X, Luo Y H, et al. 2012. Advantage of using multi-channel analysis of Love waves (MALW) to estimate near-surface shear-wave velocity[J]. Surveys in Geophysics, 33(5): 841-860. doi: 10.1007/s10712-012-9174-2
    [372] 夏江海, 高玲利, 潘雨迪, 等. 2015. 高频面波方法的若干新进展[J]. 地球物理学报, 58(8): 2591-2605 doi: 10.6038/cjg20150801

    Xia J H, Gao L L, Pan Y D. et al. 2015. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 58(8): 2591-2605 (in Chinese). doi: 10.6038/cjg20150801
    [373] 夏唐代, 陈云敏, 吴世明. 1992. 成层地基中Love 波的弥散特性[J]. 浙江大学学报, 26: 224-230

    Xia T D, Chen Y M, Wu S M. 1992. Dispersion characterostics of Love wave in layered soils[J]. Journal of Zhejiang University (Natural Science), 26: 224-230 (in Chinese).
    [374] 夏唐代, 蔡袁强, 吴世明, 等. 1996. 各向异性成层地基中Rayleigh波的弥散特性[J]. 振动工程学报, 9(2): 191-196

    Xia T D, Cai Y Q, Wu S M. 1996. Dispersion charateristics of Rayleigh wave in anisotropic layered soils[J]. Journal of Vibration Engineering, 9(2): 191-196 (in Chinese).
    [375] 夏唐代, 陈汉良, 吴世明. 1999. 流体—固体介质中瑞利波特性的进一步讨论[J]. 振动工程学报, 12(3): 348-353

    Xia T D, Chen H L, Wu S M. 1999. Further discussion on Rayleigh wave characteristics in layered fluid-solid media[J]. Journal of Vibration Engineering, 12(3): 348-353 (in Chinese).
    [376] Xing Z, Mazzotti A. 2019. Two-grid full-waveform Rayleigh-wave inversion via a genetic algorithm: Part 1. Method and synthetic examples[J]. Geophysics, 84(5): R817-R826.
    [377] 熊章强, 张大洲, 肖柏勋. 2008. 裂缝介质中瑞雷面波传播的渐变非均匀交错网格数值模拟[J]. 湖南大学学报(自然科学版), 35(8): 24-28

    Xiong Z Q, Zhang D Z, Xiao B X. 2008. Gradual change nonuniform staggered grids numerical modeling of Rayleigh wave in interstice media[J]. Journal of Hunan University (Natural Sciences), 35(8): 24-28 (in Chinese).
    [378] 徐佩芬, 侍文, 凌苏群, 等. 2012. 二维微动剖面探测“孤石”: 以深圳地铁7号线为例[J]. 地球物理学报, 55(6): 2120-2128 doi: 10.6038/j.issn.0001-5733.2012.06.034

    Xu P F, Shi W, Ling S Q, et al. 2012. Mapping spherically weathered ‘Boulders’ using 2D microtremor profiling method: A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 55(6): 2120-2128 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.06.034
    [379] 徐佩芬, 李世豪, 杜建国, 等. 2013a. 微动探测: 地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 29(5): 1841-1845

    Xu P F, Li S H, Du J G. 2013a. Microtremor survey method: A new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 29(5): 1841-1845 (in Chinese).
    [380] 徐佩芬, 李世豪, 凌甦群, 等. 2013b. 利用SPAC法估算地壳S波速度结构[J]. 地球物理学报, 56(11): 3846-3854

    Xu P F, Li S H, Ling S Q, et al. 2013b. Application of SPAC method to estimate the crustal S-wave velocity structure[J] . Chinese Journal of Geophysics, 56(11): 3846-3854 (in Chinese).
    [381] 徐善辉, 郭建, 李培培, 等. 2017. 京津高铁列车运行引起的地表振动观测与分析[J]. 地球物理学进展, 32(1): 421–425 doi: 10.6038/pg20170160

    Xu S H, Guo J, Li P P. et al. 2017. Observation and analysis of ground vibrations caused by the Beijing-Tianjin high-speed train running[J]. Progress in Geophysics, 32(1): 421-425 (in Chinese). doi: 10.6038/pg20170160
    [382] Xu Y X, Xia J H, Miller R D. 2007. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach[J]. Geophysics. 72(5): SM147-SM153. doi: 10.1190/1.2753831
    [383] Xu Y X, Zhang B L, Luo Y H, et al. 2013. Surface-wave observations after integrating active and passive source data[J]. The Leading Edge, 32(6): 634-637. doi: 10.1190/tle32060634.1
    [384] 徐义贤, 罗银河. 2015. 噪声地震学方法及应用[J]. 地球物理学报, 58(8): 2618-2636 doi: 10.6038/cjg20150803

    Xu Y X, Luo Y H. 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics, 56(8): 2618-2636 (in Chinese). doi: 10.6038/cjg20150803
    [385] Xu Z B, Mikesell T. 2017. On the reliability of direct Rayleigh-wave estimation from multicomponent cross-correlations[J]. Geophysical Journal International, 210(3): 1388-1393. doi: 10.1093/gji/ggx228
    [386] Xu Z J, Song X D. 2009. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation[J]. Proceedings of the National Academy of Sciences, USA, 106(34): 14207-14212.
    [387] 杨博, 熊章强, 张大洲, 等. 2019. 利用自适应混沌遗传粒子群算法反演瑞利面波频散曲线[J]. 石油地球物理勘探, 54(6): 1217-1227

    Yang B, Xiong Z Q, Zhang D Z, et al. 2019. Rayleigh surface-wave dispersion curve inversion based on adaptive chaos genetic particle swarm optimization algorithm[J]. Oil Geophysical Prospecting, 54(6): 1217-1227(in Chinese).
    [388] 杨成林. 1993. 瑞雷波勘探[M]. 北京: 地质出版社.

    Yang C L. 1993. Rayleigh-wave Exploration[M]. Beijing: Geological Publishing House Press (in Chinese).
    [389] Yang C Y, Wang Y, Lu J. 2011. Application of Rayleigh waves on PS-wave static correction[J]. Journal of Geophysics and Engineering, 9(1): 90-97.
    [390] Yang Y J, Ritzwoller M H, Levshin A L, et al. 2007. Ambient noise Rayleigh wave tomography across Europe[J]. Geophysical Journal International, 168: 259-274. doi: 10.1111/j.1365-246X.2006.03203.x
    [391] 杨振涛. 2017. 被动源面波勘探高阶频散曲线的提取和应用[D]. 合肥: 中国科学技术大学.

    Yang Z T. 2017. Passive surface waves: Higher modes extraction and application[D]. Hefei: University of Science and Technology of China (in Chinese).
    [392] 杨振涛, 陈晓非, 潘磊, 等. 2019. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报, 62(1): 298-305 doi: 10.6038/cjg2019M0641

    Yang Z T, Chen X F, Pan L, et al. 2019. Multi-channel analysis of Rayleigh waves based on the vector wavenumber transformation method (VWTM)[J]. Chinese Journal of Geophysics, 62(1): 298-305 (in Chinese). doi: 10.6038/cjg2019M0641
    [393] Yao H J, van Der Hilst R D, Maarten V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophysical Journal International, 166: 732-744. doi: 10.1111/j.1365-246X.2006.03028.x
    [394] Yilmaz Ö, Eser M, Berilgen M. 2006. A case study of seismic zonation in municipal areas[J]. The Leading Edge, 25(3): 319-330. doi: 10.1190/1.2184100
    [395] Yin X F, Xia J H, Shen C, et al. 2014. Comparative analysis on penetrating depth of high-frequency Rayleigh and Love waves[J]. Journal of Applied Geophysics, 111: 86-94. doi: 10.1016/j.jappgeo.2014.09.022
    [396] Yomogida K, Aki K. 1987. Amplitude and phase data inversion for phase velocity anomalies in the Pacific Ocean basin[J]. Geophysical Journal international, 88(1): 161-204. doi: 10.1111/j.1365-246X.1987.tb01374.x
    [397] Yu G, Cai Z, Chen Y, et al. 2016. Walkaway VSP using multimode optical fibers in a hybrid wireline[J]. The Leading Edge, 35(7): 615-619. doi: 10.1190/tle35070615.1
    [398] Yu W F, Liu Z P. 2015. A numerical study of Rayleigh wave particle motions exited by a point source and Possions’s ratio for lateral inhomogeneous half-space[J]. Journal of Applied Geophysics, 123: 242-255. doi: 10.1016/j.jappgeo.2015.09.009
    [399] 袁艺, 姚华建, 秦岩. 2016. 基于邻域算法的瑞利面波垂直-水平振幅比及频散曲线联合反演及应用[J]. 地球物理学报, 59(3): 959-971 doi: 10.6038/cjg20160318

    Yuan Y, Yao H J, Qin Y. 2016. Joint inversion of Rayleigh wave vertical-horizontal amplitude ratios and dispersion based on the neighborhood algorithm and its application[J]. Chinese Journal of Geophysics, 59(3): 959-971 (in Chinese). doi: 10.6038/cjg20160318
    [400] Yuan Y O, Simons Y J, Bozdg E. 2015. Multiscale adjoint waveform tomography for surface and body waves[J]. Geophysics, 80(5): R281-R302. doi: 10.1190/geo2014-0461.1
    [401] Zeng C, Liang Q, Chen C. 2007. Comparative analysis on sensitivities of Love and Rayleigh waves[C]//Technical Program with Biographies, SEG, 77th Annual Meeting, 1138-1141.
    [402] Zeng C, Xia J, Miller R D, et al. 2011a. Application of the multiaxial perfectly matched layer to near-surface seismic modeling with Rayleigh waves[J]. Geophysics, 76(3): T43-T52. doi: 10.1190/1.3560019
    [403] Zeng C, Xia J, Miller R D, et al. 2011b. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm[J]. Journal of Applied Geophysics, 75(4): 648-685. doi: 10.1016/j.jappgeo.2011.09.028
    [404] 曾求, 褚日升, 盛敏汉, 等. 2020. 基于地震背景噪声的四川威远地区浅层速度结构成像研究[J]. 地球物理学报, 63(3): 944-955 doi: 10.6038/cjg2020N0177

    Zeng Q, Chu R S, Sheng M H, et al. 2020. Seismic ambient noise tomography for shallow velocity structures beneath Weiyuan, Sichuan[J]. Chinese Journal of Geophysics, 63(3): 944-955 (in Chinese). doi: 10.6038/cjg2020N0177
    [405] Zeng X F, Lancelle C, Thurber C, et al. 2017. Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California[J]. Bulletin of the Seismological Society of America, 107(2): 603-610. doi: 10.1785/0120160168
    [406] 翟培合, 韩忠东, 李丽, 等. 2008. 运行列车振动产生的瑞利波特征及数据分析[J]. 噪声与振动控制, 28(1): 18-21 doi: 10.3969/j.issn.1006-1355.2008.01.006

    Zhai P H, Han Z D, Li L, et al. 2008. The character istics and data analysis of Rayleigh wave induced by the vibration of running trains[J]. Noise and Vibration Control, 28(1): 18-21 (in Chinese). doi: 10.3969/j.issn.1006-1355.2008.01.006
    [407] 詹望. 2020. 频率—贝塞尔变换方法在宽频带地震台网中的应用——以中国东北地区为例[D]. 合肥: 中国科学技术大学.

    Zhan W. 2020. Appling frequency-Bessel transform method to boardband seismic arrays—Case study of northeast China[D]. Hefei: University of Science and Technology of China (in Chinese).
    [408] Zhan Z, Ni S D, Helmberger D V, et al. 2010. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise[J]. Geophysical Journal International, 182: 408-420.
    [409] 张宝龙. 2013. 基于背景噪声的面波勘探方法研究——以巴东黄土坡为例[D]. 武汉: 中国地质大学(武汉).

    Zhang B L. 2013. Study of surface-wave exploration method base on ambient noise—Application example in Badong Huangtuling Landslide[D]. Wuhan: China University of Geosciences (in Chinese).
    [410] 张碧星, 喻明, 熊伟, 等. 1997. 层状介质中的声波场及面波研究[J]. 声学学报, 22(3): 230-241

    Zhang B X, Yu M, Xiong W, et al. 1997. Study of acoustic wave and surface waves in stratified media[J]. Acta Acoustica, 22(3): 230-241 (in Chinese). .
    [411] 张碧星, 肖柏勋, 杨文杰, 等. 2000. 瑞利波勘探中“之”字形频散曲线的形成机理及反演研究[J]. 地球物理学报, 43(4): 557-567 doi: 10.3321/j.issn:0001-5733.2000.04.017

    Zhang B X, Xiao B X, Yang W J. et al. 2000. Mechanism of Zigzag dispersion curves in Rayleigh exploration and its invesion study[J]. Chinese Journal of Geophysics, 43(4): 557-567 (in Chinese). doi: 10.3321/j.issn:0001-5733.2000.04.017
    [412] 张碧星, 鲁来玉, 鲍光淑. 2002. 瑞利波勘探中“之”字形频散曲线研究[J]. 地球物理学报, 45(2): 265-276.

    Zhang B X, Lu L Y, Bao G S. 2002. A study of Zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 45(2): 256-276 (in Chinese).
    [413] 张固澜, 何承杰, 李勇, 等. 2019. 高铁地震震源子波时间函数及验证[J]. 地球物理学报, 62(6): 2344-2354 doi: 10.6038/cjg2019M0661

    Zhang G L, He C J, Li Y, et al. 2019. Wavelet time function of high-speed-train seismic source and verification[J]. Chinese Journal of Geophysics, 62(6): 2344-2354(in Chinese). doi: 10.6038/cjg2019M0661
    [414] 张唤兰, 王保利, 宁杰远, 等. 2019. 高铁地震数据干涉成像技术初探[J]. 地球物理学报, 62(6): 2321-2327 doi: 10.6038/cjg2019M0676

    Zhang H L, Wang B L, Ning J Y, et al. 2019. Interferometry imaging using high-speed-train induced seismic waves[J]. Chinese Journal of Geophysics, 62(6): 2321-2327 (in Chinese). doi: 10.6038/cjg2019M0676
    [415] Zhang H Y, Mi B B, Liu Y, et al. 2021. A pitfall of applying one-bit normalization in passive surface-wave imaging from ultra-short roadside noise[J]. Journal of Applied Geophysics, 187: 104285. doi: 10.1016/j.jappgeo.2021.104285
    [416] Zhang J, Liu T. 2000. Numerical Simulation of elastic wave propagation in anisotropic media[J]. Acta Mechanica Solida Sinica, 13(1): 50-59.
    [417] 张立, 刘争平. 2013. 水平层状介质中基阶瑞利面波椭圆极化特征数值分析与研究[J]. 地球物理学报, 56(5): 1686-1695 doi: 10.6038/cjg20130526

    Zhang L, Liu Z P. 2013. A study of the elliptic polarization characteristics of fundamental mode Rayleigh wave based on numerical simulation[J]. Chinese Journal of Geophysics, 56(5): 1686-1695 (in Chinese). doi: 10.6038/cjg20130526
    [418] 张丽娜, 任亚玲, 林融冰, 等. 2020. 分布式光纤声波传感器及其在天然地震学研究中的应用[J]. 地球物理学进展, 35(1): 65-71.

    Zhang L N, Ren Y L, Lin R B, et al. 2020. Distributed acoustic sensing system and its application for seismological studies[J]. Progress in Geophysics, 35(1), 65-71 (in Chinese).
    [419] 张若晗, 徐佩芬, 凌甦群, 等. 2020. 基于微动H/V谱比法的土石分界面探测研究-以济南中心城区为例[J]. 地球物理学报, 63(1): 339-350 doi: 10.6038/cjg2020M0678

    Zhang R H, Xu P F, Lin S Q, et al. 2020. Detection of the soil-rock interface based on microtremor H/V spectral ratio method: a case study of the Jinan urban area[J]. Chinese Journal of Geophysics, 63(1): 339-350(in Chinese). doi: 10.6038/cjg2020M0678
    [420] 张维, 何正勤, 胡刚, 等. 2012. 用人工源和天然源面波联合探测浅层速度结构[J]. 震灾防御技术, 7(1): 26-36 doi: 10.3969/j.issn.1673-5722.2012.01.003

    Zhang W, He Z Q, Hu G, et al. 2012. Detect the velocity structure of shallow crust with artificial and nature source Rayleigh wave technology[J]. Technology for Earthquake Disaster Prevention, 7(1): 26-36(in Chinese). doi: 10.3969/j.issn.1673-5722.2012.01.003
    [421] 张维, 何正勤, 胡刚, 等. 2013. 用面波联合勘探技术探测浅部速度结构[J]. 地球物理学进展, 28(4): 2199-2206 doi: 10.6038/pg20130467

    Zhang W, He Z Q, Hu G, et al. 2013. Detection of the shallow velocity structure with surface wave prospection method[J]. Progress in Geophysics, 28(4): 2199-2206 (in Chinese). doi: 10.6038/pg20130467
    [422] Zhang S X, Chan L S, Chen C Y. et al. 2003. Apparent phase velocities and fundamental-mode phase velocities of Rayleigh waves[J]. Soil Dynamics and Earthquake Engineering, 23(7): 563-569.
    [423] Zhang S X, Wang Y, Zhou H W, et al. 2009. Dispersion splitting of Rayleigh waves in layered azimuthally anisotropic media[J]. Journal of Applied Geophysics, 67: 130-142. doi: 10.1016/j.jappgeo.2008.10.008
    [424] 张智, 陈赟, 李飞. 2008. 利用地震面波频散重建川滇地区壳幔S波速度[J]. 地球物理学报, 51(4): 1114-1122 doi: 10.3321/j.issn:0001-5733.2008.04.020

    Zhang Z, Chen Y, Li F. 2008. Reconstruction of the S-wave velocity structure of crust an mantle from seismic surface wave dispersion in Sichuan-Yunnan Region[J]. Chinese Journal of Geophysics, 51(4): 1114-1122 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.04.020
    [425] Zhou C J, Xi C Q, Pang J Y, et al. 2018. Ambient noise data selection based on the asymmetry of cross-correlation functions for near surface applications[J]. Journal of Applied Geophysics, 159: 803-813. doi: 10.1016/j.jappgeo.2018.09.033
    [426] Zhou C J, Xia J H, Pang J Y, et al. 2021. Near-surface geothermal reservoir imaging based on the customized dense seismic network[J]. Surveys in Geophysics, 42(3): 673–697. doi: 10.1007/s10712-021-09642-8
    [427] 周红, 陈晓非. 2007. 凹陷地形对Rayleigh面波传播影响的研究[J]. 地球物理学报. 50(4): 1182-1189.

    Zhou H, Chen X F. 2007. A study on the effect of depressed topography on Rayleigh surfac wave[J]. Chinese Journal of Geophysics, 50(4): 1182-1189 (in Chinese).
    [428] 周晓华, 林君, 陈祖斌, 等. 2011. 改进的神经网络反演微动面波频散曲线[J]. 吉林大学学报: 地球科学版, 41(3): 900-906

    Zhou X H, Lin J, Chen Z B, et al. 2011. Iterative inversion of microtremor surface wave dispersion curves by improved neural network[J]. Journal of Jilin University (Earth Science Edition), 41(3): 900-906 (in Chinese).
    [429] 周云腾. 2019. F-K域多尺度瑞雷面波全波形反演[D]. 北京: 中国地质大学(北京).

    Zhou Y T. 2019. Multiscale Rayleigh wave full waveform inversion in F-K domain[D]. Beijing: China University of Geosciences (Beijing) (in Chinese).
    [430] 周云腾, 张致付. 2020. F-K域多尺度瑞雷面波全波形反演[J]. 地球物理学进展, 35(6): 2309-2314 doi: 10.6038/pg2020DD0134

    Zhou Y T, Zhang Z F. 2020. Multiscale Rayleigh wave full waveform inversion in F-K domain[J]. Progress in Geophysics, 35(6): 2309-2314 (in Chinese). doi: 10.6038/pg2020DD0134
    [431] 周竹生, 刘喜亮, 熊孝雨. 2007. 弹性介质中瑞雷面波有限差分法正演模拟[J]. 地球物理学报, 50(2): 567-573. doi: 10.3321/j.issn:0001-5733.2007.02.030

    Zhou Z S, Liu X L, Xiong X Y, 2007. Finite-difference modeling of Rayleigh surface wave in elastic media[J]. Chinese Journal of Geophysics, 50(2): 567-573 (in Chinese). doi: 10.3321/j.issn:0001-5733.2007.02.030
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  271
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2022-07-11

目录

    /

    返回文章
    返回