A review on the analysis of aeromagnetic anomaly and its geological and tectonic applications
-
摘要: 航磁异常在地质构造研究中具有覆盖广、成本低以及横向分辨率高等显著优势,被广泛应用于隐伏岩浆岩及断层探测,俯冲带、大陆裂谷、岩墙群及地幔柱等构造特征分析,磁性界面(包含结晶基底及居里等温面)反演,区域构造划分以及孕震构造背景研究等领域. 近来随着航空磁测技术的发展,积累了越来越多大比例尺、高精度的航磁数据,并在此基础上产生了新的全球/区域地壳磁异常图/模型. 在由航磁异常对场源位置、形态、走向及埋深等进行分析反演方面,人们使用了化极、延拓、求导(包含水平及垂向导数、斜导数、总水平导数、总梯度模及各类导数组合)、欧拉反褶积、磁性界面及磁化率反演等多种技术. 本文对岩石磁性和磁异常解释的不确定性进行了整理和归纳,对各种航磁异常分析及反演技术进行了介绍,对航磁异常在不同场景下的地质构造应用进行了回顾,并对未来航磁探测、数据分析及应用等发展进行了讨论和展望.Abstract: Aeromagnetic anomaly has the obvious advantages of wide coverage, low cost and high lateral resolution in geological structure research, and has been widely used in concealed magmatic rock and faults detection, tectonic characteristics (e.g. subduction zone, continental rift, dike swarm and mantle plume) analysis, magnetic interfaces (including crystalline basement and Curie Point Depth) inversion, regional tectonic division and study on seismogenic tectonic background. Recently, with the rapid development of aeromagnetic survey technology, more and more high-precision and high-resolution aeromagnetic data have been accumulated, and new global/regional aeromagnetic anomaly maps/models have been generated on this basis. In analyzing and inverting the position, shape, trend and buried depth of field source from aeromagnetic anomaly, various boundary identification techniques such as reduction to the pole, upward continuation, derivations (including vertical and horizontal derivative, oblique derivative, analytic signal amplitude and combinations of derivatives), Euler deconvolution and magnetic boundaries or magnetic susceptibility inversion have been developed. This paper organizes and summarizes rock magnetism and uncertainty of interpretation of magnetic anomalies, introduces various magnetic data analysis and inversion methods, reviews the geological and tectonic applications in different aspects, and discusses and prospects the development of aeromagnetic detection, data analysis and tectonic application in the future. As the basis of aeromagnetic anomaly interpretation, the characteristics of susceptibility of rocks are summarized as follows: the susceptibility of minerals is positively correlated with their iron content. Rock susceptibility is mainly determined by the less abundant content of ferromagnetic minerals (mainly magnetite). The current susceptibility measurements are still not representative enough, thus more in-situ detections especially deep rock samplings are in need and three-dimensional susceptibility models of the continental lithosphere need to be established in the future. In the interpretation of aeromagnetic anomalies, attentions should be paid to the influence of uncertainties, which include non-uniqueness of the inverse problem, annulator, demagnetization, field-source superposition and induced-remanent magnetization separation. For various boundary recognition and inversion techniques to detect the location and buried depth of magnetic sources by aeromagnetic anomalies, it is necessary to be familiar with the advantages and limitations of each technique, and select them according to different research objectives. For example, vertical derivative can be used to identify the center of the source, horizontal derivative can be used to identify the boundary, and oblique derivative can be effectively used to identify the deep source. When magnetic anomaly analysis is applied in geological structure study, appropriate means should be selected according to specific structural problems. For example, to detect concealed magmatic rocks or concealed faults near the surface, the first-order vertical derivative or total horizontal derivative analysis can be used. For the buried depth of rock or the deep distribution of fault zone, qualitative analysis of upward continuation, semi-quantitative analysis of Euler deconvolution and quantitative analysis of three-dimensional magnetic susceptibility inversion can be applied.
-
Key words:
- aeromagnetic anomaly /
- geology /
- tectonics /
- analysis /
- inversion
-
图 6 龙门山断裂带两侧基底分布特征示意图(修改自Lei et al., 2022)
Figure 6. Schematic diagram of basement distribution on both sides of Longmenshan fault zone (modified from Lei et al., 2022)
图 2 细剖分法(Dipole100)、偶极子近似法(Dipole)、泰勒级数展开法(TSP)和高斯—勒让德积分法(GL5×5×5)计算的磁异常Bx曲线分布图. 观测点位于20 km高度
Figure 2. Calculated distribution of magnetic anomaly Bx by: Subdivision (Dipole 100), Dipole approximation (Dipole), Taylor Series exPansion (TSP) and Gause-Legende integral (GL5×5×5) methods. The observation points are located at an altitude of 20 km
图 3 雅鲁藏布江缝合带中部两条磁异常条带深部岩性成因示意图 (修改自Wang et al., 2020a)
Figure 3. Schematic diagram of deep lithologic genesis of the two magnetic anomaly bands in the middle of Yarlung Zangbo Suture zone (modified from Wang et al., 2020a)
图 4 南西奈塔巴地区航磁解析信号振幅(左)及斜导数总水平导数(右)同断层分布(修改自Khalil, 2016)
Figure 4. Comparison of the analytical signal amplitude (left) and the total horizontal derivative of the tilt derivative (TDR_THD)(right) with faults at Taba, South Sinai (modified from Khalil, 2016)
图 5 (a)塔里木盆地磁异常解析信号振幅分布;(b)径向信号异常特写;(c)由磁异常勾画出地幔柱原始形态;(d)新生代变形恢复(修改自Xu et al., 2020)
Figure 5. (a) Analytical signal of aeromagnetic anomalies in the Tarim Basin;(b) Close-up distribution of radial signal anomalies; (c) Original morphology of imaged plume;(d) Restoration of Cenozoic deformation (modified from Xu et al., 2020)
图 7 全球居里面分布参考模型 (Li et al., 2017)
Figure 7. Global reference Curie point depth model (Li et al., 2017)
图 8 基于航磁数据得到的中国大陆区域地质构造图 (修改自Xiong et al., 2016a)
Figure 8. Regional geotectonic map of continental China based on aeromagnetic data (modified from Xiong et al., 2016a)
图 9 由航磁异常推测孕震断层展布. (a)三维磁化率反演结果;(b)磁化率剖面;(c)由航磁、重力及DInSAR得到的地震地质构造背景解释;(d)剖面构造概念图 (修改自Kolawole et al., 2017)
Figure 9. Seismogenic faults distribution deduced from aeromagnetic anomalies. (a) Inverted 3D mangetic susceptibility. (b) Susceptibility profile. (c) Interpretation of geotectonic setting of earthquakes based on DInSAR, aeromagnetic and gravity data. (d) Conceptual 2D tectonics of the cross section (modified from Kolawole et al., 2017)
表 1 常见矿物体积磁化率数值范围 (修改自Hunt et al., 1995; Dunlop and Özdemir, 2007)
Table 1. Numerical range of volume magnetic susceptibility of common minerals (modified from Hunt et al., 1995; Dunlop and Özdemir, 2007)
磁性种类 矿物名称 矿物化学式 Fe质量百分比/% 体积磁化率/(×10−3SI) 颜色 主/次 抗磁性 石英 SiO2 0 −16.4×10−3 浅色矿物 主要矿物 长石 KAlSi3O8 0 −14.9×10−3 方解石 CaCO3 0 −13.6×10−3 顺磁性 黑云母 KR3AlSi3O10OH2* <31 0.5~1.15 暗色矿物 角闪石 Fe7Si8O22OH2 <37 0.5~2.7 辉石 R2Si2O6* <40 1.55~1.8 橄榄石 R2SiO4* <53 1.56~5.53 钛铁矿 FeTiO3 37 4.7~5.2 次要矿物 赤铁矿 Fe2O3 70 0.5~40 黄铁矿 FeS2 46.7 1.5 铁磁性
(亚铁磁性)铁 Fe 100 3.9×103 磁铁矿 Fe3O4 72.4 3.0×103 磁赤铁矿 Fe2O3 70 2.0~2.5×103 磁黄铁矿 Fe7S8 60 3.2×103 钛磁铁矿 0.13~0.62×103 * R代表可能被Fe元素或其它元素占据的晶格位置. 表 2 常见岩石类型体积磁化率数值范围(修改自Hunt et al., 1995; Clark, 1999; Dunlop and Özdemir, 2007)
Table 2. Numerical range of volume magnetic susceptibility of common rocks (modified from Hunt et al., 1995; Clark, 1999; Dunlop and Özdemir, 2007)
岩石种类 主要矿物 体积磁化率(×10−3SI) 岩浆岩 超基性 橄榄岩 橄榄石 96~200 基性 辉长岩 辉石 1~160 玄武岩 0.25~180 中性 闪长岩 角闪石、黑云母、长石 0.63~130 安山岩 170 酸性 花岗岩 黑云母、长石、石英 0~50 流纹岩 0.25~38 沉积岩 碎屑沉积 砂岩 长石、石英 0~20.9 页岩 0.063~18.6 化学沉积 灰岩 方解石 0~25 白云岩 方解石 −0.01~0.94 -
[1] Almeida G M, Fuck R A, Lima D, et al. 2021. Accretion tectonics in Western Gondwana highlighted by the aeromagnetic signature of the Sergipano Belt, NE Brazil [J]. Tectonophysics, 802: 228742. [2] Arkani-Hamed J. 1988. Differential reduction to the pole of regional magnetic anomalies[J]. Geophysics, 53: 1592-1600. doi: 10.1190/1.1442441 [3] Arkani-Hamed J. 2007. Differential reduction to the pole: Revisited[J]. Geophysics, 72(1): L13-L20. doi: 10.1190/1.2399370 [4] Asgharzadeh M F, Frese R R B V, Kim H R. 2008. Spherical prism magnetic effects by Gauss–Legendre quadrature integration [J]. Geophysical Journal of the Royal Astronomical Society, 173(1): 315-333. [5] Baranov V. 1957. A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies[J]. Geophysics, 22: 359-383. doi: 10.1190/1.1438369 [6] Barrère C, Ebbing J, Gernigon L. 2009. Offshore prolongation of caledonian structures and basement characterisation in the western barents sea from geophysical modelling[J]. Tectonophysics, 470(1-2): 71-88. doi: 10.1016/j.tecto.2008.07.012 [7] Bhattacharyya B K. 1965. Two-dimensional harmonic analysis as a tool for magnetic interpretation[J]. Geophysics, 30 (5): 829-857. doi: 10.1190/1.1439658 [8] Blakely R J. 1995. Potential Theory in Gravity and Magnetic Applications[M]. Cambridge: Cambridge University Press. [9] Blakely R J, Brocher T M, Wells R E. 2005. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle[J]. Geology, 33(6): 445-448. doi: 10.1130/G21447.1 [10] Bournas N, Baker H A. 2001. Interpretation of magnetic anomalies using the horizontal gradient analytic signal [J]. Annali Di Geofisica, 44(3): 505-526. [11] Bridges D L, Mickus K, Gao S S, et al. 2012. Magnetic stripes of a transitional continental rift in Afar[J]. Geology, 40(3): 203-206. doi: 10.1130/G32697.1 [12] Clark D A. 1999. Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation[J]. Exploration Geophysics, 30: 5-26. doi: 10.1071/EG999005 [13] Clark D A. 2012. New methods for interpretation of magnetic vector and gradient tensor data I: Eigenvector analysis and the normalized source strength[J]. Exploration Geophysics, 43: 267-282. doi: 10.1071/EG12020 [14] Dannemiller N, Li Y. 2006. A new method for determination of magnetization direction[J]. Geophysics, 71(6): 69-73. doi: 10.1190/1.2356116 [15] Demarco P N, Masquelin H, Prezzi C, et al. 2020a. Aeromagnetic patterns in Southern Uruguay: Precambrian-Mesozoic dyke swarms and Mesozoic rifting structural and tectonic evolution[J]. Tectonophysics, 228373. [16] Demarco P N, Prezzi C, Bettucci L S, et al. 2020b. Review of Curie point depth determination through different spectral methods applied to magnetic data[J]. Geophysical Journal International, 224: 17-39. doi: 10.1093/gji/ggaa361 [17] 杜劲松. 2014. 基于球坐标的卫星磁异常数据处理与正反演方法研究[D]. 武汉: 中国地质大学(武汉).Du J S. 2014. Study on processing, forward modelling and inversion algorithms of satellite magnetic anomaly data in spherical coordinate system[D]. Wuhan: China University of Geosciences (Wuhan) (in Chinese). [18] Dunlop D J, Özdemir Ö. 1997. Rock Magnetism: Fundamental and Frontiers[M]. Cambridge University Press. [19] Dunlop D J, Özdemir Ö. 2007. Magnetizations in Rocks and Minerals[M]//Schubert G. Treatise on Geophysics. Elsevier, 5.08: 277-336. [20] Dunlop D J, Özdemir Ö. 2015. Magnetizations in Rocks and Minerals[M]//Schubert G. Treatise on Geophysics 2nd. Elsevier, 5.08: 255-308. [21] Emila D A. 1973. Equivalent source used as an analytic base for processing total magnetic field profiles[J]. Geophysics, 38(2): 339-348. doi: 10.1190/1.1440344 [22] Fedi M, Florio G. 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method [J]. Geophysical Prospecting, 49(1): 40-58. [23] 冯锐. 1986. 三维物性分布的位场计算[J]. 地球物理学报, 29(4): 399-406 doi: 10.3321/j.issn:0001-5733.1986.04.010Feng R. 1986. A computation method for potential field with three-dimensional density and magnetization distributions[J]. Chinese Journal of Geophysics, 29(4): 399-406 (in Chinese). doi: 10.3321/j.issn:0001-5733.1986.04.010 [24] Gao G M, Kang G F, Bai C H, et al. 2015. Study on crustal magnetic anomalies and Curie surface in Southeast Tibet[J]. Journal of Asian Earth Sciences, 97: 169-177. doi: 10.1016/j.jseaes.2014.10.035 [25] Gao G M, Lu Q M, Wang J, et al. 2021. Constraining crustal thickness and lithospheric thermal state beneath the northeastern Tibetan Plateau and adjacent regions from gravity, aeromagnetic, and heat flow data[J]. Journal of Asian Earth Sciences, 212: 104743. doi: 10.1016/j.jseaes.2021.104743 [26] Gerovska D, Arauzo-Bravo M J, Stavrev P. 2009. Estimating the magnetization direction of sources from southeast Bulgaria through correlation between reduced-to-the-pole and total magnitude anomalies[J]. Geophysical Prospecting, 57: 491-505 doi: 10.1111/j.1365-2478.2008.00761.x [27] Golynsky A V, Ferraccioli F, Hong J K, et al. 2018. New magnetic anomaly map of the Antarctic[J]. Geophysical Research Letters, 45(13): 6437-6449. doi: 10.1029/2018GL078153 [28] 管志宁. 2005. 地磁场与磁力勘探[M]. 北京: 地质出版社.Guan Z N. 2005. Geomagnetic Field and Magnetic Exploration[M]. Beijing: Geological Publishing House (in Chinese). [29] 郭灿文, 邢喆, 马永, 等. 2019. 基于航磁数据揭示威尔克斯盆地南部及周边地区地质构造特征[J]. 极地研究, 31(4): 393-400Guo C W, Xing Z, Ma Y, et al. 2019. Study on geological structure characteristics of the southern Wilkes basin and its surrounding area based on aeromagnetic data[J]. Chinese Journal of Polar Research, 31(4): 393-400 (in Chinese). [30] 郭华, 吴燕冈, 高铁. 2006. 重力斜导数方法在时间域中的理论模型与研究[J]. 吉林大学学报(地球科学版), 36(专辑): 9-14Guo H, Wu Y G, Gao T. 2006. The research of theories model in time area with the method of tilt derivative in gravity[J]. Journal of Jilin University (Earth Science Edition), 36(Sup): 9-14 (in Chinese). [31] Guo W W, Dentith M C, Bird R T, et al. 2001. Systematic error analysis of demagnetization and implications for magnetic interpretation [J]. Geophysics, 66(2): 562-570 doi: 10.1190/1.1444947 [32] 贺日政, 高锐, 郑洪伟, 等. 2007a. 青藏高原中西部航磁异常的匹配滤波分析与构造意义[J]. 地球物理学报, 50(4): 1131-1140He R Z, Gao R, Zheng H W, et al. 2007a. Matched-filter analysis of aeromagnetic anomaly in mid-western Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 50(4): 1131-1140 (in Chinese). [33] 贺日政, 高锐, 郑洪伟. 2007b. 隐伏在青藏高原中部的东西走向断裂的航磁异常场特征及其意义[J]. 吉林大学学报(地球科学版), 37(5): 1002-1008He R Z, Gao R, Zheng H W. 2007b. Areomagnetic anomaly of subtle east-west striking faults in the central Tibet and its significance[J]. Journal of Jilin University (Earth Science Edition), 37(5): 1002-1008 (in Chinese). [34] Heck B, Seitz K. 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling [J]. Journal of Geodesy, 81(2):121-136. [35] Hood P, McClure D J. 1965. Gradient measurements in ground magnetic prospecting[J]. Geophysics, 30(3): 403-410. doi: 10.1190/1.1439592 [36] Hsu S K, Sibuet J C, Shyu C T. 1996. High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced analytic signal technique [J]. Geophysics, 61(2): 373-386. [37] 黄翼坚, 王万银, 于长春. 2009. 等效源法三维随机点位场数据处理和转换[J]. 地球物理学进展, 24(1): 95-101Huang Y J, Wang W Y, Yu C C. 2009. Processing and transform of 3-D arbitrarily distributed potential filed data using an equivalent source approach[J]. Progress in Geophysics, 24(1): 95-101 (in Chinese). [38] Hunt C P, Moskowitz B M, Banerjee S K. 1995. Magnetic Properties of Rocks and Minerals[M]//Ahrens T J . Rock Physics and Phase Relations: A Handbook of Physical Constants. Washington, DC: American Geophysical Union, 3: 189-204. [39] Jokat W, Nogi Y, Leinweber V. 2010. New aeromagnetic data from the western Enderby basin and consequences for Antarctic-India break-up[J]. Geophysical Research Letters, 37. [40] 康国发, 高国明, 白春华, 等. 2011. 青藏高原及邻区的地壳磁异常特征与区域构造[J]. 中国科学: 地球科学, 41(11): 1577-1585Kang G F, Gao G M, Bai C H, et al. 2011. Characteristics of the crustal magnetic anomaly and regional tectonics in the Qinghai-Tibet Plateau and the adjacent areas[J]. Science China Earth Sciences, 41(11): 1577-1585 (in Chinese). [41] 康国发, 高国明, 白春华, 等. 2013. 喜马拉雅东构造结周边地区地壳磁异常分布特征研究[J]. 地球物理学报, 56(11): 3877-3886 doi: 10.6038/cjg20131129Kang G F, Gao G M, Bai C H, et al. 2013. Study on distribution features of crustal magnetic anomalies around eastern Himalayan syntaxis[J]. Chinese Journal of Geophysics, 56(11): 3877-3886 (in Chinese). doi: 10.6038/cjg20131129 [42] Khalil M H. 2016. Subsurface faults detection based on magnetic anomalies investigation: A field example at Taba protectorate, South Sinai[J]. Journal of Applied Geophysics, 131: 123-132. doi: 10.1016/j.jappgeo.2016.06.001 [43] Kolawole F, Atekwana E A, Malloy S, et al. 2017. Aeromagnetic, gravity, and differential interferometric synthetic aperture radar analyses reveal the causative fault of the 3 April 2017 Mw6.5 Moiyabana, Botswana, earthquake[J]. Geophysical Research Letters, 44(17): 8837-8846. doi: 10.1002/2017GL074620 [44] Kumar R, Bansal A R, Ghods A. 2020. Estimation of depth to bottom of magnetic sources using spectral methods: Application on Iran's aeromagnetic data[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB018119. [45] Lei Y, Jiao L G, Chen H R. 2018. Possible correlation between the vertical component of lithospheric magnetic field and continental seismicity[J]. Earth, Planets and Space, 70: 179. [46] Lei Y, Jiao L G, Tu J Y, et al. 2022. Magnetic structure and its tectonic implication around Longmenshan fault zone revealed by EMAG2v3[J]. Frontiers in Earth Science, 10: 848824. doi: 10.3389/feart.2022.848824 [47] Leseane K, Betts P G, Armit R, et al. 2020. Structural overprinting criteria determined from regional aeromagnetic data: An example from the hill end trough, east Gondwana[J]. Tectonophysics, 797: 228660. doi: 10.1016/j.tecto.2020.228660 [48] Lesur V, Gubbins D. 2000. Using geomagnetic secular variation to separate remanent and induced sources of the crustal magnetic field[J]. Geophysical Journal International, 142: 889-897. doi: 10.1046/j.1365-246x.2000.00190.x [49] Li C F, Wang J, Zhou Z, et al. 2012. 3d geophysical characterization of the sulu–dabie orogen and its environs[J]. Physics of the Earth and Planetary Interiors, 192-193: 35-53. doi: 10.1016/j.pepi.2012.01.003 [50] Li C F, Lu Y, Wang J. 2017. A global reference model of Curie point depths based on EMAG2[J]. Scientific Reports, 7: 45129. doi: 10.1038/srep45129 [51] 李勤, 李庆春, 景月红. 2014. 变倾角磁异常化极方法[J]. 地球物理学进展, 29(4): 1497-1502 doi: 10.6038/pg20140403Li Q, Li Q H, Jing Y H. 2014. The varying inclination method for magnetic reduction to the pole[J]. Progress in Geophysics, 29(4): 1497-1502 (in Chinese). doi: 10.6038/pg20140403 [52] Li X. 2008. Magnetic reduction-to-the-pole at low latitudes: Observations and consideration[J]. The Leading Edge, 27(8): 990-1002. doi: 10.1190/1.2967550 [53] Li Y G, Oldenburg D W. 1996. 3-D inversion of magnetic data[J]. Geophysics, 61: 394-408. doi: 10.1190/1.1443968 [54] 刘强, 边刚, 殷晓东, 等. 2018. 利用微分进化法确定海洋磁场向下延拓中的最优参数[J]. 地球物理学报, 61(8): 3278-3284 doi: 10.6038/cjg2018L0399Liu Q, Bian G, Yin X D, et al. 2018. Determination of optimum parameters using a differential evolution algorithm in downward continuation of the marine geomagnetic field[J]. Chines Journal of Geophysics, 61(8): 3278-3284 (in Chinese). doi: 10.6038/cjg2018L0399 [55] 刘庆生, 高山, 郑建平. 1998. 大陆地壳磁性结构研究及其意义[J]. 科学通报, 1998, 43(12): 1246-1251 doi: 10.1360/csb1998-43-12-1246Liu Q S, Gao S, Zheng J P. 1998. Magnetic structure of continental crust and its significance[J]. Chinese Science Bulletin, 43(12): 1246-1251 (in Chinese). doi: 10.1360/csb1998-43-12-1246 [56] Liu S, Hu X, Zhang H, et al. 2017. 3D magnetization vector inversion of magnetic data: Improving and comparing methods[J]. Pure and Applied Geophysics, 174: 4421-4444. doi: 10.1007/s00024-017-1654-3 [57] 刘振军, 张永军, 赵百民. 2010. 分带变倾角化极磁场图在大范围航磁解释中的应用[J]. 物探与化探, 34(2): 221-224Liu Z J, Zhang Y J, Zhao B M. 2010. The application of the magnetic map of reduction to the pole with zonation and differential inclinations to large-area aeromagnetic interpretation[J]. Geophysical and Geochemical Exploration, 34(2): 221-224 (in Chinese). [58] 骆遥, 薛典军. 2010. 磁赤道处化极方法[J]. 地球物理学报, 53(12): 2998-3004 doi: 10.3969/j.issn.0001-5733.2010.12.024Luo Y, Xue D J. 2010. Reduction to the pole at the geomagnetic equator[J]. Chinese Journal of Geophysics, 53(12): 2998-3004 (in Chinese). doi: 10.3969/j.issn.0001-5733.2010.12.024 [59] Maus S, Haak V. 2003. Magnetic field annihilators: invisible magnetization at the magnetic equator[J]. Geophysical Journal International, 155: 509-513. doi: 10.1046/j.1365-246X.2003.02053.x [60] Maus S. 2010. An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720[J]. Geochemistry Geophysics Geosystems, 11(6): Q06015. [61] Meyer B, Chulliat A, Saltus R. 2017. Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3) [J]. Geochemistry Geophysics Geosystems, 18: 4522-4537 doi: 10.1002/2017GC007280 [62] Miller H G, Singh V. 1994. Potential field tilt - a new concept for location of potential field sources [J]. Journal of Applied Geophysics, 32: 213-217. [63] Minelli L, Speranza F, Nicolosi I, et al. 2018. Aeromagnetic investigation of the central Apennine seismogenic zone (Italy): From basins to faults[J]. Tectonics, 37(5-6): 1435-1453. [64] Okubo Y and Matsunaga T. 1994. Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity[J]. Journal of Geophysical Research, 99(B11): 22, 363-22, 371. doi: 10.1029/94JB01336 [65] Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies[J]. Geophysics, 39(4): 526-536. doi: 10.1190/1.1440444 [66] 潘商, 徐啸, 郭良辉, 等. 2020. 四川盆地—大巴山结合带地壳构造特征: 深反射地震约束的重磁解释[J]. 地球物理学进展, 35(4): 1292-1298 doi: 10.6038/pg2020DD0246Pan S, Xu X, Guo L H, et al. 2020. Crustal structure of aba Shan and adjacent terranes revealed from high-resolution deep seismic reflection profiling and potential field modelling[J]. Progress in Geophysics, 35(4): 1292-1298 (in Chinese). doi: 10.6038/pg2020DD0246 [67] Parker R L. 1973. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x [68] Reid A B, Allsop J M, Granser H, et al. 1990. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics, 55: 80-91. doi: 10.1190/1.1442774 [69] Roest W R, Verhoef J, Pilkington M. 1992. Magnetic interpretation using the 3-D analytic signal[J]. Geophysics, 57(1): 116-125. doi: 10.1190/1.1443174 [70] Roest W R and Pilkongton M. 1993. Identifying remnant magnetization effects in magnetic data[J]. Geophysics, 58: 653-659. doi: 10.1190/1.1443449 [71] Roy A. 1962. Ambiguity in geophysical interpretation[J]. Geophysics, 27(1): 90-99. doi: 10.1190/1.1438985 [72] Runcorn S K. 1975. On the interpretation of lunar magnetism[J]. Physics of the Earth and Planetary Interiors, 10: 327-335. doi: 10.1016/0031-9201(75)90059-X [73] 桑隆康, 马昌前, 王国庆, 等. 2012. 岩石学(第二版) [M]. 北京: 地质出版社.Sang L K, Ma C Q, Wang G Q, et al. 2012. Petrology (2nd edition) [M]. Beijing: Geological Publishing House (in Chinese). [74] Shah A K, Crain K. 2018. Aeromagnetic data reveal potential seismogenic basement faults in the induced seismicity setting of Oklahoma[J]. Geophysical Research Letters, 45: 5948-5958. doi: 10.1029/2018GL077768 [75] 石磊, 郭良辉, 孟小红, 等. 2012. 低纬度磁异常化极的伪倾角方法改进[J]. 地球物理学报, 55(5): 1775-1783 doi: 10.6038/j.issn.0001-5733.2012.05.035Shi L, Guo L H, Meng X H, et al. 2012. The modified pseudo inclination method for magnetic reduction to the pole at low latitudes[J]. Chinese Journal of Geophysics, 55(5): 1775-1783(in Chinese). doi: 10.6038/j.issn.0001-5733.2012.05.035 [76] Spector A, Grant F S. 1970. Statistical models for interpreting aeromagnetic data[J]. Geophysics, 35: 293–302. doi: 10.1190/1.1440092 [77] 孙昂, 郭华, 田明阳, 等. 2017. 基于欧拉反褶积方法的航磁三分量应用研究[J]. 地球物理学报, 60(11): 4491-4505 doi: 10.6038/cjg20171133Sun A, Guo H, Tan M Y, et al. 2017. Application of aeromagnetic three-component survey based on the Euler deconvolution method[J]. Chinese Journal of Geophysics (in Chinese), 60(11): 4491-4505 (in Chinese). doi: 10.6038/cjg20171133 [78] Teknik V, Thybo H, Artemieva I M, et al. 2020. A new tectonic map of the Iranian plateau based on aeromagnetic identification of magmatic arcs and ophiolite belts[J]. Tectonophysics, 228588. [79] Thébault E, Purucker M E, Whaler K A, et al. 2010. The magnetic field of the Earth’s lithosphere [J]. Space Science Review, 155: 95-127. doi: 10.1007/s11214-010-9667-6 [80] Tolles W E. 1954. Compensation of aircraft magnetic fields[P]. US2692970. [81] Tolles W E. 1955. Magnetic field compensation system[P]. US2706801. [82] Tomas N and Richard S S. 2022. Convolutional neural networks applied to the interpretation of lineaments in aeromagnetic data[J]. Geophysics, 87(1): K1-K13. doi: 10.1190/geo2021-0161.1 [83] 佟晶, 张婉, 张玄杰, 等. 2020. 基于航空重、磁数据的南黄海海相地层分布特征识别[J]. 中国地质调查, 7(5): 95-106Tong J, Zhang W, Zhang X J, et al. 2020. Characteristics of marine strata distribution in South Yellow Sea based on airborne gravity and magnetic data[J]. Geological Survey of China, 7(5): 95-106 (in Chinese). [84] Vacquier V, Steenland N C, Henderson R G, et al. 1951. Interpretation of Aeromagnetic Maps[M]. New York: Geological Society of America. [85] Verduzco B, Fairhead J D, Green C M, et al. 2004. The meter reader- New insights into magnetic derivatives for structural mapping [J]. The Leading Edge, 23(2): 116-119. [86] Vine F, Matthews D. 1963. Magnetic anomalies over oceanic ridges[J]. Nature, 199: 947-949. doi: 10.1038/199947a0 [87] 王德华, 张景发, 王鑫, 等. 2018. 郯庐断裂带江苏段及邻区航磁异常与深部构造特征[J]. 地球物理学进展, 33(4): 1419-1429 doi: 10.6038/pg2018BB0234Wang D H, Zhang J F, Wang X, et al. 2018. Analysis of aeromagnetic anomalies and deep structures of Jiangsu segment of Tan-Lu fault zone and its adjacent region[J]. Progress in Geophysics, 33(4): 1419-1429 (in Chinese). doi: 10.6038/pg2018BB0234 [88] 王婕, 郭子祺, 乔彦超. 2015. 固定翼无人机航磁测量系统的磁补偿问题初探[J]. 地球物理学进展, 30(6): 2931-2937 doi: 10.6038/pg20150662Wang J, Guo Z Q, Qiao Y C. 2015. Magnetic compensation of the fixed-wing UAV aeromagnetic detection system[J]. Progress in Geophysics, 30(6): 2931-2937 (in Chinese). doi: 10.6038/pg20150662 [89] Wang J, Yao C L, Li Z. 2020a. Aeromagnetic anomalies in central Yarlung-Zangbo Suture Zone (Southern Tibet) and their geological origins[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB017351. [90] Wang J, Yao C, Li Z, et al. 2020b. 3D inversion of the Sichuan Basin magnetic anomaly in South China and its geological significance[J]. Earth Planets and Space, 72: 40. doi: 10.1186/s40623-020-01167-5 [91] 王万银, 潘作枢, 李家康. 1991. 三维高精度重磁位场曲面延拓方法[J]. 物探与化探, 15(6): 415-422Wang W Y, Pan Z S, Li J K. 1991. Continuation methods for curved surface of the three-dimensional high-precision gravity and magnetic potential field[J]. Geophysical and Geochemical Exploration, 15(6): 415-422 (in Chinese). [92] 王万银. 2009. 位场边缘识别方法技术研究[D]. 西安: 长安大学.Wang W Y. 2009. The research on the edge recognition methods and techniques for potential field[D]. Xi'an: Chang'an University (in Chinese). [93] Wijns C, Perez C, Kowalczyk P. 2005. Theta map: Edge detection in magnetic data[J]. Geophysics, 70(4): L39-L43. doi: 10.1190/1.1988184 [94] Williams E and Gubbins D. 2019. Origin of long-wavelength magnetic anomalies at subduction zones[J]. Journal of Geophysical Research, 124: 9457-9473. doi: 10.1029/2019JB017479 [95] 西永在, 吴珊, 廖桂香, 等. 2021. 无人机航空磁测在滩涂区地质调查的应用试验[J]. 物探与化探, 45(2): 355-360Xi Y Z, Wu S, Liao G X, et al. 2021. An application test of UAV aeromagnetic survey in geological survey of the tidal flat area[J]. Geophysical and Geochemical Exploration, 45(2): 355-360 (in Chinese). [96] 谢顺胜, 蔡水库, 舒晴, 等. 2016. 海南岛及周边海域1: 10万航磁勘查成果[J]. 物探与化探, 40(2): 225-234Xie S S, Cai S K, Shu Q, et al. 2016.1: 100 000 aeromagnetic exploration results in Hainan Island and the surrounding waters[J]. Geophysical and Geochemical Exploration, 40(2): 225-234 (in Chinese). [97] 熊盛青, 丁燕云, 李占奎. 2014. 中国陆域磁性基底深度及其特征[J]. 地球物理学报, 57(12): 3981-3993 doi: 10.6038/cjg20141211Xiong S Q, Ding Y Y, Li Z K. 2014. Characteristics of China continent magnetic basement depth[J]. Chinese Journal of Geophysics, 57(12): 3981-3993 (in Chinese). doi: 10.6038/cjg20141211 [98] 熊盛青, 丁燕云, 李占奎, 等. 2016a. 中国陆域航磁与地质构造特征——基于中国陆域1: 100万航磁异常图的解释[M]. 北京: 地质出版社.Xiong S Q, Ding Y Y, Li Z K, et al. 2016a. Aeromagnetic and Geological Structure Characteristics in China-Interpretations Based on 1:1,000,000 Aeromagnetic Anomalies[M]. Beijing: Geological Press (in Chinese) [99] 熊盛青, 杨海, 丁燕云, 等. 2016b. 中国陆域居里等温面深度特征[J]. 地球物理学报, 59(10): 3604-3617Xiong S Q, Yang H, Ding Y Y, et al. 2016b. Characteristics of Chinese continent Curie point isotherm[J]. Chinese Journal of Geophysics, 59(10): 3604-3617(in Chinese). [100] Xiong S Q, Tong J, Ding Y Y, et al. 2016a. Aeromagnetic data and geological structure of continental China: A review[J]. Applied Geophysics, 13(2): 227–237. doi: 10.1007/s11770-016-0552-2 [101] Xiong S Q, Yang H, Ding Y Y, et al. 2016b. Distribution of igneous rocks in China revealed by aeromagnetic data[J]. Journal of Asian Earth Sciences, 129: 231-242. doi: 10.1016/j.jseaes.2016.08.016 [102] Xu X, Zuza A V, Yin A, et al. 2020. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen[J]. Geology, 49(1): 96-100. [103] Xu X, Xiong S Q, Tanaka A, et al. 2021. Thermal structure beneath the Tarim craton and its tectonic implications[J]. Front Earth Science, 9: 700114. doi: 10.3389/feart.2021.700114 [104] 闫亚芬, 滕吉文, 阮小敏, 等. 2016. 龙门山和相邻地域航磁场特征与汶川大地震[J]. 地球物理学报, 59(1): 197-214 doi: 10.6038/cjg20160117Yan Y F, Teng J W, Ruan X M, et al. 2016. Aeromagnetic field characteristics and the Wenchuan earthquakes in the Longmenshan mountains and adjacent areas[J]. Chinese Journal of Geophysics, 59(1): 197-214 (in Chinese). doi: 10.6038/cjg20160117 [105] Yang T, Chou Y M, Ferré E C, et al. 2020. Faulting processes unveiled by magnetic properties of fault rocks[J]. Reviews of Geophysics, 58: e2019RG000690 [106] 杨文采, 王家林, 钟慧智, 等. 2012. 塔里木盆地航磁场分析与磁源体结构[J]. 地球物理学报, 55(4): 1278-1287 doi: 10.6038/j.issn.0001-5733.2012.04.023Yang W C, Wang J L, Zhong Z H, et al. 2012. Analysis of regional magnetic field and source structure in Tarim basin[J]. Chinese Journal of Geophysics, 55(4): 1278-1287 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.04.023 [107] 杨旭, 李永华, 盖增喜. 2021. 机器学习在地震学中的应用进展[J]. 地球与行星物理评论, 52(1): 76-88Yang X, Li Y H, Gai Z X. 2021. Machine learning and its application in seismology[J]. Reviews of Geophysics and Planetary Physics, 52(1): 76-88 (in Chinese). [108] 姚长利, 管志宁, 高德章, 等. 2003. 低纬度磁异常化极方法—压制因子法[J]. 地球物理学报, 46(5): 690-696 doi: 10.3321/j.issn:0001-5733.2003.05.017Yao C L, Guan Z N, Gao D Z, et al. 2003. Reduction to the pole of magnetic anomalies at low latitude with suppression filter[J]. Chinese Journal of Geophysics, 46(5): 690-696 (in Chinese). doi: 10.3321/j.issn:0001-5733.2003.05.017 [109] 姚长利, 黄卫宁, 张聿文, 等. 2004. 直接阻尼法低纬度磁异常化极技术[J]. 石油地球物理勘探, 39(5): 600-606 doi: 10.3321/j.issn:1000-7210.2004.05.020Yao C L, Huang W N, Zhang Y W, et al. 2004. Reduction to the pole at low latitude by direct damper filtering[J]. Oil Geophysical Prospecting, 39(5): 600-606 (in Chinese). doi: 10.3321/j.issn:1000-7210.2004.05.020 [110] 英高海, 姚长利, 郑元满, 等. 2016. 基于磁异常的边界特征增强方法对比研究[J]. 地球物理学报, 59(11): 4383-4398 doi: 10.6038/cjg20161137Ying G H, Yao C L, Zheng Y M, et al. 2016. Comparative study on methods of edge enhancement of magnetic anomalies[J]. Chinese Journal of Geophysics, 59(11): 4383-4398 (in Chinese). doi: 10.6038/cjg20161137 [111] 曾小牛, 刘代志, 李夕海, 等. 2014. 位场向下延拓的改进迭代维纳斯滤波[J]. 地球物理学报, 57(6): 1958-1967 doi: 10.6038/cjg20140626Zeng X N, Liu D Z, Li X H, et al. 2014. An improved iterative Wiener filter for downward continuation of potential fields[J]. Chinese Journal of Geophysics, 57(6): 1958-1967 (in Chinese). doi: 10.6038/cjg20140626 [112] 张春灌, 袁炳强, 李玉宏. 2019.吐鲁番中南部地区航磁异常特征及其地质意义[J].地球物理学进展, 34 (5) : 1811-1817.Zhang C G, Yuan B Q, Li Y H. 2019. Features of aeromagnetic anomalies in central-south Turpan and their geologic significance[J]. Progress in Geophysics, 34(5): 1811-1817 (in Chinese). [113] Zhang H, Ravat D, Marangoni Y R, et al. 2018. Improved total magnetization direction determination by correlation of the normalized source strength derivative and the reduced-to-pole fields[J]. Geophysics, 93(6): J75-J85. [114] Zhang J S, Gao R, Zeng, L, et al. 2010. Relationship between characteristics of gravity and magnetic anomalies and the earthquakes in the Longmenshan range and adjacent areas[J]. Tectonophysics, 491: 218-229. doi: 10.1016/j.tecto.2009.12.004 [115] 张蕾, 李海兵, 孙知明, 等. 2019. 断裂岩岩石磁学研究进展[J]. 地球学报, 40(1): 157-172 doi: 10.3975/cagsb.2018.102902Zhang L, Li H B, Sun Z M, et al. 2019. A review of rock magnetism for fault rocks[J]. Acta Geoscientica Sinica, 40(1): 157-172 (in Chinese). doi: 10.3975/cagsb.2018.102902 [116] Zhang X, Yu P, Tang R, et al. 2015. Edge enhancement of potential field data using an enhanced tilt angle[J]. Exploration Geophysics, 46(3): 276-283. doi: 10.1071/EG13104 [117] 张翔, 石连成, 程莎莎, 等. 2019. 西秦岭造山带东段航磁特征及断裂构造格架[J]. 中国地质, 46(3): 587-600.Zhang X, Shi L C, Cheng S S, et al. 2019. Aeromagnetic characteristics and fracture structure framework of the eastern part of the western Qinling orogen[J]. Geological China, 46(3): 587-600 (in Chinese). [118] 张玄杰, 郑广如, 范子梁, 等. 2011. 新疆西天山东段航磁推断断裂构造特征[J]. 物探与化探, 35(4): 448-454Zhang X J, Zheng G R, Fan Z L, et al. 2011. Structure characteristics of aeromagnetic deduced faults in western Tianshan mountains, Xinjiang[J]. Geophysicaland Geochemical Exploration, 35(4): 448-454 (in Chinese). [119] Zhao J H, Jiao L G, Tu J Y, et al. . Magnetic anomaly caused by rupture of Maduo MS7.4 earthquake in Qinghai Province revealed by UAV aeromagnetic probe[J] (in preparation). [120] 周德文, 孟庆奎, 杨怡, 等. 2018. 航磁全轴梯度异常特征研究[J]. 物探与化探, 42(3): 583-588Zhou D W, Meng Q K, Yang Y, et al. 2018. Study on characteristics of three axis airborne magnetic gradient anomaly[J]. Geophysical and Geochemical Exploration, 42(3): 583-588 (in Chinese). [121] Zhu X, Zheng H, Lu M. 2019. Lateral variation of aeromagnetic anomaly in South China and its tectonic implications[J]. International Journal of Earth Sciences, 108(5): 1493-1507. doi: 10.1007/s00531-019-01716-8 -