Moho depth of the Qilian orogen revealed by wide-angle reflection/refraction profiles
-
摘要:
祁连造山带位于青藏高原东北缘,距南侧的喜马拉雅碰撞带前缘1500 km,以一个宽阔的(东西长约1000 km,南北宽200~400 km)、NW走向的造山带的形式被夹持于北侧的河西走廊盆地与南侧的柴达木盆地之间,西侧被NEE走向的阿尔金左行走滑断裂带所截切,北缘以青藏高原北缘断裂带,祁连山北缘断裂带和祁连山东缘断裂带与河西走廊盆地相邻,南东方向与西秦岭造山带相接,东缘与鄂尔多斯地块相邻. 记录了新生代以来印度板块和亚洲大陆板块碰撞和青藏高原边缘造山和地壳变形的重要过程. 对其地壳深部结构的探测是研究青藏高原隆升和向北扩展,理解印度与欧亚大陆碰撞的大陆内部构造作用的关键手段. 自1980年代以来,前人在研究区实施了多条宽角反射/折射剖面,以揭示祁连造山带及周缘的地壳深部结构. 本文通过对这些宽角反射/折射剖面的收集汇总和梳理分析,以探讨祁连造山带不同区段下方莫霍面起伏及深度差异,研究结果显示:祁连造山带莫霍面埋深整体自西向东变浅,最深的莫霍面位于北祁连造山带内的哈拉湖附近;结合其他地质与地球物理资料,本文推测莫霍面深度的起伏及变化状态揭示了祁连造山带由西向东不同的地壳缩短方式,其中西段最深的莫霍面可能由大陆俯冲的“底垫作用”所引起;中段的壳内低速体和低阻体反映了该区上下地壳解耦变形,地壳的持续缩短主要靠变形解耦面以上发育的大型逆冲断裂带调节;而莫霍面深度最浅的东段累积应力则主要靠左行走滑的海原断裂和壳内发育的逆冲断裂调节.
Abstract:The Qilian Orogenic Belt is located on the northeastern edge of the Qinghai-Tibet Plateau, 1500 km far from the front of the Himalayan collision zone to the south, manifesting as an orogenic belt with a NW orientation between the Alxa Block to the north and the Qaidam Block to the south (approximately 1000 km long from east to west and 200~400 km wide from north to south). It is truncated by the NE-trending Altyn left-lateral strike-slip fault to the west and surrounded by the northeastern Tibetan Plateau, Qilian Mountain, and Hexi Corridor to the north. To the southeast, it is connected to the west Qinling orogenic belt, and the eastern margin is adjacent to the Ordos Block. It has played an important role in the collisional process between the Indian and Asian continental plates, and the mountain-building of the Qinghai-Tibet Plateau since the Cenozoic. Exploration of the deep structure of the crust is key to study the uplift and northward expansion processes of the Qinghai-Tibet Plateau and understand the intracontinental deformation caused by the collision between India and Eurasia plates. In this study we integreted the wide-angle reflection/refraction profiles conducted in this area since the 1980s and summarizes the outcome of the Moho depth. The results show that the Moho becomes shallower from west to east as a whole, and the deepest Moho in the west section, which may be induced by the continental two-way subduction and underplating. In the central section, the low-velocity anomalies with high conductivity are well developed, which may present the decollement in the crust, and the crustal deformation was mainly accommodated by the overthrusting in the upper crust. whereas the crustal deformation is released by the large-sccale-lateral strike-slip faults.
-
图 1 祁连山及周缘断层构造体系略图(修改自Duvall et al., 2013; Yin et al., 2008a, 2008b; Zuza et al., 2016)
Figure 1. Sketch map of the fault structure system of Qilian Mountains and surrounding areas (modified from Duvall et al., 2013; Yin et al., 2008a, 2008b; Zuza et al., 2016)
图 3 沿测线莫霍面深度分布图(图中数字代表附近区域的莫霍面深度,单位:km). 宽角反射/折射剖面:
$\boxed{\;1\;} $ :门源—平凉—渭南;$\boxed{\;2\;} $ :成县—西吉;$\boxed{\;3\;} $ :阿尔金—龙门山;$\boxed{\;4\;} $ :灵台—阿木去乎;$\boxed{\;5\;} $ :可可托海—阿克塞;$\boxed{\;6\;} $ :格尔木—额济纳旗;$\boxed{\;7\;} $ :西吉—中卫;$\boxed{\;8\;} $ :玛沁—兰州—靖边;$\boxed{\;9\;} $ :大柴旦—若羌—拜城;$\boxed{10} $ :马尔康—碌曲—古浪;$\boxed{11} $ :陇西—黄陵;$\boxed{12} $ :景泰—合作;$\boxed{13} $ :玛多—共和—雅布赖;$\boxed{14} $ :柴北缘—河西走廊:$\boxed{15} $ :银额盆地Figure 3. Depth distribution map of the Moho surface along the survey line (the number in the figure represents the depth of the Moho surface in the nearby area, unit: kilometer). Deep seismic sounding profiles:
$\boxed{\;1\;} $ : Menyuan-Pingliang-Weinan;$\boxed{\;2\;} $ : Chengxian-Xiji;$\boxed{\;3\;} $ : Altyn-Longmenshan;$\boxed{\;4\;} $ : Lingtai-Amuquhu;$\boxed{\;5\;} $ : Akesai-Keketuohai;$\boxed{\;6\;} $ : Geermu-Ejinaqi;$\boxed{\;7\;} $ :Xiji-Zhongwei;$\boxed{\;8\;} $ : Maqin-Lanzhou-Jingbian;$\boxed{\;9\;} $ : Dachaidan-Ruoqiang-Baicheng;$\boxed{10} $ : Maerkang-Luqu-Gulang;$\boxed{11} $ : Longxi-Haungling;$\boxed{12} $ : Jingtai-Hezuo;$\boxed{13} $ : Maduo-Gonghe-Yabulai;$\boxed{14} $ : Chaibeiyuan-Hexizoulang;$\boxed{15} $ : YineDSS表 1 祁连造山带及周缘宽角反射/折射剖面探测程度表(总长度:10997 km)
Table 1. Wide-angle reflection/refraction profiles acquired in the Qilian orogenic belt and adjacent regions (Total length: 10997 km)
编号 剖面名称 长度/km 实施年份 实施单位 1 门源—平凉—渭南 970 1982 中国地震局 2 成县—西吉 242 1986 国家地震局兰州地质研究所 3 阿尔金—龙门山 1600 1989 国土资源部 4 灵台—阿木去乎 460 1990 中国地震局 5 可可托海—阿克塞 1170 1991 国土资源部 6 格尔木—额济纳旗 1050 1992 中国地质科学院 7 西吉—中卫 248 1999 中国地震局地球物理勘探中心 8 玛沁—兰州—靖边 980 1997 中国地震局地球物理勘探中心 9 大柴旦—若羌—拜城 1100 2000 中国地震局 10 马尔康—碌曲—古浪 637 2004 中国地震局地球物理勘探中心 11 陇西—黄陵 410 2012 中国地质科学院地质研究所 12 景泰—合作 430 2013 中国科学院地质与地球物理研究所 13 玛多—共和—雅布赖 850 2014 中国地震局地球物理勘探中心 14 柴北缘—河西走廊 450 2016—2017 中国地质科学院 15 银额盆地 400 2018—2019 中国地质科学院 -
[1] An Z, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 411(6833): 62-66. doi: 10.1038/35075035 [2] Argand E. 1924. La tectonique de l’Asie[C]//Proceedings of the VIIIth International Geological Congress Brussels, 7: 170–372. [3] Bird P. 1991. Lateral extrusion of lower crust from under high topography, in the isostatic limit[J]. Journal of Geophysical Research, 96: 10275–10286. doi: 10.1029/91JB00370 [4] Burchfiel B C, Chen Z. 2012. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland[J]. Memoir of the Geological Society of America, 210: 1-164. [5] Chen X, Yin A, Gehrels G, et al. 2003. Two phases of Mesozoic north-south extension in the eastern Altyn Tagh range, northern Tibetan Plateau[J]. Tectonics, 22(5): 1053. DOI: 10.1029/2001TC001336. [6] 陈宣华, 邵兆刚, 熊小松, 等. 2019a. 祁连造山带断裂构造体系, 深部结构与构造演化[J]. 中国地质, 46(5): 995-1020Chen X H, Shao Z G, Xiong X S, et al. 2019a. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995-1020 (in Chinese). [7] 陈宣华, 邵兆刚, 熊小松, 等. 2019b. 祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景[J]. 地球学报, 40(3): 377-392Chen X H, Shao Z G, Xiong X S, et al. 2019b. Early Cretaceous Overthrusting of Yumu Mountain and Hydrocarbon Prospect on the Northern Margin of the Qilian Orogenic Belt[J]. Acta Geoscientica Sinica, 40(3): 377-392 (in Chinese). [8] Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28: 703–706. [9] Copley A, Avouac J P, Royer J Y, et al. 2009. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions[J]. Journal of Geophysical Research, 115(B3): B03410. [10] 崔作舟, 李秋生, 吴朝东, 等. 1995. 格尔木—额济纳旗地学断面的地壳结构与深部构造[J]. 地球物理学报, 38(2): 15-18Cui Z Z, Li Q S, Wu C D, et al. 1995. The crustal structure and deep structure of the Gelmud-Ejina banner geology section[J]. Chinese Journal of Geophysics, 38(2): 15-18 (in Chinese). [11] 邓阳凡, 李守林, 范蔚茗, 等. 2011. 深地震测深揭示的华南地区地壳结构及其动力学意义[J]. 地球物理学报, 54(10): 2560-2574 doi: 10.3969/j.issn.0001-5733.2011.10.013Deng Y F, Li S, Fan W M, et al. 2011. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications[J]. Chinese Journal of Geophysics, 54(10): 2560-2574 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.10.013 [12] Deng Y F, Shen W S, Xu T et al. 2015. Crustal layering in northeastern Tibet: A case study based on joint inversion of receiver functions and surface wave dispersion[J]. Geophysics Journal of International, 203: 692-706. DOI: 10.1093/gji/ggv321. [13] Dewey J F, Shackleton R M, Chang C, Sun Y. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, A327: 379–413. [14] Ding L, Xu Q, Yue Y, et al. 2014. The Andean-type Gangdese Mountains: Paleo elevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 392: 250-264. doi: 10.1016/j.jpgl.2014.01.045 [15] Duvall A R, Clark M K, Kirby E, et al. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 32(5): 1190-1211. doi: 10.1002/tect.20072 [16] England P, Houseman G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research, 91: 3664–3676. doi: 10.1029/JB091iB03p03664 [17] Fuis G S, Okaya D A, Clayton R W, et al. 1996. Images of crust beneath southern California will aid study of earthquakes and their effects[J]. Eos, Transactions American Geophysical Union, 77(18): 173-176. [18] Fuis G S, Ryberg T, Lutter W J, et al. 2001. Seismic mapping of shallow fault zones in the San Gabriel Mountains from the Los Angeles Region Seismic Experiment, southern California[J]. Journal of Geophysical Research: Solid Earth, 106(B4): 6549-6568. doi: 10.1029/2000JB900189 [19] 郭文斌, 嘉世旭, 段永红, 等. 2016. 青藏高原东北缘基底结构研究——玛多—共和—雅布赖剖面上地壳地震折射探测[J]. 地球物理学报, 59(10): 3627-3636 doi: 10.6038/cjg20161010Guo W B, Jia S X, Duan Y H, et al. 2016. A study on the basement tectonic units in the northeast margin of Tibetan plateau-the result of Maduo-Gonghe-Yabrai refraction profile[J]. Chinese Journal of Geophysics, 59(10): 3627-3636 (in Chinese). doi: 10.6038/cjg20161010 [20] 黄兴富, 酆少英, 高锐, 等. 2016. 银川盆地构造发展——深地震反射剖面揭示浅部地质与深部构造的联系[J]. 地质科学, 51(1): 53-66 doi: 10.3969/j.issn.0563-5020.2016.01.006Huang X F, Feng, S Y, Gao R, et al. 2016. Development of the Yinchuan Basin: Deep seismic reflection profile revealed the linkages between shallow geology and deep structures[J]. Chinese Journal of Geology, 51(1): 53-66 (in Chinese). doi: 10.3969/j.issn.0563-5020.2016.01.006 [21] 黄兴富, 高锐, 郭晓玉, 等. 2018. 青藏高原东北缘祁连山与酒西盆地结合部深部地壳结构及其构造意义[J]. 地球物理学报, 61(9): 3640-3650 doi: 10.6038/cjg2018L0632Huang X F, Gao R, Guo X Y, et al. 2018. Deep crustal structure beneath the junction of the Qilian Shan and Jiuxi Basin in the northeastern margin of the Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 61(9): 3640-3650(in Chinese). doi: 10.6038/cjg2018L0632 [22] Huang X, Gao R, Li W, 2021. Seismic reflection evidence of crustal duplexing and lithospheric underthrusting beneath the western Qilian Mountains, northeastern margin of the Tibetan Plateau[J]. Science China Earth Sciences, 64(1): 96-109. doi: 10.1007/s11430-020-9677-y [23] Jia S, Guo W, Mooney W D, et al. 2019. Crustal structure of the middle segment of the Qilian fold belt and the coupling mechanism of its associated basin and range system[J]. Tectonophysics, 770: 128154. DOI: 10.1016/j.tecto.2019.06.024. [24] Kind R, Yuan X, Saul J, et al. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction[J]. Science, 298: 1219-1221. doi: 10.1126/science.1078115 [25] Li B, Chen X, Zuza A V, et al. 2019. Cenozoic cooling history of the north Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: Constraints from apatite-and zircon-fission track thermochronology[J]. Tectonophysics, 751: 109-124. doi: 10.1016/j.tecto.2018.12.005 [26] 李奋其. 2003. 中国西北部南北向伸展构造存在的新证据——酒泉早白垩世半地堑断陷成因初探[J]. 沉积与特提斯地质, 23(2): 35-42 doi: 10.3969/j.issn.1009-3850.2003.02.007Li F Q. 2003. New evidences for the presence of the NS-trending extensional structuresin northwestern China: An example from the Early Cretaceous halfgraben fault depressions in Jiuquan, Gansu[J]. Sedimentary Geology and Tethyan Geology, 23(2): 35-42 (in Chinese). doi: 10.3969/j.issn.1009-3850.2003.02.007 [27] 李清河, 郭建康, 周民都, 等. 1991. 成县—西吉剖面地壳速度结构[J]. 西北地震学报, 13(增刊): 37-43Li Q H, Guo J K, Zhou M D, et al. 1991. The velocity structure of Chengxian-Xiji profile[J]. Northwestern Seismological Journal, 13(Supp. ): 37-43 (in Chinese). [28] 李松林, 张先康, 任青芳, 等. 2001. 西吉—中卫地震测深剖面及其解释[J]. 地震地质, 23(1): 86-92 doi: 10.3969/j.issn.0253-4967.2001.01.011Li S L, Zhang X K, Ren Q F, et al. 2001. Seismic sounding profile and its interpretation in the region of Xiji-Zhongwei[J]. Seismology and Geology, 23(1): 86-92 (in Chinese). doi: 10.3969/j.issn.0253-4967.2001.01.011 [29] 李松林, 张先康, 张成科, 等. 2002. 玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究[J]. 地球物理学报, 45(2): 210-217 doi: 10.3321/j.issn:0001-5733.2002.02.007Li S L, Zhang X K, Zhang C K, et al. 2002. A preliminary study on the crustal velocity structure of Maqin-Lanzhou-Jingbian by means of deep seismic sounding profile[J]. Chinese Journal of Geophysics, 45(2): 210-217 (in Chinese). doi: 10.3321/j.issn:0001-5733.2002.02.007 [30] 李文辉, 高锐, 王海燕, 等. 2017. 六盘山断裂带及其邻区地壳结构[J]. 地球物理学报, 60(6): 2265-2278 doi: 10.6038/cjg20170619Li W H, Gao R, Wang H Y, et al. 2017. Crustal structure beneath the Liupanshan fault zone and adjacent regions[J]. Chinese Journal of Geophysics, 60(6): 2265-2278 (in Chinese). doi: 10.6038/cjg20170619 [31] Liang H, Gao R, Xue S, et al. 2020. Electrical structure of the middle Qilian Shan revealed by 3-D inversion of magnetotelluric data: New insights into the growth and deformation in the northeastern Tibetan Plateau[J]. Tectonophysics, 789: 228523. DOI: 10.1016/j.tecto.2020.228523. [32] 卢德源, 王香泾. 1990. 青藏高原北部沱沱河—格尔木地区的地壳结构和深部作用过程[J]. 地球学报, 21: 227-237Lu D Y, Wang X T. 1990. The crustal structure and deep internal processes in the Tuotuohe-Golmud area of the north Qinghai-Xizang plateau[J]. Acta Geoscientica Sinica, 21: 227-237 (in Chinese). [33] 闵祥仪, 周民都, 郭建康, 等. 1991. 灵台—阿木去乎剖面地壳速度结构[J]. 地震工程学报, 13(增刊): 29-36Min X Y, Zhou M D, Guo K J, et al. 1991. The crustal velocity structure in Lingtai-Amuquhu profile[J]. Northwestern Seismological Journal, 13(Suppl. ): 29-36 (in Chinese). [34] Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 31(4): 357-396. doi: 10.1029/93RG02030 [35] Molnar P, Stock J M. 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 28(3): TC3001. DOI: 10.1029/2008TC002271. [36] 潘桂棠, 肖庆辉. 2015. 中国大地构造图说明书(1: 2500000)[M]. 北京: 地质出版社, 1-160Pan G T, Xiao Q H. 2015. Explanatory Note to the Tectonic Map of China (1: 2 500 000) [M]. Beijing: Geological Publishing House, 1-160 (in Chinese). [37] Powell C M, Conaghan P J. 1973. Plate tectonics and the Himalayas[J]. Earth and Planetary Science Letters, 20: 1-12. doi: 10.1016/0012-821X(73)90134-9 [38] Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276: 788–790. doi: 10.1126/science.276.5313.788 [39] Royden L H, Burchfiel C B, Van der Hilst R D, et al. 2008. The geological evolution of the Tibetan Plateau[J]. Science, 321(5892): 1054-1058. DOI: 10.1126/science.1155371. [40] Shen X, Yuan X, Liu M. 2015. Is the Asian lithosphere underthrusting beneath northeastern Tibetan Plateau? Insights from seismic receiver functions[J]. Earth and Planetary Science Letters, 428: 172-180. DOI: 10.1016/j.jpgl.2015.07.041. [41] Song S, Niu Y, Su L, et al. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the north Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 129: 59-84. DOI: 10.1016/j.earscirev.2013.11.010. [42] 宋向辉, 田晓峰, 王帅军, 等. 2021. 深地震测深在国内的发展与应用现状研究[J]. 大地测量与地球动力学, 41(11): 1194-1199 doi: 10.14075/j.jgg.2021.11.017Song X H, Tian X F, Wang, S J, et al. 2021. Development and application of deep seismic sounding method in China[J]. Journal of Geodesy and Geodynamics, 41(11): 1194-1199 (in Chinese). doi: 10.14075/j.jgg.2021.11.017 [43] 宋忠宝, 李文渊, 李怀坤, 等. 2007. 北祁连山石居里辉长岩的同位素年龄及其地质意义[J]. 地球学报, 28(1): 7-10 doi: 10.3321/j.issn:1006-3021.2007.01.002Song, Z B, Li W Y, Li H K, et al. 2007. Isotopic age of Shijuli Gabbro in north Qilian Mountain and its geological significance[J]. Acta Geoscientica Sinica, 28(1): 7-10 (in Chinese). doi: 10.3321/j.issn:1006-3021.2007.01.002 [44] Sun Q, Pei S, Cui Z, et al. 2021. A new growth model of the northeastern Tibetan Plateau from high-resolution seismic imaging by improved double-difference tomography[J]. Tectonophysics, 798: 228699. DOI: 10.1016/j.tecto.2020.228699. [45] Wang C, Zhao X, Liu Z, et al. 2008. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 4987-4992. DOI: 10.1073/pnas.0703595105 [46] Wang C, Gao R, Yin A, et al. 2011. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet[J]. Earth and Planetary Science Letters, 306: 279-288. DOI: 10.1016/j.jpgl.2011.04.010. [47] Wang C, Dai J, Zhao X, et al. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 621: 1-43. DOI: 10.1016/j.tecto.2014.01.036. [48] Wang L, Wang H, He C, et al. 2016. Mesoproterozoic continental breakup in NW China: Evidence from gray gneisses from the North Wulan terrane[J]. Precambrian Research, 281: 521-536. DOI: 10.1016/j.precamres.2016.06.016. [49] 王有学, Mooney, W D, 韩果花, 等. 2005. 台湾阿尔泰地学断面阿尔金龙门山剖面的地壳纵波速度结构[J]. 地球物理学报, 48(1): 98-106 doi: 10.3321/j.issn:0001-5733.2005.01.015Wang Y X, Mooney W D, Han G H, et al. 2005. Crustal P-wave velocity structure from Altyn-Tagh to Longmen mountains along the Taiwan Altay geoscience transect[J]. Chinese Journal of Geophysics, 48(1): 98-106 (in Chinese). doi: 10.3321/j.issn:0001-5733.2005.01.015 [50] Wu C, Yin A, Zuza A V, et al. 2016. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system[J]. Lithosphere, 8(3): 254-292. doi: 10.1130/L494.1 [51] Wu Z B, Xu T, Badal J, et al. 2017. Crustal shear-wave velocity structure of northeastern Tibet revealed by ambient seismic noise and receiver functions[J]. Gondwana Research, 41: 400-410. DOI: 10.1016/j.gr.2015.08.009. [52] 向鼎璞. 1982. 祁连山地质构造特征[J]. 地质科学, 4: 364-370Xiang D P. 1982. The characteristics of geological structures in the Chilienshan region, China[J]. Scientia Geologica Sinica, 4: 364-370 (in Chinese). [53] Xiao W, Windley B F, Yong Y, et al. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 35(3-4): 323-333. DOI: 10.1016/j.jseaes.2008.10.001. [54] Xin Z H, Han J T, Gao R, et al. 2021. Electrical structure of the eastern segment of the Qilian orogenic belt revealed by 3-D inversion of magnetotelluric data: New insights into the evolution of the northeastern margin of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 210: 104707. DOI: 10.1016/j.jseaes.2021.104707. [55] 熊小松, 高锐, 李秋生, 等. 2010. 深地震探测揭示的西北地区莫霍面深度[J]. 地球学报, 31(1): 23-31Xiong X S, Gao R, Li Q S, et al. 2010. The Moho depth of northwest China revealed by seismic detection[J]. Acta Geoscientica Sinica, 31(1): 23-31 (in Chinese). [56] 熊小松, 高锐, 酆少英, 等. 2019. 榆木山构造带深部结构及隆升成因[J]. 中国地质, 46(5): 1039-1051 doi: 10.12029/gc20190506Xiong X S, Gao R, Feng S Y, et al. 2019. Deep structure of Yumushan tectonic zone and genesis of the uplift[J]. Geology in China, 46(5): 1039-1051 (in Chinese). doi: 10.12029/gc20190506 [57] Xu T, Wu Z B, Zhang Z J, et al., 2014. Crustal structure across the Kunlun fault from passive source seismic profiling in east Tibet[J]. Tectonophysics, 627: 98-107. DOI: 10.1016/j.tecto.2013.11.010. [58] 杨经绥, 许志琴, 张建新, 等. 2009. 中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨[J]. 岩石学报, 27(7): 1529-1560.Yang J S, Xu Z Q, Zhang J X, et al. 2009. Tectonic setting of main high-and ultrahigh-pressure metamorphic belts in China and adjacent region and discussion on their subduction and exhumation mechanism[J]. Acta Petrologica Sinica, 25(7): 1529 -1560 (in Chinese). [59] 杨经绥, 许志琴, 马昌前, 等. 2010. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 37(1): 1-11 doi: 10.3969/j.issn.1000-3657.2010.01.001Yang J S, Xu Z Q, Ma C Q, et al. 2010. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China[J]. Geology in China, 37(1): 1-11 (in Chinese). doi: 10.3969/j.issn.1000-3657.2010.01.001 [60] Yin A, Harrison T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. DOI: 10.1146/annurev.earth.28.1.211. [61] Yin A, Dang Y Q, Wang L C, et al. 2008a. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 120(7-8): 813-846. DOI: 10.1130/b26180.1. [62] Yin A, Dang Y Q, Zhang M, et al. 2008b. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 120(7-8): 847-876. DOI:doi: 10.1130/B26232.1 [63] Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 488(1-4): 293-325. DOI: 10.1016/j.tecto.2009.06.002. [64] Yuan D, Ge W, Chen Z, et al. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32: 1358-1370. DOI: 10.1002/tect.20081. [65] 曾融生, 孙为国, 毛桐恩, 等. 1995. 中国大陆霍界面深度图[J]. 地震学报, 17(3): 322-327Zeng R S, Sun W G, Mao T E, et al. 1995. The depth of Moho in the mainland of China[J]. Acta Seismologica Sinica, 17(3): 322-327 (in Chinese). [66] 张培震, 张会平, 郑文俊, 等. 2014. 东亚大陆新生代构造演化[J]. 地震地质, 36(3): 574-585 doi: 10.3969/j.issn.0253-4967.2014.03.003Zhang P Z, Zhang H P, Zheng W J, et al. 2014. Cenozoic tectonic evolution of continental eastern asia[J]. Seismology and geology, 36(3): 574-585 (in Chinese). doi: 10.3969/j.issn.0253-4967.2014.03.003 [67] 张少泉, 武利均, 郭建明, 等. 1985. 中国西部地区门源—平凉—渭南地震测深剖面资料的分析解释[J]. 地球物理学报, 28(5): 460-472 doi: 10.3321/j.issn:0001-5733.1985.05.003Zhang S Q, Wu L J, Guo J M, et al. 1985. An interpretation of the dss data on Menyuan-Pingling-Weinan profile in west China[J]. Acta Geophysica Sinica, 28(5): 460-472 (in Chinese). doi: 10.3321/j.issn:0001-5733.1985.05.003 [68] 张先康, 杨卓欣, 徐朝繁, 等. 2007. 阿尼玛卿缝合带东段上地壳结构——马尔康—碌曲—古浪宽角反射&折射剖面结果[J]. 地震学报, 29(6): 592-604.Zhang X K, Yang Z X, Xu C F, et al. 2007. Upper crust structure of eastern Anymaqn suture zone Results of Barkan Luqu-Gulan deep seismic sounding profile[J]. Acta Seismologica Sinica, 29(6): 529-604 (in Chinese). [69] 张先康, 嘉世旭, 赵金仁, 等. 2008. 西秦岭—东昆仑及邻近地区地壳结构——深地震宽角反射/折射剖面结果[J]. 地球物理学报, 51(2): 439-450 doi: 10.3321/j.issn:0001-5733.2008.02.016Zhang X K, Jia S X, Zhao J R, et al. 2008. Crustal structures beneath west Qinling-east Kunlun orogen and its adjacent area—Results of wide-angle seismic reflection and refraction experiment[J]. Chinese Journal of Geophysics, 51(2): 439-450 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.02.016 [70] Zhang Z, Bai Z, Klemperer S L, et al. 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation[J]. Tectonophysics, 606: 140-159. DOI: 10.1016/j.tecto.2013.02.040. [71] 赵俊猛, 张先康, 邓宏钊, 等. 2004. 拜城—大柴旦剖面的上地壳Q值结构[J]. 地球物理学报, 46(4): 503-509Zhao J M, Zhang X K, Deng H Z, et al. 2004. Q value structure of the upper crust along the profile from Baicheng to Da Daidam[J]. Chinses Journal of Geophysics, 46(4): 503-509(in Chinese). [72] Zhao J, Mooney W D, Zhang X, et al. 2006. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications[J]. Earth and Planetary Science Letters, 241: 804-814. 10.1016/j. epsl. 2005.11. 003. [73] Zhao J, Heng H, Pei S, et al. 2008. Deep structure at northern margin of Tarim Basin[J]. Chinese Science Bulletin, 53(10): 1544-1554. [74] Zhao W L, Morgan W J. 1987. Injection of Indian crust into Tibetan lower crust: A two-dimensional finite element model study[J]. Tectonics, 6(4): 489-504. doi: 10.1029/TC006i004p00489 [75] 朱仁学, 胡祥云. 1995. 格尔木—额济纳旗地学断面岩石圈电性结构的研究[J]. 地球物理学报, 38(增刊II): 46-57Zhu R X, Hu X Y. 1995. Study on the resistivity structure of thelithosphere along the Golmud-Ejinqi geoscience transect[J]. Acta Geophysica Sinica, 38(Suppl. II): 46-57 (in Chinese). [76] Zuza A V, Cheng X, Yin A. 2016. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan-Nan Shan thrust belt[J]. Geosphere, 12(2): 501-532. DOI: 10.1130/GES01254.1. [77] Zuza A V, Yin A, 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet[J]. Tectonophysics, 677-678: 227-240. DOI: 10.1016/j.tecto.2016.04.007. [78] Zuza A V, Wu C, Reith R C, et al. 2017. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic[J]. Geological Society of America Bulletin, 130(5-6): 881-925. DOI: 10 .1130/B31721.1. -