• ISSN 2097-1893
  • CN 10-1855/P

沉积层结构被动源探测方法及其在典型盆地的应用

张瑞青 况春利 张笑晗 李永华

引用本文: 张瑞青,况春利,张笑晗,李永华. 2023. 沉积层结构被动源探测方法及其在典型盆地的应用. 地球与行星物理论评(中英文),54(1):12-26
Zhang R Q, Kuang C L, Zhang X H, Li Y H. 2023. Advances in passive seismic analysis of sediment structure and applications in some typical basins. Reviews of Geophysics and Planetary Physics, 54(1): 12-26 (in Chinese)

沉积层结构被动源探测方法及其在典型盆地的应用

doi: 10.19975/j.dqyxx.2021-063
基金项目: 国家自然科学基金资助项目(41874073,U1839210)
详细信息
    通讯作者:

    张瑞青, 研究员,主要从事深部结构探测. E-mail:zrq@cea-igp.ac.cn

  • 中图分类号: P315

Advances in passive seismic analysis of sediment structure and applications in some typical basins

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41874073, U1839210)
  • 摘要: 准确的沉积层结构,对盆地地区油气资源调查与勘探、地震动场地效应评估和壳幔深部结构成像等研究均具有重要意义. 近二十年来,随着地震观测技术的进步和大量流动台阵数据的积累,利用被动源资料探测沉积层结构的地震学方法研究取得了长足的发展. 本文对这些主要方法进行了归纳总结,阐述了基本原理及相关进展. 其中,基于远震体波数据的研究方法主要有:接收函数和转换函数、波场反延拓的H-β方法、以及P波质点运动分析等. 基于近场体波资料约束沉积层结构通常采用的是高频波形拟合方法. 此外,还简要介绍了谱比法、背景噪声面波成像和Rayleigh波Z/H幅度比,以及多种方法的联合反演. 最后,对我国东部典型盆地地区,如松辽盆地和华北盆地下方沉积层结构已取得的研究进展进行了总结.

     

  • 图  1  均匀介质中,不同地震台站(基岩和位于盆地内)下方远震和近震P波响应的射线路径示意图. 实线表示P波,虚线表示S波

    Figure  1.  Schematic ray paths of the P (black solid lines) and S (red dashed lines) waves beneath stations (located on bedrock and sediment) in response to an incoming P wave both at teleseismic and local distances

    图  2  (a)利用相邻算法获得的A001台站的接收函数波形拟合结果. 黑色为实际波形,红色为理论地震图.(b)最优的S波速度模型与波速比(修改自武岩等,2014

    Figure  2.  (a) Comparison of receiver functions at A001 station between the observations (black lines) and synthetics (red lines) derived from neighborhood algorithm inversion. (b) The best fitting S wave velocity model together with VP/VS ratio (modified from Wu et al., 2014)

    图  3  沉积盆地台站下方射线路径示意图,其中实线表示上行和下行 P 波,虚线表示上行和下行 S 波(修改自Tao et al., 2014

    Figure  3.  Schematic ray paths of the upgoing and downgoing P (solid lines) and S (dashed lines) waves inside the sediment, crust and mantle in response to an incoming P wave at teleseismic distance (modified from Tao et al., 2014)

    图  4  (a)NE96台站记录到的2010年2月15日发生的远震事件的垂向和径向分量,经过1~10 s的带通滤波后的波形示意图.(b)P波质点运动轨迹图,时窗范围见图(a)所示.(c)位于盆地内NE96台站(红色正方形)和基岩上方NEA3台站(蓝色圆圈,位于)测得的不同周期下的平均AP分裂时间(修改自Bao and Niu, 2017

    Figure  4.  (a) Normalized vertical-(BHZ) and radial-component (BHR) recordings of NE96 from a teleseismic earthquake occurring on 15 February 2010, which is filtered in the period band of 1~10 s. (b) The particle motion of the P wave, which is denoted by the shaded time window in Fig. 4a. (c) Comparison of the average AP splitting times as a function of period measured at NE96 (red solid squares) and NEA3 stations (open blue circles), which are deployed on sediment and bedrock, respectively (modified from Bao and Niu, 2017)

    图  5  (a)从震源(8 km深度)出发的P波和S波系列震相的射线参数随震中距变化图. 其中,两个圆圈表示PEBM台站记录到的地震事件6的P波和S波的射线参数,水平线表示S波在基底处发生相移的临界射线参数(修改自Langston, 2003). (b)fk方法计算的爆炸源(黑线)和平面波(虚线)的理论地震图的比较,其中震源深度和震中距在径向分量中已标识(修改自Ni et al., 2014

    Figure  5.  (a) Ray parameter versus distance curve for incident P and S phases from a source at 8-km depth. The two open circles show P and S ray parameters for event 6 at PEBM. The horizontal line shows the critical ray parameter where S phases undergo a phase shift due to a complex transmission coefficient at the basement boundary (modified from Langston, 2003). (b) Comparisons of the waveforms computed by fk with explosion source (black lines) and plane-wave synthetics (dashed lines). The focal depth and epicentral distance used in the fk computations are labeled above each radial waveform (modified from Ni et al., 2014)

    图  6  V45A台站(沉积层厚度为869 m)得到的H/V谱比曲线(a)和V/H谱比曲线(b),括号表示最大峰值频率区域. W44A台站记录到的8个地震事件得到的的H/V谱比曲线(c)和V/H谱比曲线(d). 其中,H/V谱的最大峰值共振频率为0.2~0.4,但V/H谱的最大峰值共振频率较为复杂(修改自Mostafanejad and Langston, 2017

    Figure  6.  (a) H/V and (b) V/H power spectral ratios for observed teleseismic P waves at station V45A with sediment thickness of 869 m. Brackets point out the areas of maximum peak frequency. (c) H/V and (d) V/H power spectral ratio for station W44A with overlying spectra of eight different teleseismic P waves. Brackets show the frequency band that the peak resonance may be in. Although maximum peak resonance frequency for H/V spectra is definitely arriving on 0.2~0.4, it is more complicated to recognize where maximum peak occurs for V/H spectra (modified from Mostafanejad and Langston, 2017)

    图  7  松辽盆地沉积层厚度分布图.(a)和(b)分别是利用H-β方法(修改自况春利等,2022)和高频近震P波转换波震相估算的沉积层厚度图(修改自马海超,2020).(c)背景噪声成像中2.9 km/s的速度等值线对应的沉积层厚度分布图(修改自王仁涛等,2019).(d)基于频率相关的P波质点运动方法获得的沉积层厚度分布图(修改自Bao and Niu, 2017

    Figure  7.  Sediment thickness in the Songliao basin obtained by H-β method. (a) (modified from Kuang et al., 2022), and by high-frequency Ps converted from local deep earthquakes (b) (modified from Ma et al., 2020). (c) The sediment thickness at 2.9 km/s velocity isosurface obtained from short-period ambient noise tomography (modified from Wang et al., 2019). (d) The sediment thickness obtained by P-wave frequency-dependent P Wave particle motion (modified from Bao and Niu, 2017)

    图  8  华北克拉通中部和东部地区沉积层厚度分布图. 其中(a)和(b)分别是利用背景噪声面波和接收函数联合反演方法(修改自姜磊等,2021)和采用人工地震测深(修改自段永红,2016)得到的沉积层厚度分布图. (c)和(d)分别是采用接收函数波形反演方法(修改自武岩等,2014)和序贯接收函数H-κ扫描方法(修改自Zhang and Huang, 2019)获得的渤海地区沉积层厚度分布图

    Figure  8.  Sediment thickness beneath the central and eastern North China Craton, obtained by joint inversion of receiver function and Rayleigh wave dispersions (a) (modified from Jiang et al., 2021) and deep seismic sounding (b) (modified from Duan et al 2016). The sediment thickness of Bohai Bay basin derived by receiver function waveform fitting (c) (modified from Wu et al., 2014) and sequential H-κ stacking method (d) (modified from Zhang and Huang, 2019)

  • [1] Bao F, Li Z W, Yuen D A, et al. 2018. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method[J]. Physics of the Earth and Planetary Interiors, 281: 46-54. doi: 10.1016/j.pepi.2018.05.004
    [2] Bao F, Li Z W, Shi Y T, et al. 2021. Sediment structures constrained by converted waves from local earthquakes recorded by a dense seismic array in the Tangshan earthquake region[J]. Pure and Applied Geophysics, 178(2): 379-397. doi: 10.1007/s00024-021-02667-5
    [3] Bao Y F, Niu F L. 2017. Constraining sedimentary structure using frequency-dependent P wave particle motion: A case study of the Songliao Basin in NE China: Sediment constrained by P wave splitting[J]. Journal of Geophysical Research: Solid Earth, 122(11): 9083-9094. doi: 10.1002/2017JB014721
    [4] Bonilla L F, Steidl J H, Lindley G T, et al. 1997. Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, coda, and H/V methods[J]. Bulletin of the Seismological Society of America, 87(3): 710-730. doi: 10.1785/BSSA0870030710
    [5] Bonnefoy-Claudet S, Cornou C, Bard P-Y, et al. 2006. H/V ratio: A tool for site effects evaluation. Results from 1-D noise simula- tions[J]. Geophysical Journal International, 167(2): 827-837. doi: 10.1111/j.1365-246X.2006.03154.x
    [6] Boore D M, Toksöz M N. 1969. Rayleigh wave particle motion and crustal structure[J]. Transactions American Geophysical Union, 59(1), 331-346.
    [7] 曹佳俊, 郭震, 夏少红, 等. 2022. 利用 H/V 方法研究琼北火山区的浅表层地质变化特征[J]. 热带海洋学报, 41(1): 10

    Cao J J, Guo Z, Xia S H, et al. 2022. Shallow geological structure in the Qiongbei volcanic area by using H/V method[J]. Journal of Tropical Oceanography, 41(1): 10(in Chinese).
    [8] Carcione J M, Picotti S, Francese R, et al. 2017. Effect of soil and bedrock anelasticity on the S-wave amplification function[J]. Geophysical Journal International, 208(1): 424-431. doi: 10.1093/gji/ggw402
    [9] Chen K C, Chiu J M, Yang Y T. 1996. Shear-wave velocity of the sedimentary basin in the upper Mississippi embayment using S-to-P converted waves[J]. Bulletin of the Seismological Society of America, 86(3): 848–856.
    [10] Chiu S C C , Langston C A. 2011. Waveform inversion for one-dimensional near-surface structure in the New Madrid seismic zone[J]. Bulletin of the Seismological Society of America, 101(1): 93-108. doi: 10.1785/0120100025
    [11] Clitheroe G, Gudmundsson O, Kennett B L N. 2000. Sedimentary and upper crustal structure of Australia from receiver functions[J]. Australian Journal of Earth Sciences, 47(2): 209-216. doi: 10.1046/j.1440-0952.2000.00774.x
    [12] 段永红, 王夫运, 张先康, 等. 2016. 华北克拉通中东部地壳三维速度结构模型(HBCrust1.0)[J]. 中国科学: 地球科学, 46(6): 845-856.

    Duan Y H, Wang F Y, Zhang X K, et al. 2016. Three dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0)[J]. Science China Earth Sciences, 59: 1477–1488(in Chinese).
    [13] 房立华, 吴建平, 吕作勇. 2009. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报, 52(3): 663-671 doi: 10.1002/cjg2.1388

    Fang L H, Wu J P. Lü Z Y. 2009. Rayleigh wave group velocity tomography from ambient seismic noise in North China[J]. Chinese Journal of Geophysics, 52(3): 663-671(in Chinese). doi: 10.1002/cjg2.1388
    [14] Flores-Estrella H, Yussim S, Lomnitz C. 2007. Seismic response of the Mexico City Basin: A review of twenty years of research[J]. Natural Hazards, 40(2): 357-372. doi: 10.1007/s11069-006-0034-6
    [15] 符伟, 侯贺晟, 高锐, 等. 2019. “松科二井”邻域岩石圈精细结构特征及动力学环境——深地震反射剖面的揭示[J]. 地球物理学报, 62(4): 1349-1361 doi: 10.6038/cjg2019M0370

    Fu W, Hou H S, Gao R, et al. 2019. Fine structure of the lithosphere beneath the Well SK-2 and its adjacent: Revealed by deep seismic reflection profile[J]. Chinese Journal of Geophysics, 62(4): 1349-1361 (in Chinese). doi: 10.6038/cjg2019M0370
    [16] 付媛媛, 肖卓. 2020. 青藏高原东北缘及邻区Rayleigh和Love波背景噪声层析成像[J]. 地球物理学报, 63(3): 860-870 doi: 10.6038/cjg2020N0239

    Fu Y Y, Xiao Z. 2020. Ambient noise tomography of Rayleigh and Love wave in northeast Tibetan Plateau and adjacent regions[J]. Chinese Journal of Geophysics, 63(3): 860-870 (in Chinese). doi: 10.6038/cjg2020N0239
    [17] Garret M L, Rebecca L S, Jan S. 2012. Imaging the shallow crust with teleseismic receiver functions[J]. Geophysical Journal International, 191: 627-636. doi: 10.1111/j.1365-246X.2012.05615.x
    [18] Guo Z , Chen Y J , Ning J Y, et al. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data[J]. Earth and Planetary Science Letters, 416: 1-11. doi: 10.1016/j.jpgl.2015.01.044
    [19] Haskell N A . 1953. The dispersion of surface waves on multilayered media[J]. Bulletin of the seismological Society of America, 43(1), 17-34. doi: 10.1785/BSSA0430010017
    [20] Herak M. 2008. ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise[J]. Computers & Geosciences, 34(11): 1514-1526.
    [21] Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 84(6): 1081-1088. doi: 10.1785/0220110096
    [22] 侯贺晟, 王成善, 张交东, 等. 2018. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质, 45(4): 641-657 doi: 10.12029/gc20180401

    Hou H S, Wang C S, Zhang J D, et al. 2018. Deep continental scientific drilling engineering in Songliao Basin: Progress in earth science research[J]. Geology in China, 45(4): 641-657 (in Chinese). doi: 10.12029/gc20180401
    [23] Ibs-von Seht M, Wohlenberg J. 1999. Microtremor measurements used to map thickness of soft sediments[J]. Bulletin of the Seismological Society of America, 89(1): 250-259. doi: 10.1785/BSSA0890010250
    [24] 姜磊, 丁志峰, 高天扬, 黄翔. 2021. 利用背景噪声和接收函数研究华北克拉通地壳结构[J]. 地球物理学报, 64(5):1585-1596.

    Jiang L, Ding Z F, Gao T Y, Huang X. 2021. Crustal structure beneath the North China Craton from joint inversion of ambient noise and receiver function[J]. Chinese Journal of Geophysics, 64(5):1585-1596 (in Chinese).
    [25] Julia J, Ammon C J, Herrmann R B, et al. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophysical Journal International, 143(1): 99-112. doi: 10.1046/j.1365-246x.2000.00217.x
    [26] Kennett B L N, Kerry N J, Woodhouse J H. 1978. Symmetries in the reflection and transmission of elastic waves[J]. Geophysical Journal International, 52(2): 215-229.
    [27] 况春利, 张瑞青, 陈成峰, 刘嘉栋. 2022. 松辽盆地地壳精细结构研究[J]. 地震学报, 44(4), doi: 11939/jass. 20210108.

    Kuang C L, Zhang R Q, Chen C F, et al. 2022. High-resolution crustal structure in the Songliao basin[J]. Acta Seismologica Sinica, 44(4), doi: 11939/jass.20210108 (in Chinese).
    [28] Lachet C, Bard P-Y. 1994. Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique[J]. Journal of Physics of the Earth, 42(5): 377-397. doi: 10.4294/jpe1952.42.377
    [29] Langston C A. 2003. Local earthquake wave propagation through Mississippi embayment sediments, part I: Body-wave phases and local site responses[J]. Bulletin of the seismological society of America, 93(6): 2664-2684. doi: 10.1785/0120030046
    [30] Langston C A. 2011. Wave-field continuation and decomposition for passive seismic imaging under deep unconsolidated sediments[J]. Bulletin of the Seismological Society of America, 101(5): 2176-2190. doi: 10.1785/0120100299
    [31] Li C, Yao H J, Fang H J, et al. 2016. 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China[J]. Seismological Research Letters, 87(4): 882-892. doi: 10.1785/0220150257
    [32] 李德生. 1980. 渤海湾及沿岸盆地的构造格局[J]. 海洋学报 (中文版), 2(4): 93-101

    Li D S. 1980. The tectonic frameworks of Bohai gulf and coastal basins, China[J]. Acta Seismologica Sinica, 2(4): 93-101(in Chinese).
    [33] 李国良. 2016. 瑞利波椭圆率的测定与在反演S波速度结构中的应用[D]. 北京: 中国石油大学.

    Li G L. 2016. Measurement of Rayleigh wave ellipticity and its application to the joint inversion of high-resolution S-wave velocity structure[D]. Beijing: China University of Petrolum (in Chinese).
    [34] 李国良. 2019. 利用被动源数据联合反演盆地3D速度结构[D]. 北京: 中国石油大学.

    Li G L. 2019. Joint inversion of basin-wide 3D sedimentary structure with passive seismic data[D]. Beijing: China University of Petrolum (in Chinese).
    [35] Li G L, Niu F L, Yang Y J, et al. 2019. Joint inversion of Rayleigh wave phase velocity, particle motion, and teleseismic body wave data for sedimentary structures[J]. Geophysical Research Letters, 46(12): 6469-6478. doi: 10.1029/2019GL082746
    [36] Li L L, Shen W S, Sui S Y, et al. 2021. Crustal thickness beneath the Tanlu fault zone and its tectonic significance based on two-layer H-κ stacking[J]. Earthquake Science, 34(1): 47-63. doi: 10.29382/eqs-2020-0064
    [37] 李奇, 张智, 侯爵, 等. 2021. 背景噪声提取体波方法研究进展[J]. 地震科学进展, 51(10): 433-451 doi: 10.3969/j.issn.2096-7780.2021.10.001

    Li Q, Zhang Z, Hou J, et al. 2021. Research progress of the extraction body waves from ambient noise[J]. Progress in Earthquake Sciences, 51(10): 433-451 (in Chinese). doi: 10.3969/j.issn.2096-7780.2021.10.001
    [38] 李文倩, 何金刚, 朱皓清. 2019. 基于 H/V 谱比法的场地卓越频率研究[J]. 内陆地震, 33(4): 314-320

    Li W Q, He J G, Zhu H Q. 2019. Study on site predominant frequency based on H/V spectral ratio method[J]. Inland Earthquake, 33(4): 314-320 (in Chinese).
    [39] Li Z W, Ni S D, Somerville P. 2014. Resolving shallow shear-wave velocity structure beneath station CBN by waveform modeling of the MW5.8 Mineral, Virginia, earthquake sequence[J]. Bulletin of the Seismological Society of America, 104(2): 944-952. doi: 10.1785/0120130190
    [40] Lin F C, Tsai V C, Schmandt B, et al. 2013. Extracting seismic core phases with array interferometry[J]. Geophysical Research Letters, 40(6): 1049-1053. doi: 10.1002/grl.50237
    [41] 刘洁, 张建中. 2020. 重震联合反演框架及应用新进展[J]. 地球物理学进展, 35(2): 743-752 doi: 10.6038/pg2020DD0050

    Liu J, Zhang J Z. 2020. New development of gravity-seismic joint inversion framework and application[J]. Progress in Geophysics, 35(2): 743-752 (in Chinese). doi: 10.6038/pg2020DD0050
    [42] 鲁来玉. 2021. 基于平面波模型重访地震背景噪声互相关及空间自相关(SPAC)[J]. 地球与行星物理论评, 52(2): 123-163

    Lu L Y. 2021. Revisiting the cross-correlation and SPatial AutoCorrelation (SPAC) of the seismic ambient noise based on the plane wave model[J]. Reviews of Geophysics and Planetary Physics, 52(2): 123-163(in Chinese).
    [43] 罗艳, 崇加军, 倪四道, 等. 2008. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报, 51(4): 1135-1145 doi: 10.3321/j.issn:0001-5733.2008.04.022

    Luo Y, Chong J J, Ni S D, et al. 2008. Moho depth and sedimentary thickness in Capital region Chinese [J]. Chinese Journal of Geophysics, 51(4): 1135-1145 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.04.022
    [44] 马海超, 储日升, 盛敏汉, 等. 2020. 利用深源近震高频Ps转换波震相研究松辽盆地沉积层结构[J]. 大地测量与地球动力学, 40(2): 214-220

    Ma H C, Chu R S, Sheng M H, et al. 2020. Sedimentary structures of the Songliao basin using high-frequency Ps converted wave from local deep earthquakes[J]. Journal of Geodesy and Geodynamics, 40(02): 214-220 (in Chinese).
    [45] Mostafanejad A, Langston C A. 2017. Velocity structure of the northern Mississippi Embayment sediments, Part I: Teleseismic P-wave spectral ratios analysis[J]. Bulletin of the Seismological Society of America, 107(1): 97-105. doi: 10.1785/0120150339
    [46] Nakamura Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute, Quarterly Reports, 30(1): 1.
    [47] Ni S D, Li Z W, Somerville P. 2014. Estimating subsurface shear velocity with radial to vertical ratio of local P waves[J]. Seismological Research Letters, 85(1): 82-89. doi: 10.1785/0220130128
    [48] Owens T J, Crosson R S. 1988. Shallow structure effects on broadband teleseismic P waveforms[J]. Bulletin of the Seismological Society of America, 78(1): 96-108. doi: 10.1785/BSSA0780010096
    [49] Pan J T. 2012. High-resolution Rayleigh wave phase velocity maps from ambient noise tomography in North China[J]. Earthquake Science, 25: 241-251.
    [50] Park S, Ishii M. 2018. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis[J]. Geophysical Journal International. , 213(3): 1559-1571. doi: 10.1093/gji/ggy072
    [51] Park S, Tsai V C, Ishii M. 2019. Frequency-dependent P wave polarization and its subwavelength near-surface depth sensitivity [J]. Geophysical Research Letters, 46(24): 14377-14384. doi: 10.1029/2019GL084892
    [52] 彭菲, 王伟君, 寇华东. 2020. 三河—平谷地区地脉动 H/V 谱比法探测: 场地响应、浅层沉积结构及其反映的断层活动[J]. 地球物理学报, 63(10): 3775–3790 doi: 10.6038/cjg2020O0025

    Peng F, Wang W J, Kou H D. 2020. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area: Site responses, shallow sedimentary structure, and fault activity revealed[J]. Chinese Journal of Geophysics, 63(10): 3775-3790 (in Chinese). doi: 10.6038/cjg2020O0025
    [53] 秦彤威, 冯宣政, 王少曈, 鲁来玉. 2021a. Rayleigh 波 ZH 幅度比(椭率)研究综述[J]. 地球物理学进展, 36(1): 39-66 doi: 10.6038/pg2021EE0289

    Qin T W, Feng X Z, Wang S T, Lu L Y. 2021. Review on Rayleigh wave ZH amplitude ratio (ellipticity)[J]. Progress in Geophysics, 36(1): 39-66 (in Chinese). doi: 10.6038/pg2021EE0289
    [54] 秦彤威, 王少曈, 冯宣政, 鲁来玉. 2021b. 微动 H/V 谱比方法[J]. 地球与行星物理论评, 52(6): 587-622

    Qin T W, Wang S T, Feng X Z, Lu L Y. 2021. A review on microtremor H/V spectral ratio method[J]. Reviews of Geophysics and Planetary Physics, 52(6): 587-622 (in Chinese).
    [55] Saikia S , Chopra S , Baruah S , et al. 2016. Shallow sedimentary structure of the Brahmaputra Valley constraint from receiver functions analysis[J]. Pure and Applied Geophysics, 174(1): 229-247.
    [56] Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Sceience, 307(5715): 1615–1618. doi: 10.1126/science.1108339
    [57] Shibutani T, Sambridge M, Kennett B. 1996. Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern australia[J]. Geophysical Research Letters, 23(14): 1829-1832. doi: 10.1029/96GL01671
    [58] Tao K, Liu T, Ning J, et al. 2014. Estimating sedimentary and crustal structure using wavefield continuation: Theory, techniques and applications[J]. Geophysical Journal International, 197(1): 443-457. doi: 10.1093/gji/ggt515
    [59] 滕龙, 倪四道, 李志伟. 2014. 重力测定盆地沉积层厚度的方法及其进展[J]. 地球物理学进展, 29(5): 2077-2083.

    Teng L, Ni S D, Li Z W. 2014. Advance of gravity method in sediment thickness of basins[J]. Progress in Geophysics, 29(5): 2077- 2083 (in Chinese).
    [60] Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 21(2): 89-93. doi: 10.1063/1.1699629
    [61] 王海云, 谢礼立. 2008. 近断层地震动模拟现状[J]. 地球科学进展, 23(10):1043-1049.

    Wang H Y, Xie L L. 2008. A Review on near-fault ground motion simulation[J]. Advance in Earth Science, 23(10):1043-1049 (in Chinese).
    [62] Wang K M, Lu L Y, Maupin V, et al. 2020. Surface wave tomography of northeastern tibetan plateau using beamforming of seismic noise at a dense array[J]. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018416.
    [63] 王璞珺, 刘海波, 任延广, 等. 2017. 松辽盆地白垩系大陆科学钻探“松科2井”选址[J]. 地学前缘, 24(1): 216-228

    Wang P J, Liu H B, Ren Y G, et al. 2017. How to choose a right rilling site for the ICDP Cretaceous continental scientific drilling in the Songliao basin (SK2), Northeast China[J]. Earth Science Frontiers, 24(1): 216-228(in Chinese).
    [64] 王仁涛, 李志伟, 包丰, 等. 2019. 松辽盆地沉积层结构的短周期地震背景噪声成像研究[J]. 地球物理学报, 62(9): 3385-3399. Wang R T, Li Z W, Bao F, et al. 2019. S-wave velocity structure of sediment in Songliao basin from short period ambient noise tomography[J]. Chinese Journal of Geophysics. 62(9): 3858-3399 (in Chinese).
    [65] 王伟君, 陈棋福, 齐诚, 等. 2011. 利用噪声 HVSR 方法探测近地表结构的可能性和局限性——以保定地区为例[J]. 地球物理学报, 54(7): 1783-1797 doi: 10.3969/j.issn.0001-5733.2011.07.012

    Wang W J, Chen Q F, Qi C, et al. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method — A case in baoding area of Hebei Province, China[J]. Chinese Journal of Geophysics, 54(7): 1783-1797 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.07.012
    [66] 王未来, 吴建平, 房立华. 2011. 利用地脉动信息约束沉积层区域台站下方速度结构反演[J]. 地震学报, 33(1): 28-38 doi: 10.3969/j.issn.0253-3782.2011.01.003

    Wang W L, Wu J P, Fang L H. 2011. Application of microseismic data to constraining inversion for velocity structure beneath stations in sedimentary area[J]. Acta Seismologica Sinica, 33(1): 28-38(in Chinese). doi: 10.3969/j.issn.0253-3782.2011.01.003
    [67] Wang W L, Wu J P, Fang L H, et al. 2017. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth and Planetary Science Letters, 462: 76–85. doi: 10.1016/j.jpgl.2016.12.040
    [68] Wang X, Chen L, Yao H J. 2021. A new body-wave amplitude ratio-based method for imaging shallow crustal structure and its application in the Sichuan basin, Southwestern China[J]. Geophysical Research Letters, 48(18): e2021GL095186.
    [69] Wang Y, Lin F C, Schmandt B, et al. 2017. Ambient noise tomography across Mount St. Helens using a dense seismic array[J]. Journal of Geophysical Research: Solid Earth, 122(6): 4492-4508. doi: 10.1002/2016JB013769
    [70] Weaver R L, Lobkis O I. 2001. Ultrasonics without a source: Thermal fluctuation correlations at mHz frequencies[J]. Physical Review Letters, 87(13): 134301. doi: 10.1103/PhysRevLett.87.134301
    [71] 武岩, 丁志峰, 朱露培. 2014. 利用接收函数研究渤海湾盆地沉积层结构[J]. 地震学报, 36 (5): 837-849

    Wu Y, Ding Z F, Zhu L P. 2014. Sedimentary basin structure of the Bohai bay from teleseismic receiver functions[J]. Acta Seismologica Sinica, 36(5): 837-849 (in Chinese).
    [72] Xiong X , Gao R , Li Y K, et al. 2015. The lithosphere structure of the great Xing'an range in the eastern central Asian orogenic belt: Constrains from the joint geophysical profiling[J]. Journal of Asian Earth Sciences, 113(1): 481-490.
    [73] Xu Q H, Wu C, Yang X L, et al. 1996. Palaeochannels on the North China Plain: Relationships between their development and tectonics[J]. Geomorphology, 18(1): 27-35. doi: 10.1016/0169-555X(95)00149-Y
    [74] 杨宝俊, 穆石敏, 金旭, 等. 1996. 中国满洲里──绥芬河地学断面地球物理综合研究[J]. 地球物理学报, 39(6): 772-782 doi: 10.3321/j.issn:0001-5733.1996.06.007

    Yang B J, Mu S M, Jin X, et al. 1996. Synthesized study on the geophysics of Manzhouli Suifenhe geosciencetransect, China[J]. Chinese Journal of Geophysics, 39(6): 772-782(in Chinese). doi: 10.3321/j.issn:0001-5733.1996.06.007
    [75] Yang C H, Niu F L. 2019. Sedimentary structure of the western Bohai bay basin and other basins in North China revealed by frequency dependent P-wave particle motion[J]. Geodesy and Geodynamics, 10(5): 372-381. doi: 10.1016/j.geog.2018.04.007
    [76] Yao H, Van Der Hilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophysical Journal International, 166: 732-744. doi: 10.1111/j.1365-246X.2006.03028.x
    [77] Ye H, Shedlock K M, Hellinger S J, et al. 1985. The North China basin: An example of a Cenozoic rifted intraplate basin[J]. Tectonics, 4(2): 153-169. doi: 10.1029/TC004i002p00153
    [78] Yeck W L, Sheehan A F, Schulte-Pelkum V. 2013. Sequential H-stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bulletin of the Seismological Society of America, 103(3): 2142-2150. doi: 10.1785/0120120290
    [79] Yu Y Q, Song J G, Liu K H, et al. 2015. Determining crustal structure beneath seismic stations overlying a lowermining sedimentary layer using receiver functions[J]. Journal of Geophysical Research: Solid Earth, 120(5): 3208-3218. doi: 10.1002/2014JB011610
    [80] 袁艺, 姚华建, 秦岩. 2016. 基于邻域算法的瑞利面波垂直—水平振幅比及频散曲线联合反演及应用[J]. 地球物理学报, 59(3): 959-971.

    Yuan Y, Yao H J, Qin Y. 2016. Joint inversion of Rayleigh wave vertical horizontal amplitude ratios and dispersion based on the Neighborhood Algorithm and its application[J]. Chinese Journal of Geophysics, 59(3): 959 971(in Chinese).
    [81] 张明辉, 武振波, 马立雪, 等. 2020. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 35(2): 495- 511. Zhang M H, Wu Z B, Ma L X, et al. 2020. Research progress of passive source detection technology based on short-period dense seismic array[J]. Progress in Geophysics, 35(2): 495-511 (in Chinese).
    [82] Zhang Y, Huang J L. 2019. Structure of the sediment and crust in the Northeast North China craton from improved sequential H-k stacking method[J]. Open Geosciences, 11: 682-696. doi: 10.1515/geo-2019-0054
    [83] 郑德高, 李志伟. 2014. 基于远震接收函数与近震P波波形的沉积层结构研究[C]. 2014年中国地球科学联合学术年会——专题6: 岩石圈结构与大陆动力学论文集.

    Zheng D G, Li Z W. 2014. Sedimentary structure based on teleseismic receiver function and local P waveform[C]//Annual meeting of Chinese Geoscience Union, 2014- topic 6: Proceedings on lithospheric structure and continental dynamics. 11: 682-696 (in Chinese).
    [84] Zheng T Y, Zhao L, Chen L. 2005. A detailed receiver function image of the sedimentary structure in the Bohai bay basin[J]. Physics of the Earth & Planetary Interiors, 152(3): 129-143.
    [85] 周庆华, 冯子辉, 门广田. 2007. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J]. 中国科学 D辑, 37(增刊Ⅱ): 177-188

    Zhou Q H, Feng Z H, Men G T. 2007. Present geothermal regime and its relationship to natural gas generation in Xujiaweizi faulted depression, north Songliao basin[J]. Science in China(Series D), 37(Suppl. Ⅱ): 177-188 (in Chinese).
    [86] 朱洪翔, 田有, 刘财, 等. 2018. 沉积盆地地区地壳结构估计——预测反褶积方法消除接收函数多次波混响[J]. 地球物理学报, 61(9): 3664-3675 doi: 10.6038/cjg2018L0152

    Zhu H X, Tian Y, Liu C, et al. 2018. Estimation of the crustal structure beneath the sedimentary basin: Predictive deconvolution method to remove multiples reverberations of the receiver function[J]. Chinese Journal of Geophysics, 61(9): 3664-3675 (in Chinese). doi: 10.6038/cjg2018L0152
    [87] Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth. 105(B2): 2969-2980. doi: 10.1029/1999JB900322
  • 加载中
图(8)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  54
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-12
  • 录用日期:  2022-04-14
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-05-07
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回