• ISSN 2097-1893
  • CN 10-1855/P

大地震破裂过程反演中的灵活性需求:现状及探讨

岳汉

引用本文: 岳汉. 2023. 大地震破裂过程反演中的灵活性需求:现状及探讨. 地球与行星物理论评(中英文),54(1):1-11
Yue H. 2023. Advances and perspectives of flexibile inversion for earthquake rupture processes. Reviews of Geophysics and Planetary Physics, 54(1): 1-11 (in Chinese)

大地震破裂过程反演中的灵活性需求:现状及探讨

doi: 10.19975/j.dqyxx.2021-054
基金项目: 国家自然科学基金资助项目(42174059)
详细信息
    通讯作者:

    岳汉(1984-),男, 研究员,主要从事地震物理学研究. E-mail:yue.han@pku.edu.cn

  • 中图分类号: P315.3

Advances and perspectives of flexibile inversion for earthquake rupture processes

Funds: Supported by the National Natural Science Foundation of China (Grant No. 42174059)
  • 摘要: 对于大地震破裂过程的反演是震源研究的重要问题,也是震源物理研究的基础. 虽然大地测量、地震精定位等方法和数据的引进为大陆内部地震破裂过程的精细研究提供了重要依据,但对于大洋底部、俯冲带等区域的地震复杂破裂过程依然需要灵活度高的方法来获得多样的断层几何结构,并支持破裂过程反演. 本文集中讨论震源研究中的一类灵活度高的方法:多点源模型反演. 并结合震源反投影、有限断层模型等方法,分析这些方法在大地震破裂过程反演中的优势互补,提出反投影→多点源→有限断层模型串行的思路. 通过上游方法的稳定性获得下游算法的先验约束,最终获得具有高灵活性、高时效性以及高精度的串行反演策略.

     

  • 图  1  2016年新西兰Kaikoura地震的多种震源研究方法比较. (a)GCMT和Wphase的点源反演结果;(b)多点源反演结果(修改自Duputel and Rivera, 2017);(c)反投影成像结果(修改自Hollingsworth et al., 2017);(d)有限断层反演结果(修改自Wang et al., 2018

    Figure  1.  Comparison between different inversion results for the 2016 Kaikoura earthquake. (a) GCMT and Wphase point source solution; (b) Multi-point-source solution (modified from Duputel and Rivera, 2017); (c) Back-projection (modified from Hollingsworth et al., 2017); (d) Finite fault model inversion (modified from Wang et al., 2018)

    图  2  (a)2017年九寨沟地震的发震位置,其南侧分别发生了1973年黄龙地震、1976年的松潘震群. (b)2017年九寨沟地震多点源反演. GCMT点源解表示为大的震源球,左侧4个远震体波波形以及单点源和多点源拟合的波形表示为黑色、蓝色和红色的波形,多点源反演的结果呈现于右下方,多点源叠加的震源机制解和有限断层叠加的震源机制解画在右上方(修改自Sun et al., 2018

    Figure  2.  (a) 2017 Jiuzhaigou earthquake location. 1973 Huanglong earthquake and 1976 Songpan earthquake occurred on the south Huya fault. (b) Multi-point source inversion results of the 2017 Jiuzhaigou earthquake. Example waveforms of four southern teleseismic stations are plotted. Waveforms fitted by single point and multi-point solutions are plotted in blue and red, respectively. Solutions of 4 point sources of the MPS inversion result are plotted in the bottom (modified from Sun et al., 2018)

    图  3  (a)2018年花莲地震的发生位置以及区域构造. 花莲地震发生于欧亚和菲律宾板块的交接处,是造山和俯冲构造的交界点,破裂过程复杂. (b)花莲地震多点源反演结果,不同颜色的震源球表示了远震体波和近场三分量地震波形反演的多点源解,震源球的颜色代表发震断层:紫色为板间断层,蓝色为美伦断层,绿色为岭顶断层. 每个点源发生的时间、震级以及深度在右下角呈现(修改自Lo et al., 2019

    Figure  3.  (a) 2018 Hualien earthquake rupture. (b) MPS inversion results of the 2018 Hualien earthquake. Point sources on the off-shore fault, Meilun fault and Linding faults are plotted in magenta, blue and green focal mechanisms, respectively (modified from Lo et al., 2019)

    图  4  (a)第一行的左右分别为生成模拟波形的点源位置以及时间函数. 第二和第三行分别为有先验约束的点源反演以及无先验约束的点源反演的多点源机制以及时间函数. (b)模拟波形以及每个点源产生的模拟波形. 图(b)左右分别为有无先验约束的波形拟合(修改自Yue and Lay, 2020

    Figure  4.  (a) Mechanisms and source time functions of synthetic earthquakes are plotted in the left and right panels of the top row, respectively. MPS inversion results with and without a priori constraints are plotted in the second and third rows. (b) Waveforms fit by either MPS inversions are plotted in the bottom panels. Synthetic and modeled waveforms are plotted in black and red curves in the top panel. Synthetic waveforms of each point source subevent are plotted as color coded waveforms at the bottom (modified from Yue and Lay, 2020)

    表  1  反投影、多点源以及有限断层模型反演方法的先验约束以及解析度分析

    Table  1.   A priori constraints and resolution analysis of back projection, multi-point source and finite fault inversion methods

    无须预设断层面无须预设动态过程时间解析度好空间解析度好地震矩解析度好震源机制解析度好
    反投影 ××
    多点源 ×××
    有限断层××
    下载: 导出CSV
  • [1] Avouac J P, Ayoub F, Wei S, et al. 2014. The 2013, MW7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault[J]. Earth and Planetary Science Letters, 391: 128-134. doi: 10.1016/j.jpgl.2014.01.036
    [2] Banerjee P, Pollitz F F, Burgmann R. 2005. The size and duration of the Sumatra-Andaman earthquake from far-field static offsets[J]. Science, 308(5729): 1769-1772.
    [3] Dreger D S, Helmberger D V. 1993. Determination of source parameters at regional distances with three-component sparse network data[J]. Journal of Geophysical Research: Solid Earth, 98(B5): 8107-8125. doi: 10.1029/93JB00023
    [4] Duputel Z, Kanamori H, Tsai V C, et al. 2012a. The 2012 Sumatra great earthquake sequence[J]. Earth and Planetary Science Letters, 351: 247-257.
    [5] Duputel Z, Rivera L, Kanamori H, et al. 2012b. W phase source inversion for moderate to large earthquakes (1990-2010) [J]. Geophysical Journal International, 189(2): 1125-1147. doi: 10.1111/j.1365-246X.2012.05419.x
    [6] Duputel Z, Rivera L. 2017. Long-period analysis of the 2016 Kaikoura earthquake[J]. Physics of the Earth and Planetary Interiors, 265: 62-66. doi: 10.1016/j.pepi.2017.02.004
    [7] Ekström G, Nettles M, Dziewoński A. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13, 017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 200: 1-9.
    [8] Hayes G P. 2017. The finite, kinematic rupture properties of great-sized earthquakes since 1990[J]. Earth and Planetary Science Letters, 468: 94-100. doi: 10.1016/j.jpgl.2017.04.003
    [9] Hollingsworth J, Ye L, Avouac J P. 2017. Dynamically triggered slip on a splay fault in the Mw 7.8, 2016 Kaikoura (New Zealand) earthquake[J]. Geophysical Research Letters, 44(8): 3517-3525. doi: 10.1002/2016GL072228
    [10] 胡新亮, 刁桂苓, 马瑾, 等. 2004. 利用数字地震记录的P-, S-振幅比资料测定小震震源机制解的可靠性分析[J]. 地震地质, 26(2): 347-354 doi: 10.3969/j.issn.0253-4967.2004.02.017

    Hu X L, Diao G L, Ma J, et al. 2004. Reliability analysis of focal mechanism solutions of micro-earthquakes determined from amplitude ratio of -p and -s recorded by digital seismograph[J]. Seismology and Geology, 26(2): 347-354 (in Chinese). doi: 10.3969/j.issn.0253-4967.2004.02.017
    [11] 胡幸平, 俞春泉, 陶开, 等. 2008. 利用P波初动资料求解汶川地震及其强余震震源机制解[J]. 地球物理学报, 51(6): 1711-1718 doi: 10.3321/j.issn:0001-5733.2008.06.011

    Hu X P, Yu C Q, Tao K, et al. 2008. Focal mechanism solutions of Wenchuan earthquake and its strong aftershocks obtained from initial P wave polarity analysis[J]. Chinese Journal of Geophysics, 51(6): 1711-1718 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.06.011
    [12] Ishii M, Shearer P M, Houston H, et al. 2005. Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array[J]. Nature, 435(7044): 933-936. doi: 10.1038/nature03675
    [13] Jia Z, Shen Z, Zhan Z, et al. 2019. The 2018 Fiji MW8.2 and 7.9 deep earthquakes: One doublet in two slabs[J]. Earth and Planetary Science Letters, 531: 115997.
    [14] Kanamori H, Rivera L. 2008. Source inversion of Wphase: Speeding up seismic tsunami warning[J]. Geophysical Journal International, 175(1): 222-238. doi: 10.1111/j.1365-246X.2008.03887.x
    [15] Kikuchi M, Kanamori H. 1982. Inversion of complex body waves[J]. Bulletin of the Seismological Society of America, 72(2): 491-506.
    [16] Kikuchi M, Kanamori H. 1986. Inversion of complex body waves-II[J]. Physics of the Earth and Planetary Interiors, 43(3): 205-222.
    [17] Kikuchi M, Kanamori H. 1991. Inversion of complex body waves—III[J]. Bulletin of the Seismological Society of America, 81(6): 2335-2350.
    [18] Koper K D, Hutko A R, Lay T, et al. 2011. Frequency-dependent rupture process of the 2011 MW9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models[J]. Earth, Planets and Space, 63(7): 599-602.
    [19] 刘成利, 郑勇, 葛粲, 等. 2013.2013年芦山7.0 级地震的动态破裂过程[J]. 中国科学: 地球科学, 43(6): 1020-1026

    Liu C L, Zheng Y, Ge C, et al. 2013. Rupture process of the M7.0 Lushan earthquake[J]. Science China: Earth Sciences, 43(6): 1020-1026 (in Chinese).
    [20] 刘成利, 郑勇, 熊熊, 等. 2014. 利用区域宽频带数据反演鲁甸Ms6.5级地震震源破裂过程[J]. 地球物理学报, 57(9): 3028-3037

    Liu C L, Zheng Y, Xiong X, et al. 2014. Rupture process of Ms6. 5 Ludian earthquake constrained by regional broadband seismograms[J]. Chinese Journal of Geophysics, 57(9): 3028-3037 (in Chinese).
    [21] 刘志鹏, 宋超, 盖增喜. 2018. 利用基于全球三维模型的反投影方法研究2016 年MW7.8 级新西兰地震[J]. 北京大学学报(自然科学版), 54(4): 721-729.

    Liu Z, Song C, Ge Z. 2018. Utilizing back-projection method based on 3-D global tomography model to investigate MW7.8 New Zealand south island earthquake[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 721-729 (in Chinese).
    [22] Lo Y C, Yue H, Sun J, et al. 2019. The 2018 MW6.4 Hualien earthquake: Dynamic slip partitioning reveals the spatial transition from mountain building to subduction[J]. Earth and Planetary Science Letters, 524: 115729. doi: 10.1016/j.jpgl.2019.115729
    [23] Meng L, Inbal A, Ampuero J P. 2011. A window into the complexity of the dynamic rupture of the 2011 MW9 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 38(7): L00G07.
    [24] Meng L, Ampuero J P, Stock J, et al. 2012. Earthquake in a maze: Compressional rupture branching during the 2012 MW8.6 Sumatra earthquake[J]. Science, 337(6095): 724-726. doi: 10.1126/science.1224030
    [25] Mueller C S. 1985. Source pulse enhancement by deconvolution of an empirical Green's function[J]. Geophysical Research Letters, 12(1), 33-36. doi: 10.1029/GL012i001p00033
    [26] Park J, Song T R A, Tromp J, et al. 2005. Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake[J]. Science, 308(5725): 1139-1144.
    [27] Ross Z E, Idini B, Jia Z, et al. 2019. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence[J]. Science, 366(6463): 346-351. doi: 10.1126/science.aaz0109
    [28] Shen Z K, Sun J, Zhang P, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2(10): 718. doi: 10.1038/ngeo636
    [29] Shi Q, Wei S, Chen M. 2018. An MCMC multiple point sources inversion scheme and its application to the 2016 Kumamoto MW6.2 earthquake[J]. Geophysical Journal International, 215(2): 737-752. doi: 10.1093/gji/ggy302
    [30] Sun J, Yue H, Shen Z, et al. 2018. The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system[J]. Geophysical Research Letters, 45(5): 2230-2240. doi: 10.1002/2017GL076421
    [31] Trifunac M. 1974. A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971[J]. Bulletin of the Seismological Society of America, 64: 149-172.
    [32] Tsai V C, Nettles M, Ekström G, Dziewonski A M. 2005. Multiple CMT source analysis of the 2004 Sumatra earthquake[J]. Geophysical Research Letters, 32(17): L17304.
    [33] Wang D, Mori J. 2016. Short-period energy of the 25 April 2015 Mw7.8 Nepal earthquake determined from back-projection using four arrays in Europe, China, Japan, and Australia[J]. Bulletin of the Seismological Society of America, 106(1): 259-266. doi: 10.1785/0120150236
    [34] Wang K, Dreger D S, Tinti E, et al. 2020. Rupture process of the 2019 ridgecrest, California MW6.4 foreshock and MW7.1 earthquake constrained by seismic and geodetic data[J]. Bulletin of the Seismological Society of America, 110(4): 1603-1626. doi: 10.1785/0120200108
    [35] Wang T, Wei S, Shi X, et al. 2018. The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults[J]. Earth and Planetary Science Letters, 482: 44-51. doi: 10.1016/j.jpgl.2017.10.056
    [36] 王卫民, 赵连锋, 李娟, 等. 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报, 51(5): 129-136.

    Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the Ms8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 51(5): 1403-1410 (in Chinese).
    [37] Xu W, Feng G, Meng L, et al. 2018. Transpressional rupture cascade of the 2016 MW7.8 Kaikoura earthquake, New Zealand[J]. Journal of Geophysical Research: Solid Earth, 123(3), 2396-2409. doi: 10.1002/2017JB015168
    [38] Xu X, Wen X, Yu G, et al. 2009. Coseismic reverse-and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China[J]. Geology, 37(6): 515-518. doi: 10.1130/G25462A.1
    [39] Xu Y, Koper K D, Sufri O, et al. 2009. Rupture imaging of the MW7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves[J]. Geochemistry, Geophysics, Geosystems, 10(4): Q04006.
    [40] 徐彦, 张俊伟, 苏有锦. 2011. 反投影全球子台网P波记录研究2010年4月14日玉树地震破裂过程[J]. 地球物理学报, 54(5): 1243-1250 doi: 10.3969/j.issn.0001-5733.2011.05.013

    Xu Y, Zhang J W, Su Y J. 2011. Imaging the rupture of 14 April, 2010 Yushu earthquake using back-projection of global subarray P-waves[J]. Chinese Journal of Geophysics, 54(5): 1243-1250 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.05.013
    [41] 徐彦, 邵文丽. 2013. 2013年4月20日四川芦山7.0级地震震源破裂特征[J]. 地球物理学报, 56(10): 180-187.

    Xu Y, Shao W L. 2013. Rupture details of the 20 April 2013 Lushan M7.0 earthquake[J]. Chinese Journal of Geophysics, 56(10): 3396-3403 (in Chinese).
    [42] Yao H, Gerstoft P, Shearer P M, et al. 2011. Compressive sensing of the Tohoku-Oki MW9.0 earthquake: Frequency-dependent rupture modes[J]. Geophysical Research Letters, 38(20): L20310.
    [43] Yue H, Lay T, Koper K D. 2012. En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes[J]. Nature, 490(7419): 245-249. doi: 10.1038/nature11492
    [44] Yue H, Ross Z E, Liang C, et al. 2017. The 2016 Kumamoto MW = 7.0 earthquake: A significant event in a fault–volcano system[J]. Journal of Geophysical Research: Solid Earth, 122(11): 9166-9183. doi: 10.1002/2017JB014525
    [45] Yue H, Lay T. 2020. Resolving complicated faulting process using multi-point-source representation: Iterative inversion algorithm improvement and application to recent complex earthquakes[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018601.
    [46] Yue H, Zhang Y, Gai Z X, et al. 2020. Resolving rupture processes of great earthquakes: Reviews and perspective from fast response to joint inversion[J]. Science China Earth Sciences, 63(4): 492–511.
    [47] Yue H, Sun J, Wang M, et al. 2021. The 2019 Ridgecrest, California earthquake sequence: Evolution of seismic and aseismic slip on an orthogonal fault system[J]. Earth and Planetary Science Letters, 570: 117066. doi: 10.1016/j.jpgl.2021.117066
    [48] 张培震, 闻学泽, 徐锡伟, 等. 2009.2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报, 54(7): 944-953 doi: 10.1360/csb2009-54-7-944

    Zhang P Z, Wen X Z, Xu X W, et al. 2009. Tectonic model of the great Wenchuan earthquake of May 12, 2008, Sichuan, China[J]. Chinese Science Bulletin (ChineseVer), 54(7): 944-953 (in Chinese). doi: 10.1360/csb2009-54-7-944
    [49] Zhang Y, Feng W, Xu L, et al. 2009. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake[J]. Science in China Series D: Earth Sciences, 52(2): 145-154. doi: 10.1007/s11430-008-0148-7
    [50] 张勇, 许力生, 陈运泰. 2013. 芦山4.20 地震破裂过程及其致灾特征初步分析[J]. 地球物理学报, 56(4): 1408-1411 doi: 10.6038/cjg20130435

    Zhang Y, Xu L S, Chen Y T. 2013. Rupture process of the Lushan 4.20 earthquake and preliminary analysis on the disaster-causing mechanism[J]. Chinese Journal of Geophysics, 56(4): 1408-1411 (in Chinese). doi: 10.6038/cjg20130435
    [51] 张喆, 许力生. 2020.2013 年南斯科舍海岭MW7.8地震的多点震源机制反演[J]. 地球物理学报, 63(8): 2978-2998 doi: 10.6038/cjg2020O0017

    Zhang Z, Xu L S. 2020.2013 MW7.8 South Scotia ridge earthquake: Focal mechanism inversion of the multi-point sources[J]. Chinese Journal of Geophysics, 63(8): 2978-2998 (in Chinese). doi: 10.6038/cjg2020O0017
    [52] Zhao L, Luo Y, Liu T Y, et al. 2013. Earthquake focal mechanisms in Yunnan and their inference on the regional stress field[J]. Bulletin of the Seismological Society of America, 103(4): 2498-2507. doi: 10.1785/0120120309
    [53] Zheng Y, Ma H, Lü J, et al. 2009. Source mechanism of strong aftershocks (MS⩾ 5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China Series D: Earth Sciences, 52(6): 739-753. doi: 10.1007/s11430-009-0074-3
    [54] Zheng Y, Ni S, Xie Z, et al. 2010. Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications[J]. Earth, Planets and Space, 62(11): 881-886.
    [55] Zhu L, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 1634-1641. doi: 10.1785/BSSA0860051634
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  95
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2022-01-04
  • 网络出版日期:  2022-01-14
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回