• ISSN 2097-1893
  • CN 10-1855/P

近场强震动记录基线校正方法

张斌 俞言祥

引用本文: 张斌,俞言祥. 2022. 近场强震动记录基线校正方法. 地球与行星物理论评,53(2):204-213
Zhang B, Yu Y X. 2022. Research progress of baseline correction for near-field strong motion accelerogram. Reviews of Geophysics and Planetary Physics, 53(2): 204-213

近场强震动记录基线校正方法

doi: 10.19975/j.dqyxx.2021-053
基金项目: 国家自然科学基金资助项目(41574051)
详细信息
    通讯作者:

    俞言祥(1964-),男,研究员,博士生导师,主要从事强地震动特性、地震动衰减关系、地震动数值模拟、地震区划理论与应用研究. E-mail:yuyx@cea-igp.ac.cn

  • 中图分类号: P315

Research progress of baseline correction for near-field strong motion accelerogram

Funds: Supported by the National Natural Science Foundation of China (Grant No. 41574051)
  • 摘要: 强震动加速度记录特别是近场强震动记录中经常会出现基线偏移的现象,加速度记录中的微小基线偏移会导致积分获得速度和位移时程产生不合理的非物理特征. 本文详细地分析了低频误差和地面的倾斜或旋转对原始加速度记录积分获得的速度和位移时程的具体影响,讨论了近场强震动记录基线校正的准则. 针对低频误差引起的基线偏移,论述了应用最广泛的高通滤波方法的基本原理,讨论了滤波器的选择、非因果滤波的加零填充、余弦渐变平滑零填充部分和加速度记录的过渡带、非因果滤波截止频率的选取标准以及去除零填充后如何避免获得的速度、位移时程和加速度反应谱值不兼容的问题. 针对地面倾斜或旋转引起的基线偏移,论述了Iwan两段式基线校正方法的原理,以及基于Iwan方法开发和改进的基线校正方法的研究进展,并指出各种方法存在的问题. 说明了对于不同地震尺度的近场强震动记录基线校正方法的选择. 在没有可用的方法可以量化不同误差来源的贡献以及无法同时测量六个分量的强震动记录(三个平移分量和三个旋转分量)之前,利用大数据分析和机器学习等技术手段,基于Iwan方法原理,从海量的近场强震动记录中自动快速识别出稳定、可靠的强震段和结束段开始时间将是未来的发展方向.

     

  • 图  1  芦山MS7.0地震51YAM台站NS向原始加速度、速度和位移时程

    Figure  1.  Original acceleration, velocity and displacement time histories in the NS direction of 51YAM station from the Ms7.0 Lushan earthquake

    图  2  Iwan等(1985)两段式校正方法原理图(修改自Wu and Wu, 2007

    Figure  2.  Schematic diagram of Iwan et al. (1985) two-stage baseline correction method (modified from Wu and Wu, 2007)

  • [1] Akkar S, Boore D M. 2009. On baseline corrections and uncertainty in response spectrafor baseline variations commonly encountered in digital accelerograph records [J]. Bulletin of the Seismological Society of America, 99(3): 1671-1690. doi: 10.1785/0120080206
    [2] Ancheta T D, Darragh R B, Stewart J P, et al. 2014. NGA-West2 database [J]. Earthquake Spectra, 30(3): 989-1005. doi: 10.1193/070913EQS197M
    [3] Atkinson G M. 1993. Earthquake source spectra in eastern North America [J]. Bulletin of the Seismological Society of America, 83(6): 1778-1798.
    [4] Atkinson G M, Boore D M. 1995. Ground motion relations for eastern North America [J]. Bulletin of the Seismological Society of America, 85(1): 17-30. doi: 10.1785/BSSA0850010017
    [5] Bogdanov V E, Graizer V M. 1976. The determination of the residual displacement of the ground from the seismogram [R]. Reports of the Academy of Sciences of the USSR229, 59-62.
    [6] Boore D M. 1986. Short-period P-and S-wave radiation from large earthquakes: Implications for spectral scaling relations [J]. Bulletin of the Seismological Society of America, 76(1): 43-64.
    [7] Boore D M. 1999. Effect of baseline corrections on response spectra for two recordings of the 1999 Chi-Chi, Taiwan, earthquake [R]. US Department of the Interior, US Geological Survey.
    [8] Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake [J]. Bulletin of the Seismological Society of America, 91(5): 1199-1211.
    [9] Boore D M, Akkar S. 2003. Effect of causal and acausal filters on elastic and inelastic response spectra [J]. Earthquake Engineering & Structure Dynamic, 32(11): 1729-1748.
    [10] Boore D M, Bommer J J. 2005. Processing of strong-motion accelerograms: needs, options and consequences [J]. Soil Dynamics & Earthquake Engineering, 25(2): 93-115.
    [11] Boore D M, Azari S A, Akkar S. 2012. Using pad-stripped acausally filtered strong-motion data [J]. Bulletin of the Seismological Society of America, 102(2): 751-760. doi: 10.1785/0120110222
    [12] Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes [J]. Journal Geophysical Research, 75(26): 4997–5002. doi: 10.1029/JB075i026p04997
    [13] Chanerley A A, Alexander N A, Halldorsson B. 2009. On fling and baseline correction using quadrature mirror filters[C]//12th International Conference on Civil, Structural and Environmental Engineering Computing.
    [14] Chanerley A A, Alexander N A. 2010. Obtaining estimates of the low-frequency ‘fling’, instrument tilts and displacement timeseries using wavelet decomposition [J]. Bulletin of Earthquake Engineering, 8(2): 231-255. doi: 10.1007/s10518-009-9150-5
    [15] Chao W A, Wu Y M, Zhao L. 2010. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination [J]. Journal of seismology, 14(3): 495-504. doi: 10.1007/s10950-009-9178-7
    [16] Chiou B, Darragh R, Gregor N, et al. 2008. NGA project strong-motion database [J]. Earthquake Spectra, 24(1): 23-44. doi: 10.1193/1.2894831
    [17] Chiu H C. 1997. Stable baseline correction of digital strong-motion data [J]. Bulletin of the Seismological Society of America, 87(4): 932-944. doi: 10.1785/BSSA0870040932
    [18] Converse A, Brady A G. 1992. BAP: Basic strong-motion accelerogram processing software, version 1.0 [R]. Virginia: US Department of the Interior, US Geological Survey.
    [19] Graizer V M. 1979. Determination of the true ground displacement by using strong motion records [J]. Izvestiya, Physics of the Solid Earth, 15: 875-885.
    [20] Graizer V M. 1989. Bearing on the problem of inertial seismometry[J]. Izvestiya, Physics of the Solid Earth, 25(1): 26-29.
    [21] Graizer V M. 2005. Effect of tilt on strong motion data processing [J]. Soil Dynamics & Earthquake Engineering, 25(3): 197-204.
    [22] Graizer V M. 2010. Strong motion recordings and residual displacements: What are we actually recording in strong motion seismology? [J]. Seismological Research Letters, 81(4): 635-639. doi: 10.1785/gssrl.81.4.635
    [23] Gusev A A. 1983. Descriptive statistical model of earthquake source radiation and its application to an estimation of short-period strong motion [J]. Geophysical Journal International, 74(3): 787-808.
    [24] 胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社.

    Hu Y X. 2006. Earthquake Engineering (second edition) [M]. Beijing: Seismological Press (in Chinese).
    [25] Hudson D E. 1979. Reading and Interpreting Strong Motion Accelerograms [M]. Berkeley: Earthquake Engineering Research Institute.
    [26] Iwan W D, Moser M A, Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph [J]. Bulletin of the Seismological Society of America, 75(5): 1225-1246. doi: 10.1785/BSSA0750051225
    [27] Jousset P, Douglas J. 2007. Long-period earthquake ground displacements recorded on Guadeloupe (French Antilles) [J]. Earthquake Engineering & Structural Dynamics, 36(7): 949-963.
    [28] Li X J, Zhou Z H, Huang M, et al. 2008a. Preliminary analysis of strong-motion recordings from the magnitude 8.0 Wenchuan, China, earthquake of 12 May 2008 [J]. Seismological Research Letters, 79(6): 844-854. doi: 10.1785/gssrl.79.6.844
    [29] Li X J, Zhou Z H, Yu H Y, et al. 2008b. Strong motion observations and recordings from the great Wenchuan Earthquake [J]. Earthquake Engineering and Engineering Vibration, 7(3): 235-246. doi: 10.1007/s11803-008-0892-x
    [30] Lin Y, Zong Z, Tian S, et al. 2018. A new baseline correction method for near-fault strong-motion records based on the target final displacement [J]. Soil Dynamics and Earthquake Engineering, 114: 27-37. doi: 10.1016/j.soildyn.2018.06.036
    [31] Nigbor R L. 1994. Six-degree-of-freedom ground-motion measurement [J]. Bulletin of the Seismological Society of America, 84(5): 1665-1669. doi: 10.1785/BSSA0840051665
    [32] 彭小波. 2011. 汶川地震强震动记录分析及应用[D]. 哈尔滨: 中国地震局工程力学研究所.

    Peng X B. 2011. Analysis of strong motion recordings and its application from Wenchuan earthquake [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration (in Chinese).
    [33] Somerville P G, Smith N F, Graves R W, et al. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters, 68(1): 199-222. doi: 10.1785/gssrl.68.1.199
    [34] Somerville P G. 2003. Magnitude scaling of the near fault rupture directivity pulse [J]. Physics of the Earth and Planetary Interiors, 137(1-4): 201-212. doi: 10.1016/S0031-9201(03)00015-3
    [35] Spudich P, Chiou B S J. 2008. Directivity in NGA earthquake ground motions: Analysis using isochrone theory [J]. Earthquake Spectra, 24(1): 279-298. doi: 10.1193/1.2928225
    [36] Tian S, Gardoni P, Li H, et al. 2019. Baseline correction of ground motions with physics-based correction patterns [J]. Geophysical Journal International, 217(1): 668-681. doi: 10.1093/gji/ggz039
    [37] Todorovska M I. 1998. Cross-axis sensitivity of accelerographs with pendulum like transducers-Mathematical model and the inverse problem [J]. Earthquake Engineering & Structural Dynamics, 27(10): 1031-1051.
    [38] Trifunac M D. 1971. Zero baseline correction of strong-motion accelerograms [J]. Bulletin of the Seismological Society of America, 61(5): 1201-1211. doi: 10.1785/BSSA0610051201
    [39] Trifunac M D, Lee V W. 1974. A note on the accuracy of computed ground displacements from strong-motion accelerograms [J]. Bulletin of the Seismological Society of America, 64(4): 1209-1219. doi: 10.1785/BSSA0640041209
    [40] Trifunac M D, Todorovska M I. 2001. A note on the useable dynamic range of accelerographs recording translation [J]. Soil Dynamics & Earthquake Engineering, 21(4): 275-286.
    [41] 王国权, 周锡元. 2004.921台湾集集地震近断层强震记录的基线校正[J]. 地震地质, 26(1): 1-14 doi: 10.3969/j.issn.0253-4967.2004.01.001

    Wang G Q, Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 Chi-Chi, Taiwan earthquake [J]. Seismology and Geology, 26(1): 1-14 (in Chinese). doi: 10.3969/j.issn.0253-4967.2004.01.001
    [42] Wang R, Schurr B, Milkereit C, et al. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records [J]. Bulletin of the Seismological Society of America, 101(5): 2029-2044. doi: 10.1785/0120110039
    [43] Wong H L, Trifunac M D. 1977. Effects of cross-axis sensitivity and misalignment on the response of mechanical-optical accelerographs [J]. Bulletin of the Seismological Society of America, 67(3): 929-956.
    [44] Wu Y M, Chen Y G, Shin T C, et al. 2006a. Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 MW6.8 Chengkung earthquake in eastern Taiwan[J]. Geophysical Research Letters, 33(2): L02312.
    [45] Wu Y M, Chen Y G, Chang C H, et al. 2006b. Seismogenic structure in a tectonic suture zone: With new constraints from 2006 MW6.1 Taitung earthquake [J]. Geophysical Research Letters, 33(22): L22305. doi: 10.1029/2006GL027572
    [46] Wu Y M, Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records [J]. Journal of Seismology, 11(2): 159-170. doi: 10.1007/s10950-006-9043-x
    [47] Xie J J, Li X J, Wen Z P, et al. 2014. Near-source vertical and horizontal strong ground motion from the 20 April 2013 MW6.8 Lushan earthquake in China [J]. Seismological Research Letters, 85(1): 23-33. doi: 10.1785/0220130121
    [48] 熊政辉, 李小军, 戴志军, 陈苏. 2019. 基于L1范数正则化的强震动加速度记录基线漂移识别方法[J]. 地震学报, 41(1): 111-123 doi: 10.11939/jass.20180072

    Xiong Z H, Li X J, Dai Z J, Chen S. 2019. A method for identifying the baseline drift of strong-motion records based on L1-norm regularization [J]. Acta Seismologica Sinica, 41(1): 111-123 (in Chinese). doi: 10.11939/jass.20180072
    [49] 于海英, 江汶乡, 解全才, 等. 2009. 近场数字强震仪记录误差分析与零线校正方法[J]. 地震工程与工程振动, 29(6): 1-12

    Yu H Y, Jiang W X, Xie Q C, et al. 2009. Baseline correction of digital strong-motion records in near-field [J]. Journal of Earthquake Engineering and Engineering Vibration, 29(6): 1-12 (in Chinese).
    [50] 张斌, 俞言祥, 肖亮. 2020. 近断层强震记录基线校正的改进方法[J]. 振动与冲击, 39(5): 137-142

    Zhang B, Yu Y X, Xiao L. 2020. An improved method for near-fault strong ground motion records’ baseline correction[J]. Journal of Vibration and Shock, 39(5): 137-142 (in Chinese).
    [51] 赵思程, 陈苏, 李小军. 2019. 基于视觉观测技术的强震动记录校正方法验证[J]. 地震工程与工程振动, 39(5): 189-198

    Zhao S C, Chen S, Li X J. 2019. Verification of strong motion record correction method based on visual observation technology [J]. Earthquake Engineering and Engineering Dynamics, 39(5): 189-198 (in Chinese).
  • 加载中
图(2)
计量
  • 文章访问数:  1390
  • HTML全文浏览量:  238
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 录用日期:  2021-12-02
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回