• ISSN 2097-1893
  • CN 10-1855/P

光纤振动传感之一:旋转测量技术及其地震学应用

王伟君 陈凌 王一博 彭菲

引用本文: 王伟君,陈凌,王一博,彭菲. 2022. 光纤振动传感之一:旋转测量技术及其地震学应用. 地球与行星物理论评,53(1):1-16
Wang W J, Chen L, Wang Y B, Peng F. 2022. Fiber-optic vibration sensing—I: Rotation measurement technique and its seismological applications. Reviews of Geophysics and Planetary Physics, 53(1): 1-16

光纤振动传感之一:旋转测量技术及其地震学应用

doi: 10.19975/j.dqyxx.2021-046
基金项目: 中国地震局地震预测研究所基本科研业务专项资助项目(2020IEF0602);国家自然科学基金资助项目(41674058,41790463)
详细信息
    通讯作者:

    王伟君(1972-),男,研究员,主要从事地震学研究. E-mail:wjwang@ief.ac.cn

  • 中图分类号: P315

Fiber-optic vibration sensing—I: Rotation measurement technique and its seismological applications

Funds: Supported by the Institute of Earthquake Forecasting, China Earthquake Administration (Grant No. 2020IEF0602) and the National Natural Science Foundation of China (Grant Nos. 41674058, 41790463)
  • 摘要: 地震波场可分解为三分量平动和三分量旋转运动. 旋转分量包含重要的波场梯度信息,是地震波场重建的关键要素,但过去由于缺乏稳定的高灵敏度旋转测量仪器,它在不同的地震学应用中常被忽略. 光纤旋转地震仪是率先打破测量仪器缺乏困境、最先实现商业化的旋转地震仪,也是目前最有发展前景的地震波旋转直接测量设备. 光纤旋转地震仪基于Sagnac效应,并依托成熟的光纤陀螺技术实现振动的旋转分量测量. 它具有纯光电传感不受平动影响的测量优势;并且能够在高灵敏度和宽频带旋转测量的基础下实现设备的小型化,有利于旋转测量的应用推广. 因此,光纤旋转地震仪和传统的地震仪将形成互补,实现旋转和平动六分量(6C)的观测,更好地提取地震波场特征,提高振动监测能力,有效改善震源过程反演、地下结构成像和地震破坏机理研究等应用. 本文主要介绍光纤旋转测量的基本原理、旋转地震学的应用及其潜在应用前景.

     

  • 图  1  不同类型的振动传感设备.(a)传统电容换能弹簧质量块平动地震仪;(b)Rotaphone六分量地震计原型(修改自http://rotaphone.eu/prototype.html);(c)MEMS振动传感,左侧为旋转测量振荡器原型,右侧为一个国产6C MEMS芯片;(d)基于透射光相位变化的光纤振动传感示意图,小图表示波形相位相关(Marra et al., 2018);(e)布拉格光栅传感换能弹簧质量块地震计;(f)基于光纤陀螺的旋转地震仪,左侧为Sagnac效应观测模型,右侧为BlueSeis-3A旋转地震仪内部示意图(修改自https://www.blueseis.com/blueseis);(g)基于背向散射光的分布式光纤振动传感(DAS)示意图;(h)基于透射光极性变化的光纤振动传感示意图,小图表示光极性在传播中的变化(Zhan et al., 2021b).(d)~(h)属于光纤振动传感

    Figure  1.  Different types of vibration sensing devices. (a) Traditional mass-spring translational seismometer with capacity transducer; (b) Rotaphone six-component seismometer (modified from http://rotaphone.eu/prototype.html); (c) MEMS vibration sensing, the left is rotation measure, and the right is a 6C MEMS chip made in China; (d) Schematic diagram of optical phase based on vibration sensing with frequency metrology technique (Marra et al., 2018); (e) Mass-spring seismometer with optical Bragg grating; (f) Rotation seismometer based on fiber optic Gyroscope, the left is the scheme of Sagnac effect, and the right is inner scheme of BlueSeis-3A (modified from https://www.blueseis.com/blueseis); (g) Diagram of fiber distributed acoustic sensing (DAS); (h) Diagram of optical polarity based vibration sensing (Zhan et al., 2021b). (d)~(h) belong to fiber vibration sensing

    图  2  (a)单点运动的平动和旋转六分量;(b)ADR旋转测量示意:双点平动空间微分获得一个旋转分量

    Figure  2.  (a) Six components including translation and rotation motions in a site; (b) Diagram of ADR: derived one rotation by spatial derivation of translation motions in two sites

    图  3  目前不同陀螺技术所处的发展阶段(修改自薛连莉等,2020

    Figure  3.  The current development stage of different gyro technologies (modified from Xue et al., 2020)

    图  4  Sagnac效应.(a)没有旋转时同时发射相向传播的两束光(绿色和红色虚线)的走时差为0;(b)旋转后,两束光出现走时差. 黑线为光纤环,A为面积,M和M'为旋转前后激光入口位置

    Figure  4.  Sagnac effect. (a) Zero time difference for two lights (red and green dot lines) traveling in opposite directions; (b) Time difference after rotation. Where black line is fiber optical loop, and A is the area in the loop. M and M' are the position of laser source before and after rotation

    图  5  从多事件纠缠6C和3C波形记录中提取地震波参数(修改自Sollberger et al., 2017).(a)两个不同角度、相同速度入射的P波在自由表面记录的6C波形;(b)3C平动波形,即图(a)中前三道;(c)基于6C MUSIC算法获得的波矢量参数,以能量团表示结果误差范围,红点为真实参数;方位角和本地速度都获得准确的估计;(d)由平动3C数据提取的波矢量参数,由于两列波纠缠在一起无法仅从平动数据中获得准确的参数(红点)

    Figure  5.  Demonstration of the retrieval of wave parameters for multiple interfering events using the proposed 6-C and 3-C MUSIC algorithm (modified from Sollberger et al., 2017). (a) 6-C seismograms of two interfering P-waves recorded at the free surface. Two waves arrive at a recording station at the same time; (b) 3-C translational seismograms (correspond to the first three components in panel a); (c) Result of the 6-C MUSIC algorithm, zoomed in into the region of interest. The parameters of both events (direction angles and local velocities) are accurately retrieved. The true parameters are marked by a red dot; (d) Result obtained using pure translational 3-C data. The interference of the two waves causes the analysis to break down. The true parameters (red dots) cannot be recovered using translational data only

    图  6  韩国2016年Gyeongju的MW5.4地震合成数据(0.02~0.16 Hz)矩张量反演结果的后验概率密度函数(kde:核密度估算,值越高越好). 各小图对应独立分量的矩张量和质心深度,竖线为真实值. 沙滩球从左至右分别对应从平动三分量(3C)1D速度结构至六分量(6C)3D速度结构(对应总信息增益顺序)的反演结果(修改自Donner et al., 2020

    Figure  6.  Inversion results for the synthetic experiment on the 2016 MW5.4 Gyeongju, ROK, earthquake in the frequency band of 0.02~0.16 Hz as posterior probability density functions (kde—kernel density estimation). Subplots show individual components of the moment tensor and the centroid depth. Blue and red curves show the outcomes of inverting three and six components (synthetic) data, respectively. Dashed and solid lines represent the cases of 1-D and 3-D GFs, respectively. Boxes within subplots give the information gain for each case and parameter, while the legend gives the sum of information gain over all parameters. Beachballs show the corresponding full MT solutions according the peak values of the distributions: light and dark colours correlate to 1-D and 3-D cases; blue and red to 3C and 6C cases, respectively (modified from Donner et al., 2020)

    图  7  德国慕尼黑Fürstenfeldbruck地球物理观测站6自由度点观测获得的交通振动噪声(近1小时)记录及提取的背方位角(BAZ)信息(修改自Yuan et al., 2021);(a)观测场地,红三角是STS-2地震仪和一个环状激光陀螺组成的6自由度点观测. 蓝线是高速公路.(b)从上往下分别是:南北和东西分量的加速度、垂直旋转速率和从上面三道记录提取的背方位角信息. 黑点是滑动时窗估算的、相关系数大于0.40的背方位角.(c)局部放大图

    Figure  7.  Site map at the Geophysical Observatory Fürstenfeldbruck near Munich, Germany and estimated back azimuth (BAZ) of the traffic-induced seismic noise (nearly one-hour continuous data) from 6-DOF point measurement (modified from Yuan et al., 2021). (a) The red triangle indicates the position where a STS-2 seismometer and a ring laser gyroscope are collocated. The blue curve denotes the highway next to the observatory. (b) From top to bottom: the north-south and east-west components of acceleration, the vertical rotational rate and the estimated BAZ from above three components. Black dots represent the estimated BAZ for the sliding window, with the cross-correlation (CC) coefficient being higher than 0.40. The dotted and dashed lines indicate the expected range of the BAZ variation for the inbound and outbound moving cars. (c) The zoom-in plot of (b) within the two solid red lines

    图  8  采用单台6C记录极性分析方法估计2018年Alaska海湾地震的瑞利波波场参数(修改自Sollberger et al., 2020).(a)南北平动分量;(b)S变换谱分析;(c)瑞利波相速度;(d)瑞利波背方位角;(e)瑞利波椭圆度角

    Figure  8.  Single-station wave parameter estimation using 6-C polarization analysis on the example of the 2018 gulf of Alaska earthquake (modified from Sollberger et al., 2020). The North component of translational motions is displayed in (a) with the corresponding S-transform in (b). Shown below is the estimation of frequency- and time-dependent Rayleigh wave parameters: (c) phase velocity, (d) back azimuth, and (e) ellipticity angle

    表  1  几种激光/光纤旋转地震仪的主要参数对比(修改自Jaroszewicz et al., 2016; BlueSeis-3A根据https://www.blueseis.com/product-page/blueseis-3a网站列出的参数进行了修改; RotSensor3C参数来自Cao et al., 2021

    Table  1.   Comparison of main parameters of several ring laser/Fiber-optic rotational seismometers (mainly modified from Jaroszewicz et al., 2016; the parameters for BlueSeis-3A are modified from https://www.blueseis.com/product-page/blueseis-3a; and for RotSensor3C from Cao et al., 2021)

    参数G-RingμFORS-1LCGAFORS-1BlueSeis-3ARotSensor3C
    设备研发国家德国德国德国波兰法国中国
    分量单分量单分量三分量单分量三分量三分量
    自噪声/(rad·s−1·Hz−1/29 × 10−113 × 10−56.3 × 10−74 × 10−92 × 10−81.2 × 10−7
    最大量程/(rad·s−1)117.5无数据6.4 × 10−30.5无数据
    动态范围/dB280115无数据124125152
    频段/Hz0.003~10无数据DC~1000.83~106.15DC~500.005~125
    标度因子误差/(%·℃−1)无观测≤0.05(1σ)无观测无数据<0.01<0.01
    工作温度/℃恒温−40~77无数据−10~50−10~50无数据
    标定需要无数据不需要远程不需要无数据
    工作电压/V±5, 3.3241212无数据
    功耗/W2.525<2419无数据
    重量/kg无数据0.1372.718204.5
    尺寸(长宽高)/mm面积16 m222 × 73 × 58278×102×128700(直径)×160318(直径)×335190×190×165
    采样率/Hz45~1000200212200无数据
    下载: 导出CSV
  • [1] Aki K, Richards P G. 2009. Quantitative Seismology[M]. Sausalito, Calif: University Science Books.
    [2] Aksenov V. 2006. Bend-Rotation Wave as a Mechanism of Macroseismic Effects[M]// Teisseyre R, Majewski E, Takeo M. Earthquake Source Asymmetry, Structural Media and Rotation Effects. Berlin, Heidelberg: Springer, 227–240.
    [3] Basu D, Whittaker A S, Constantinou M C. 2015. Characterizing rotational components of earthquake ground motion using a surface distribution method and response of sample structures[J]. Engineering Structures, 99: 685–707. doi: 10.1016/j.engstruct.2015.05.029
    [4] Bernauer F, Wassermann J, Guattari F, et al. 2018. BlueSeis 3A: Full characterization of a 3C broadband rotational seismometer[J]. Seismological Research Letters, 89(2A): 620–629. doi: 10.1785/0220170143
    [5] Bernauer F, Wassermann J, Igel H. 2020a. Dynamic tilt correction using direct rotational motion measurements[J]. Seismological Research Letters, 91(5): 2872–2880. doi: 10.1785/0220200132
    [6] Bernauer F, Garcia R F, Murdoch N, et al. 2020b. Exploring planets and asteroids with 6DoF sensors: Utopia and realism[J]. Earth, Planets and Space, 72(1): 191. doi: 10.1186/s40623-020-01333-9
    [7] Bernauer M, Fichtner A, Igel H. 2014. Reducing nonuniqueness in finite source inversion using rotational ground motions[J]. Journal of Geophysical Research: Solid Earth, 119, 4860–4875. doi: 10.1002/2014JB011042
    [8] Bońkowski P A, Zembaty Z, Minch M Y. 2018. Time history response analysis of a slender tower under translational-rocking seismic excitations[J]. Engineering Structures, 155: 387–393. doi: 10.1016/j.engstruct.2017.11.042
    [9] Bońkowski P A, Zembaty Z, Minch M Y. 2019. Engineering analysis of strong ground rocking and its effect on tall structures[J]. Soil Dynamics and Earthquake Engineering, 116: 358–370. doi: 10.1016/j.soildyn.2018.10.026
    [10] Bońkowski P A, Bobra P, Zembaty Z, et al. 2020. Application of rotation rate sensors in modal and vibration analyses of reinforced concrete beams[J]. Sensors, 20(17): 4711. doi: 10.3390/s20174711
    [11] Bouchon M, Aki K. 1982. Strain, tilt, and rotation associated with strong ground motion in the vicinity of earthquake faults[J]. Bulletin of the Seismological Society of America, 72(5): 1717–1738. doi: 10.1785/BSSA0720051717
    [12] Brokešová J, Málek J. 2010. New portable sensor system for rotational seismic motion measurements[J]. Review of Scientific Instruments, 81(8): 084501. doi: 10.1063/1.3463271
    [13] Brokešová J, Málek J. 2020. Comparative measurements of local seismic rotations by three independent methods[J]. Sensors, 20(19): 5679. doi: 10.3390/s20195679
    [14] Brokešová J, Málek J, Vackář J, et al. 2021. Rotaphone-CY: The newest rotaphone model design and preliminary results from performance tests with active seismic sources[J]. Sensors, 21(2): 562. doi: 10.3390/s21020562
    [15] Cao Y, Chen Y, Zhou T, et al. 2021. The development of a new IFOG-based 3C rotational seismometer[J]. Sensors, 21(11): 3899. doi: 10.3390/s21113899
    [16] Chow B, Wassermann J, Schuberth B S A, et al. 2019. Love wave amplitude decay from rotational ground motions[J]. Geophysical Journal International, 2019, 218(2): 1336–1347.
    [17] Cottaar S, Koelemeijer P. 2021. The interior of Mars revealed[J]. Science, 373(6553): 388-389. doi: 10.1126/science.abj8914
    [18] D’Alessandro A, D’Anna G. 2014. Retrieval of ocean bottom and downhole seismic sensors orientation using integrated MEMS gyroscope and direct rotation measurements[J]. Advances in Geosciences, 40: 11–17. doi: 10.5194/adgeo-40-11-2014
    [19] D’Alessandro A, Scudero S, Vitale G. 2019. A review of the capacitive MEMS for seismology[J]. Sensors, 19(14): 3093. doi: 10.3390/s19143093
    [20] Davis C M, Eustace J G, Zarobila C J, et al. 1987. Fiber-optic seismometer[C]//Cambridge Symposium-Fiber/LASE '86, 0718: 203–211.
    [21] Donner S, Bernauer M, Igel H. 2016. Inversion for seismic moment tensors combining translational and rotational ground motions[J]. Geophysical Journal International, 207(1): 562–570. doi: 10.1093/gji/ggw298
    [22] Donner S, Igel H, Hadziioannou C, et al. 2018. Retrieval of the Seismic Moment Tensor from Joint Measurements of Translational and Rotational Ground Motions: Sparse Networks and Single Stations[M]//D'Amico S. Moment Tensor Solutions: A Useful Tool for Seismotectonics. Cham: Springer International Publishing, 263–280.
    [23] Donner S, MustaćM, Hejrani B, et al. 2020. Seismic moment tensors from synthetic rotational and translational ground motion: Green’s functions in 1-D versus 3-D[J]. Geophysical Journal International, 223(1): 161–179. doi: 10.1093/gji/ggaa305
    [24] 方祖捷, 秦关根, 翟荣辉, 等. 2013. 光纤传感基础[M]. 北京: 科学出版社.

    Fang Z J, Qin G G, Zhai R H, et al. 2013. Fundamentals of Optical Fiber Sensors [M]. Beijing: Science Press (in Chinese).
    [25] Fink M, Steinlechner F, Handsteiner J, et al. 2019. Entanglement-enhanced optical gyroscope[J]. New Journal of Physics, 21(5): 053010. doi: 10.1088/1367-2630/ab1bb2
    [26] Forbes J D. 1844. On the theory and construction of a seismometer, or instrument for measuring earthquake shocks, and other concussions[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 15(1): 219–228. doi: 10.1017/S0080456800029914
    [27] Garcia R F, Khan A, Drilleau M, et al. 2019. Lunar seismology: An update on interior structure models[J]. Space Science Reviews, 215(8): 50. doi: 10.1007/s11214-019-0613-y
    [28] Gardner D, Hofler T, Baker S, et al. 1987. A fiber-optic interferometric seismometer[J]. Journal of Lightwave Technology, 5(7): 953–960. doi: 10.1109/JLT.1987.1075588
    [29] Górski M, Teisseyre K P. 2006. Glacier Motion: Seismic Events and Rotation/Tilt Phenomena[M]//Teisseyre R, Majewski E, Takeo M. Earthquake Source Asymmetry, Structural Media and Rotation Effects. Berlin, Heidelberg: Springer, 199–215.
    [30] Guéguen P, Astorga A. 2021. The torsional response of civil engineering structures during earthquake from an observational point of view[J]. Sensors, 21(2): 342. doi: 10.3390/s21020342
    [31] 郝卫峰, 李斐, 肖驰, 等. 2018. 月震和遥感探测技术的发展对月球内部结构认识的深化[J]. 中国科学: 地球科学, 48(8): 967–979, doi: 10.1360/N072017-00187.

    Hao W F, Li F, Xiao C, et al. 2018. Understanding the Moon’s internal structure through moonquake observations and remote sensing technologies[J]. Science China Earth Sciences, 61: 995–1006 (in Chinese). doi: 10.1360/N072017-00187
    [32] Hartog A H. 2018. An Introduction to Distributed Optical Fibre Sensors[M]. CRC Press.
    [33] Havskov J, Alguacil G. 2016. Instrumentation in Earthquake Seismology[M]. Springer International Publishing.
    [34] Huang B-S. 2003. Ground rotational motions of the 1999 Chi-Chi, Taiwan earthquake as inferred from dense array observations[J]. Geophysical Research Letters, 30(6): 1307.
    [35] Huang W, Zhang W, Luo Y, et al. 2018. Broadband FBG resonator seismometer: Principle, key technique, self-noise, and seismic response analysis[J]. Optics Express, 26(8): 10705. doi: 10.1364/OE.26.010705
    [36] Huras L, Zembaty Z, Bońkowski P A, et al. 2021. Quantifying local stiffness loss in beams using rotation rate sensors[J]. Mechanical Systems and Signal Processing, 151: 107396. doi: 10.1016/j.ymssp.2020.107396
    [37] Igel H, Cochard A, Wassermann J, et al. 2007. Broad-band observations of earthquake-induced rotational ground motions[J]. Geophysical Journal International, 168(1): 182–196. doi: 10.1111/j.1365-246X.2006.03146.x
    [38] Igel H, Brokešová J, Evans J, et al. 2012. Preface to special issue on "Advances in rotational seismology: Instrumentation, theory, observations and engineering" [J]. Journal of Seismology, 16(4): 571–572. doi: 10.1007/s10950-012-9307-6
    [39] Izgi G, Eibl E P S, Donner S, et al. 2021. Performance test of the rotational sensor blueSeis-3A in a Huddle Test in Fürstenfeldbruck[J]. Sensors, 21(9): 3170. doi: 10.3390/s21093170
    [40] Jack I. 2017. 4D seismic—Past, present, and future[J]. The Leading Edge, Society of Exploration Geophysicists, 36(5): 386–392.
    [41] Jaroszewicz L R, Kurzych A, Krajewski Z, et al. 2016. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications[J]. Sensors, 16(12): 2161. doi: 10.3390/s16122161
    [42] Keil S, Wassermann J, Igel H. 2021. Single-station seismic microzonation using 6C measurements[J]. Journal of Seismology, 25(1): 103–114. doi: 10.1007/s10950-020-09944-1
    [43] Knapmeyer-Endrun B, Kawamura T. 2020. NASA’s InSight mission on Mars—first glimpses of the planet’s interior from seismology[J]. Nature Communications, 11(1): 1451. doi: 10.1038/s41467-020-15251-7
    [44] Kozák J T. 2009. Tutorial on earthquake rotational effects: Historical examples[J]. Bulletin of the Seismological Society of America, 99(2B): 998–1010. doi: 10.1785/0120080308
    [45] Lantz B, Schofield R, O’Reilly B, et al. 2009. Review: Requirements for a ground rotation sensor to improve advanced LIGO[J]. Bulletin of the Seismological Society of America, 99(2B): 980–989. doi: 10.1785/0120080199
    [46] Lee W H K, Igel H, Trifunac M D. 2009a. Recent advances in rotational seismology[J]. Seismological Research Letters, 80(3): 479–490. doi: 10.1785/gssrl.80.3.479
    [47] Lee W H K, Çelebi M, Todorovska M I, et al. 2009b. Introduction to the special issue on rotational seismology and engineering applications[J]. Bulletin of the Seismological Society of America, 99(2B): 945–957. doi: 10.1785/0120080344
    [48] Li C, Su Y, Pettinelli E, et al. 2020. The Moon’s farside shallow subsurface structure unveiled by Chang’E-4 Lunar penetrating radar[J]. Science Advances, 6(9): eaay6898. doi: 10.1126/sciadv.aay6898
    [49] Li Z, van der Baan M. 2017. Elastic passive source localization using rotational motion[J]. Geophysical Journal International, 211(2): 1206–1222. doi: 10.1093/gji/ggx364
    [50] Lindner F, Wassermann J, Schmidt-Aursch M C, et al. 2017. Seafloor ground rotation observations: Potential for improving signal-to-noise ratio on horizontal OBS components[J]. Seismological Research Letters, 88(1): 32–38. doi: 10.1785/0220160051
    [51] Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 243(857): 1–35. doi: 10.1098/rsta.1950.0012
    [52] Majewski E. 2006. Rotational Energy and Angular Momentum of Earthquakes[M]//Teisseyre R, Majewski E, Takeo M. Earthquake Source Asymmetry, Structural Media and Rotation Effects. Berlin, Heidelberg: Springer, 217–225.
    [53] Marra G, Clivati C, Luckett R, et al. 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 361(6401): 486–490.
    [54] Matichard F, Lantz B, Mason K, et al. 2015a. Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview[J]. Precision Engineering, 40: 273–286. doi: 10.1016/j.precisioneng.2014.09.010
    [55] Matichard F, Lantz B, Mittleman R, et al. 2015b. Seismic isolation of advanced LIGO: Review of strategy, instrumentation and performance[J]. Classical and Quantum Gravity, 32(18): 185003. doi: 10.1088/0264-9381/32/18/185003
    [56] Morris T A, Wheeler J M, Grant M J, et al. 2019. Advances in optical gyroscopes[C]//Seventh European Workshop on Optical Fibre Sensors. Limssol, Cyprus, 11199: 111990T.
    [57] Nigbor R L. 1994. Six-degree-of-freedom ground-motion measurement[J]. Bulletin of the Seismological Society of America, 84(5): 1665–1669. doi: 10.1785/BSSA0840051665
    [58] Papoulis A. 1977. Generalized sampling expansion[J]. IEEE Transactions on Circuits and Systems, 24(11): 652–654. doi: 10.1109/TCS.1977.1084284
    [59] Reinwald M, Bernauer M, Igel H, Donner S. 2016. Improved finite source inversion through joint measurements of rotational and translational ground motions[J]. Solid Earth Discussions, 7: 1467–1477. doi: 10.5194/se-7-1467-2016
    [60] Sambo C, Iferobia C C, Babasafari A A, et al. 2020. The role of time lapse(4D) seismic technology as reservoir monitoring and surveillance tool: A comprehensive review[J]. Journal of Natural Gas Science and Engineering, 80: 103312. doi: 10.1016/j.jngse.2020.103312
    [61] Schmelzbach C, Donner S, Igel H, et al. 2018. Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology[J]. Geophysics, 83(3): WC53–WC69. doi: 10.1190/geo2017-0492.1
    [62] Sheriff R E, Geldart L P. 1995. Exploration Seismology[M]. Cambridge: Cambridge University Press.
    [63] Sollberger D, Schmelzbach C, Robertsson J O A, et al. 2016. The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis[J]. Geophysical Research Letters, 43(19): 10078-10087. doi: 10.1002/2016GL070883
    [64] Sollberger D, Greenhalgh S A, Schmelzbach C, et al. 2017. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications[J]. Geophysical Journal International, 213(1): 77–97.
    [65] Sollberger D, Igel H, Schmelzbach C, et al. 2020. Seismological processing of six degree-of-freedom ground-motion data[J]. Sensors, 20(23): 6904. doi: 10.3390/s20236904
    [66] Spudich P, Steck L K, Hellweg M, et al. 1995. Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: Observations from the UPSAR dense seismograph array[J]. Journal of Geophysical Research: Solid Earth, 100(B1): 675–690. doi: 10.1029/94JB02477
    [67] Stupazzini M, de la Puente J, Smerzini C, et al. 2009. Study of rotational ground motion in the near-field region[J]. Bulletin of the Seismological Society of America, 99(2B): 1271–1286. doi: 10.1785/0120080153
    [68] Takeo M. 2006. Ground Rotational Motions Recorded in Near-Source Region of Earthquakes[M]//Teisseyre R, Majewski E, Takeo M. Earthquake Source Asymmetry, Structural Media and Rotation Effects. Berlin, Heidelberg: Springer, 157–167.
    [69] Tanimoto T, Hadziioannou C, Igel H, et al. 2015. Estimate of Rayleigh-to-Love wave ratio in the secondary microseism by colocated ring laser and seismograph[J]. Geophysical Research Letters, 2015, 42(8): 2650–2655.
    [70] Taylor G, Hillers G, Vuorinen T A T. 2021. Using Array—Derived rotational motion to obtain local wave propagation properties from earthquakes induced by the 2018 geothermal stimulation in Finland[J]. Geophysical Research Letters, 48(6): e2020GL090403.
    [71] Trifunac M D. 2009. Review: Rotations in structural response[J]. Bulletin of the Seismological Society of America, 99(2B): 968–979. doi: 10.1785/0120080068
    [72] van Driel M, Wassermann J, Pelties C, et al. 2015. Tilt effects on moment tensor inversion in the near field of active volcanoes[J]. Geophysical Journal International, 202(3): 1711–1721. doi: 10.1093/gji/ggv209
    [73] Venkateswara K, Hagedorn C A, Gundlach J H, et al. 2017. Subtracting tilt from a horizontal seismometer using a ground-rotation sensor[J]. Bulletin of the Seismological Society of America, 107(2): 709–717. doi: 10.1785/0120160310
    [74] Wang C, Chen F, Wang Y, et al. 2020. Micromachined accelerometers with Sub-µg/√Hz noise floor: A review[J]. Sensors, 20(14): 4054. doi: 10.3390/s20144054
    [75] 王肃静, 卢川, 游庆瑜, 等. 2015. 一种低成本无缆地震仪采集站的研制[J]. 地球物理学报, 58(4): 1425–1433 doi: 10.6038/cjg20150428

    Wang S J, Lu C, You Q Y et al. 2015. Design of a low cost Non-cable seismic acquisition station [J]. Chinese Journal of Geophysics, 58(4): 1425-1433 (in Chinese). doi: 10.6038/cjg20150428
    [76] 王伟君, 刘澜波, 陈棋福, 等. 2009. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 52(6): 1515–1525 doi: 10.3969/j.issn.0001-5733.2009.06.013

    Wang W J, Liu L B, Chen Q F, et al. 2009. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 52(6): 1515-1525 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.06.013
    [77] Wassermann J, Bernauer F, Shiro B, et al. 2020. Six-axis ground motion measurements of Caldera Collapse at Kīlauea Volcano, Hawai’i—more data, more puzzles? [J]. Geophysical Research Letters, 47(5): e2019GL085999.
    [78] 吴铁军. 2011. 节点数据采集系统数字地震仪[J]. 石油仪器, 25(1): 51–53

    Wu T J. 2011. Node digital seismographs data acquisition system[J]. Petroleum Instruments, 25(1): 51–53 (in Chinese).
    [79] 薛连莉, 沈玉芃, 徐月. 2020.2019年国外惯性技术发展与回顾[J]. 导航定位与授时, 7(1): 60–66

    Xue L L, Shen Y P, Xu Y. 2020. Development and review of foreign inertial technology in 2019[J]. Navigation Positioning & Timing, 7(1): 60-66 (in Chinese).
    [80] Yilmaz O. 2001. Seismic Data Analysis[M]. Tulsa, OK: Society of Exploration Geophysicists.
    [81] Yuan S, Simonelli A, Lin C-J, et al. 2020. Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing[J]. Bulletin of the Seismological Society of America, 110(3): 953–969. doi: 10.1785/0120190277
    [82] Yuan S, Gessele K, Gabriel A-A, et al. 2021. Seismic source tracking with six degree-of-freedom ground motion observations[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB021112.
    [83] Zembaty Z, Kokot S, Bobra P. 2013. Application of rotation rate sensors in an experiment of stiffness `reconstruction’[J]. Smart Materials and Structures, 22(7): 077001. doi: 10.1088/0964-1726/22/7/077001
    [84] Zembaty Z, Bobra P, Bońkowski P A, et al. 2018. Strain sensing of beams in flexural vibrations using rotation rate sensors[J]. Sensors and Actuators A: Physical, 269: 322–330. doi: 10.1016/j.sna.2017.11.051
    [85] Zhan Z. 2020. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas[J]. Seismological Research Letters, 91(1): 1–15. doi: 10.1785/0220190112
    [86] Zhan Z, Cantono M, Kamalov V, et al. 2021. Optical polarization–based seismic and water wave sensing on transoceanic cables[J]. Science, 371(6532): 931–936. doi: 10.1126/science.abe6648
    [87] Zhang J H, Yang W, Hu S, Lin Y, et al. 2015. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. Proceedings of the National Academy of the Sciences of the United States of America, 112(17): 5342–5347.
    [88] 张旭苹. 2013. 全分布式光纤传感技术[M]. 北京: 科学出版社.

    Zhang X P. 2013. Fully Distributed Optical Fiber Sensing Technology [M]. Beijing: Science Press (in Chinese).
    [89] Zhu J, Liu X, Shi Q, et al. 2020. Development trends and perspectives of future sensors and MEMS/NEMS[J]. Micromachines, 11(1): 7.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  315
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 录用日期:  2021-09-09
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回