• ISSN 2097-1893
  • CN 10-1855/P

陆地高精度重力观测数据的应用研究进展

韩建成 陈石 李红蕾 张贝 卢红艳 侍文 徐伟民 贾路路

引用本文: 韩建成,陈石,李红蕾,张贝,卢红艳,侍文,徐伟民,贾路路. 2022. 陆地高精度重力观测数据的应用研究进展. 地球与行星物理论评,53(1):17-34
Han J C, Chen S, Li H L, Zhang B, Lu H Y, Shi W, Xu W M, Jia L L. 2022. The recent progress using high-precision terrestrial gravity measurements. Reviews of Geophysics and Planetary Physics, 53(1): 17-34

陆地高精度重力观测数据的应用研究进展

doi: 10.19975/j.dqyxx.2021-038
基金项目: 国家自然科学基金面上资助项目(41974095,41774090);国家自然科学基金地震联合基金资助项目(U1939205);中国博士后科学基金资助项目(2018M641424);中国地震局地球物理研究所基本科研业务费专项资助项目(DQJB20X09,DQJB21R30,DQJB20Z04)
详细信息
    作者简介:

    韩建成,男,助理研究员,主要从事重力场恢复及时变重力场相关研究. E-mail:jchhan@cea-igp.ac.cn

    通讯作者:

    陈石,男,研究员,主要从事时变重力位场数据处理与反演解释研究. E-mail:chenshi@cea-igp.ac.cn

  • 中图分类号: P312

The recent progress using high-precision terrestrial gravity measurements

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41974095, 41774090, U1939205), the China Postdoctoral Science Foundation (Grant No. 2018M641424) and the Special Fund of the Institute of Geophysics, China Earthquake Administration (Grant Nos. DQJB20X09, DQJB21R30, DQJB20Z04)
  • 摘要: 陆地重力观测相较于航空和卫星重力观测,距离场源更近,观测精度相对较高,其静态异常和时变数据已广泛应用于研究多种地球动力学问题. 21世纪以来,绝对重力观测技术发展迅速,陆地观测网络日益完善,高精度陆地重力观测数据产品逐渐丰富,基于这些产品的大地测量和地球物理研究不断取得新进展. 本文总结了近十几年来高精度陆地重力观测数据在大地测量和地球物理领域的应用进展情况,包括基于重力异常数据构建重力场和大地水准面模型、建立地壳物性结构模型、反演Moho界面形态和估计岩石圈有效弹性厚度,以及利用时变重力数据构建时变重力场模型、探测微弱动力学信号、估计地壳构造变形速率和分析与火山、地震过程的可能关联,最后探讨分析了陆地重力测量的未来发展趋势,可为中国大陆重力观测系统建设与发展规划提供参考.

     

  • 图  1  与地面重力变化相关的地球内外部过程示意图(修改自Crossley et al., 2013

    Figure  1.  A schematic map showing various contributions from Earth's internal or external processes to the time-varying terrestrial gravity measurements (modified from Crossley et al., 2013)

    图  2  我国华北地区2011~2013年利用Slepian方法确定的120阶1年尺度重力场变化(修改自韩建成等,2021),其中C1和C2分别表示上下半年的不同观测,洋红色线为研究区域边界. 单位为μGal

    Figure  2.  Spatial pattern of the annual gravity changes up to degree 120 determined by the Slepian method in North China from 2011 to 2013 (modified from Han et al., 2021), C1 and C2 denote different campaigns in the first and second half of the year, and the magenta line denotes the boundary of the study area. Units are in μGal

    图  3  2015年4月25日尼泊尔地震前的重力场源范围(红色虚线以内)和震质中位置(蓝色圆)(修改自Chen等,2016). 其中蓝色方块为绝对重力点,分别为拉萨、那曲、日喀则和仲巴. 黄色圆代表震中位置,没有时间标记的黄色圆为尼泊尔地震大于4级的余震震中位置

    Figure  3.  The location of the modeled source region (within the red dashed circle) and its epicentroid (the blue circle) of the April 25, 2015 Nepal earthquake (modified from Chen et al., 2016). The blue squares denote the absolute gravity stations, the yellow circles denote the epicenters, and the yellow circles without time stamp denote the epicenters of the aftershocks of the Nepal earthquake (with magnitude> 4)

    图  4  陆地重力测量的敏感度分布.(a)使用一台重力仪;(b)使用水平间隔10 m和80 m的两台重力仪(修改自 Kennedy et al., 2014). 三角代表重力仪,30、60和90为敏感度等值线

    Figure  4.  Sensitivity distributions for terrestrial gravity measurement using (a) a single gravimeter, (b) two meters separated by 10 m and 80 m horizontally (modified from Kennedy et al., 2014). The triangles are gravimeters and the lines labeled 30, 60 and 90 denote the cumulative sensitivity contours

  • [1] Abe M, Kroner C, Förste C, et al. 2012. A comparison of GRACE-derived temporal gravity variations with observations of six European superconducting gravimeters[J]. Geophysical Journal International, 191(2): 545-556. doi: 10.1111/j.1365-246X.2012.05641.x
    [2] Afonso J C, Salajegheh F, Szwillus W, et al. 2019. A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets[J]. Geophysical Journal International, 217(3):1602-1628. doi: 10.1093/gji/ggz094
    [3] Audet P. 2019. PlateFlex: Software for mapping the elastic thickness of the lithosphere (Version v0.1.0)[CP]. Zenodo, accessed 2020, doi: 10.5281/zenodo.3576803.
    [4] Bailey I W, Miller M S, Liu K, et al. 2012. Vs and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data[J]. Journal of Geophysical Research, 117: B02313.
    [5] Balmino G, Vales N, Bonvalot S, et al. 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. Journal of Geodesy, 86:499-520. doi: 10.1007/s00190-011-0533-4
    [6] Battaglia, M. 1999. Magma intrusion beneath Long Valley Caldera confirmed by temporal changes in gravity[J]. Science, 285(5436):2119-2122. doi: 10.1126/science.285.5436.2119
    [7] Bomfim E P, Braitenberg C, Molina E C. 2013. Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil[J]. Geophysical Journal International, 195(2):870-882. doi: 10.1093/gji/ggt283
    [8] Branca S, Carbone D, Greco F. 2003. Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences[J]. Geophysical Research Letters, 30(20):2077.
    [9] Bucha B, Janák J, Papčo J, et al. 2016. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data[J]. Geophysical Journal International, 207(2):949-966. doi: 10.1093/gji/ggw311
    [10] Burov E B, Diament M. 1995. The effective elastic thickness (Te) of continental lithosphere: what does it really mean? [J]. Journal of Geophysical Research, 100(B3):3905-3927. doi: 10.1029/94JB02770
    [11] Chen B, Chen C, Kaban M K, et al. 2013. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics[J]. Earth and Planetary Science Letters, 363: 61-72. doi: 10.1016/j.jpgl.2012.12.022
    [12] Chen B, Haeger C, Kaban M K, et al. 2018. Variations of the effective elastic thickness reveal tectonic fragmentation of the Antarctic lithosphere[J]. Tectonophysics, 746(30):412-424.
    [13] Chen K-H, Hwang C, Chang L-C, et al. 2018. Short-time geodetic determination of aquifer storage coefficient in Taiwan[J]. Journal of Geophysical Research, 123:10987-11015.
    [14] Chen K-H, Hwang C, Chang L-C, et al. 2020. Measuring aquifer specific yields with absolute gravimetry: Result in the Choushui River Alluvial Fan and Mingchu Basin, central Taiwan[J]. Water Resources Research, 56:e2020WR027261.
    [15] 陈石, 王谦身, 祝意青等. 2011. 青藏高原东缘重力导纳模型均衡异常时空特征[J]. 地球物理学报, 54(1):22-34. doi: 10.3969/j.issn.0001-5733.2011.01.004

    Chen S, Wang Q S, Zhu Y Q, et al. 2011. Temporal and spatial features of isostasy anomaly using gravitational admittance model at eastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 54(1):22-34 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.01.004
    [16] 陈石, 徐伟民, 石磊, 等. 2013. 龙门山断裂带及其周边地区重力场和岩石层力学特性研究[J]. 地震学报, 35(5): 692-703. doi: 10.3969/j.issn.0253-3782.2013.05.008

    Chen S, Xu W M, Shi L, et al. 2013. Gravity field and lithospheric mechanical properties of Longmenshan fault zone and its surrounding areas[J]. Acta Seismologica Sinica, 35(5):692-703 (in Chinese). doi: 10.3969/j.issn.0253-3782.2013.05.008
    [17] 陈石, 王青华, 王谦身, 等. 2014. 云南鲁甸MS6.5地震震源区和周边三维密度结构及重力场变化[J]. 地球物理学报, 57(9):3080-3090. doi: 10.6038/cjg20140933

    Chen S, Wang Q H, Wang Q S, et al. 2014. The 3D density structure and gravity change of Ludian MS6.5 Yunnan epicenter and surrounding regions[J]. Chinese Journal of Geophysics, 57(9):3080-3090 (in Chinese). doi: 10.6038/cjg20140933
    [18] 陈石, 徐伟民, 蒋长胜. 2015a. 中国大陆西部重力场变化与强震危险性关系[J]. 地震学报, 37(4):562-574.

    Chen S, Xu W M, Jiang C S. 2015. Relationship between gravity variation and seismic hazards in the western China[J]. Acta Seismologica Sinica, 37(4):562-574 (in Chinese).
    [19] 陈石, 郑秋月, 徐伟民. 2015b. 南北地震带南段地壳厚度重震联合最优化反演[J]. 地球物理学报, 58(11):3941-3951.

    Chen S, Zheng Q Y, Xu W M, et al. 2015. Joint optimal inversion of gravity and seismic data to estimate crustal thickness of the southern section of the north-south seismic belt[J]. Chinese Journal of Geophysics, 58(11):3941-3951 (in Chinese).
    [20] Chen S, Liu M, Xing L, et al. 2016. Gravity increase before the 2015 Mw7.8 Nepal earthquake[J]. Geophysics Research Letters, 43, 111-117. doi: 10.1002/2015GL066595
    [21] 陈石, 龚立卓, 徐伟民等. 2018. 深部场源变化微重力观测系统设计与模型研究[J]. 大地测量与地球动力学, 38(1):1-4.

    Chen S, Gong L Z, Xu W M, et al. 2018. Study on time-lapse microgravity observation system for detecting the crustal deep mass changes[J]. Journal of Geodesy and Geodynamics, 38(1):1-4 (in Chinese).
    [22] Chen S, Zhuang J, Li X et al. 2019. Bayesian approach for network adjustment for gravity survey campaign: methodology and model test[J]. Journal of Geodesy, 93:681-700. doi: 10.1007/s00190-018-1190-7
    [23] Chen S, Zhang B, Li H L, et al. 2020. igp-gravity/geoist 0.9.5 (Version 0.9.5)[CP]. Zenodo, accessed 2021, doi: 10.5281/zenodo.4118083.
    [24] Chen W J. 2017. Determination of crustal thickness under Tibet from gravity-gradient data[J]. Journal of Asian Earth Sciences, 143:315-325.
    [25] 陈晓东, 李航, 邓明莉, 等. 2020. 用重力测量技术观测城市地表下沉的实验研究[J]. 地球物理学报, 63(8):2882-2892. doi: 10.6038/cjg2020N0080

    Chen X D, Li H, Deng M L, et al. 2020. Experimental study of the surface subsidence in the city using gravity observing techniques[J]. Chinese Journal of Geophysics, 63(8):2882-2892 (in Chinese). doi: 10.6038/cjg2020N0080
    [26] 陈运泰, 顾浩鼎, 卢造勋. 1980. 1975年年海海城地震与1976年年唐山地震前后的重力变化[J]. 地震学报, 2(1):21-31.

    Chen Y T, Gu H D, Lu Z X. 1980. Variations of Gravity before and after the Haicheng earthquake, 1975 and the Tangshan earthquake, 1976[J]. Acta Seismologica Sinica, 2(1):21-31 (in Chinese).
    [27] 陈运泰. 2009. 地震预测: 回顾与展望[J]. 中国科学: 地球科学, 39(12):1633-1658.

    Chen Y T. 2009. Earthquake prediction: Retrospect and prospect. Science in China: Earth Sciences, 39(12):1633-1658 (in Chinese).
    [28] China Earthquake Administration. 2020. Future plan for geophysical (gravity) network in China[R]. Beijing. https://www.cea.gov.cn/cea/xwzx/zyzt/5576318/5576317/5576635/index.html (in Chinese).
    [29] Claessens S J, Filmer M S. 2020. Towards an international height reference system: Insights from the Colorado geoid experiment using AUSGeoid computation methods[J]. Journal of Geodesy, 94:52. doi: 10.1007/s00190-020-01379-3
    [30] Crossley D, Hinderer J, Riccardi U. 2013. The measurement of surface gravity[J]. Reports on Progress in Physics, 76(4):046101. doi: 10.1088/0034-4885/76/4/046101
    [31] Cui X M, Sun H P, Xu J Q, et al. 2018. Detection of free core nutation resonance variation in Earth tide from global superconducting gravimeter observations[J]. Earth Planet and Space, 70(1):199. doi: 10.1186/s40623-018-0971-9
    [32] 党亚民, 郭春喜, 蒋涛, 等. 2021. 2020珠峰测量与高程确定[J]. 测绘学报, 50(4):556-561.

    Dang Y M, Guo C X, Jiang T, et al. 2021. 2020 height measurement and determination of Mount Qomolangma[J]. Acta Geodaetica et Cartographica Sinica, 50(4):556-561 (in Chinese).
    [33] Denker H. 2013. Regional Gravity Field Modeling: Theory and Practical Results[M]//Xu G. Sciences of Geodesy – II. Berlin, Heidelberg: Springer, 185–291.
    [34] 冯锐. 1985. 中国地壳厚度及上地幔密度分布(三维重力反演结果)[J]. 地震学报, 7(2):143-157.

    Feng R. 1985. Crustal thickness and densities in the upper mantle beneath China—The results of three dimensional gravity inversion[J]. Acta Seismologica Sinica, 7(2):143-157 (in Chinese).
    [35] 冯伟, 王长青, 穆大鹏, 等. 2017. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 60(5):1630-1642. doi: 10.6038/cjg20170502

    Feng W, Wang C Q, Mu D P, et al. 2017. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics, 60(5):1630-1642 (in Chinese). doi: 10.6038/cjg20170502
    [36] Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere[J]. Journal of Geophysical Research, 90(B14):12623-12632. doi: 10.1029/JB090iB14p12623
    [37] Francis O, van Dam T, Amalvict M, et al. 2005. Results of the international comparison of absolute gravimeters in Walferdange (Luxembourg) of November 2003[C]//Jekeli C, Bastos L, Fernandes J. Gravity, Geoid and Space Missions, International Association of Geodesy Symposia. Berlin, Heidelberg: Springer, 129: 272-275.
    [38] Fu G Y, Gao S H, Freymueller J T, et al. 2014. Bouguer gravity anomaly and isostasy at western Sichuan Basin revealed by new gravity surveys[J]. Journal of Geophysical Research, 119:3925-3938.
    [39] 付广裕, 金红林, 王灼华, 等. 2018. 汶川MW7.9地震周边地区布格重力异常与岩石圈垂向构造应力场[J]. 地震, 38(2):28-36. doi: 10.3969/j.issn.1000-3274.2018.02.003

    Fu G Y, Jin H L, Wang Z H, et al. Bouguer gravity anomaly and isostasy around the 2008 Wenchuan MW7.9 earthquake[J]. Earthquake, 2018, 38(2):28-36 (in Chinese). doi: 10.3969/j.issn.1000-3274.2018.02.003
    [40] 付广裕, 王振宇. 2020. 新疆精河6.6级地震周边地区密度构造、均衡异常以及岩石圈挠曲机理[J]. 地球物理学报, 63(6):2221-2229. doi: 10.6038/cjg2020N0076

    Fu G Y, Wang Z Y. 2020. Crustal structure, isostatic anomaly and flexure mechanism around the Jinghe MS6.6 earthquake in Xinjiang[J]. Chinese Journal of Geophysics, 63(6):2221-2229 (in Chinese). doi: 10.6038/cjg2020N0076
    [41] Fullea J, Fernàndez M, Zeyen H. 2008. FA2BOUG—A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone[J]. Computers & Geosciences, 34(12):1665-1681.
    [42] Gehman C L, Harry D L, Sanford W E, et al. 2009. Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys[J]. Water Resources Research, 45:W00D21.
    [43] 郭俊义. 2001. 地球物理学基础[M]. 北京: 测绘出版社

    Guo J Y. 2001. Fundamentals of Geophysics[M]. Beijing: Surveying and Mapping Press (in Chinese).
    [44] 郭良辉, 孟小红, 石磊, 等. 2012. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用[J]. 地球物理学报, 55(12):4078-4088. doi: 10.6038/j.issn.0001-5733.2012.12.020

    Guo L H, Meng X H, Shi L, et al. 2012. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent[J]. Chinese Journal of Geophysics, 55(12):4078-4088 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.12.020
    [45] 郭震, 陈永顺, 殷伟伟. 2015. 背景噪声面波与布格重力异常联合反演: 山西断陷带三维地壳结构[J]. 地球物理学报, 58(3):821-831. doi: 10.6038/cjg20150312

    Guo Z, Chen Y S, Yin W W. 2015. Three-dimensional crustal model of Shanxi graben from 3D joint inversion of ambient noise surface wave and Bouguer gravity anomalies[J]. Chinese Journal of Geophysics, 58(3):821-831 (in Chinese). doi: 10.6038/cjg20150312
    [46] 韩建成. 2012. 基于地球重力场模型和地表浅层重力位确定大地水准面[D]. 武汉: 武汉大学.

    Han J C. 2012. Geoid determination based on the Earth gravity model and the gravity potential of the shallow layer[D]. Wuhan: Wuhan University (in Chinese).
    [47] Han J C, Chen S, Chen Z H, et al. 2021. Determination of the degree 120 time-variable gravity field in the Sichuan-Yunnan region using Slepian functions and terrestrial measurements[J]. Earthquake Science (accepted).
    [48] 韩建成, 陈石, 卢红艳, 等. 2021. 基于Slepian方法和陆地重力观测确定时变重力场模型: 以2011–2013年华北地区数据为例[J]. 地球物理学报, 64(5):1542-1557.

    Han J C, Chen S, Lu H Y, et al. 2021. Time-variable gravity field determination using Slepian functions and terrestrial measurements: A case study in North China with data from 2011 to 2013[J]. Chinese Journal of Geophysics, 64(5):1542-1557 (in Chinese).
    [49] Hao H T, Liu H L, Zhang X L, et al. 2021. Terrestrial water storage variation in Hebei plain area of China, based on ground surface gravimetry[J]. Geodesy and Geodynamics, 12(3):190-196. doi: 10.1016/j.geog.2021.02.003
    [50] Hinze W J, von Frese R R B, Sadd A H. 2013. Gravity and Magnetic Exploration: Principles, Practices, and Applications[M]. New York: Cambridge University Press.
    [51] Hofmann-Wellenhof B, Moritz H. 2006. Physical Geodesy (2nd edition)[M]. Vienna: Springer.
    [52] 胡明城. 2003. 现代大地测量学的理论及其应用[M]. 北京: 测绘出版社.

    Hu M C. 2003. The Theory and the Application of Contemporary Geodesy[M]. Beijing: Surveying and Mapping Press (in Chinese).
    [53] 胡敏章, 李建成, 李辉, 等. 2015. 西北太平洋岩石圈有效弹性厚度及其构造意义[J]. 地球物理学报, 58(2): 542-555. doi: 10.6038/cjg20150217

    Hu M Z, Li J C, Li H, et al. 2015. The lithosphere effective elastic thickness and its tectonic implications in the Northwestern Pacific[J]. Chinese Journal Of Geophysics, 58(2):542-555 (in Chinese). doi: 10.6038/cjg20150217
    [54] 胡敏章, 郝洪涛, 李辉, 等. 2019. 地震分析预报的重力变化异常指标分析[J]. 中国地震, 35(3):417-430. doi: 10.3969/j.issn.1001-4683.2019.03.001

    Hu M Z, Hao H T, Li H, et al. 2019. Quantitative analysis of gravity changes for earthquake prediction[J]. Earthquake Research in China, 35(3):417-430 (in Chinese). doi: 10.3969/j.issn.1001-4683.2019.03.001
    [55] 胡敏章, 金涛勇, 郝洪涛, 等. 2020. 青藏高原东南缘岩石圈有效弹性厚度及其构造意义[J]. 地球物理学报, 63(3):969-987. doi: 10.6038/cjg2020N0225

    Hu M Z, Jin T Y, Hao H T, et al. 2020. Lithospheric effective elastic thickness and its tectonics in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 63(3): 969-987 (in Chinese). doi: 10.6038/cjg2020N0225
    [56] 黄建平, 傅容珊, 许萍, 等. 2006. 利用重力和地形观测反演中国及邻区地壳厚度[J]. 地震学报, 28(3):250-258. doi: 10.3321/j.issn:0253-3782.2006.03.004

    Huang J P, Fu R S, Xu P, et al. 2006. Inversion of gravity and topography data for the crust thickness of China and its adjacency[J]. Acta Seismologica Sinica, 28(3):250-258 (in Chinese). doi: 10.3321/j.issn:0253-3782.2006.03.004
    [57] Hwang C, Hsu H J, Featherstone W E, et al. 2020. New gravimetric-only and hybrid geoid models of Taiwan for height modernisation, cross-island datum connection and airborne LiDAR mapping[J]. Journal of Geodesy, 94:83. doi: 10.1007/s00190-020-01412-5
    [58] Ince E S, Barthelmes F, Reißland S, et al. 2019. ICGEM: 15 years of successful collection and distribution of global gravitational models, associated services and future plans[J]. Earth System Science Data, 11:647-674. doi: 10.5194/essd-11-647-2019
    [59] Işık M S, Erol B, Erol S, et al. 2021. High-resolution geoid modeling using least squares modification of Stokes and Hotine formulas in Colorado[J]. Journal of Geodesy, 95:49. doi: 10.1007/s00190-021-01501-z
    [60] 贾民育. 2000. 微重力测量技术的应用[J]. 地震研究, 23(4):452-456. doi: 10.3969/j.issn.1000-0666.2000.04.014

    Jia M Y. 2000. Application of microgravimetry technique[J]. Journal of Seismological Research, 23(4):452-456 (in Chinese). doi: 10.3969/j.issn.1000-0666.2000.04.014
    [61] Jiang T, Dang Y M, Zhang C Y. 2020. Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: a case study in the mountainous area, Colorado[J]. Earth Planets Space, 72:189. doi: 10.1186/s40623-020-01287-y
    [62] 姜效典, 李德勇, 宫伟, 等. 2014. 青藏高原东西向差异形变与隆升机制[J]. 地球物理学报, 57(12):4016-4028.

    Jiang X D, Li D Y, Gong W, et al. 2014. Differential deformation and uplift mechanisms of the eastern and western Tibetan plateau[J]. Chinese Journal of Geophysics, 57(12):4016-4028 (in Chinese).
    [63] Jordan T A, Watts A B. 2005. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system[J]. Earth and Planetary Science Letters, 236(3-4):732-750. doi: 10.1016/j.jpgl.2005.05.036
    [64] Kennedy J, Ferré T P A, Güntner A, et al. 2014. Direct measurement of subsurface mass change using the variable baseline gravity gradient method[J]. Geophysics Research Letters, 41, 2827-2834.
    [65] Kirby J F, Swain C J. 2011. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform[J]. Computers & Geosciences, 37(9):1345-1354.
    [66] Kirby J F. 2014. Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods: The state of the art[J]. Tectonophysics, 631:87-116. doi: 10.1016/j.tecto.2014.04.021
    [67] Lambert A, Courtier N, James, T S. 2006. Long-term monitoring by absolute gravimetry: Tides to postglacial rebound[J]. Journal of Geodynamics, 41(1–3):307-317.
    [68] 雷晓东, 戚帮申, 关伟, 等. 2021. 北京平原区断裂构造重力异常识别研究[J]. 地球物理学报, 64(4):1253-1265. doi: 10.6038/cjg2021O0210

    Lei X D, Qi B S, Guan W, et al. 2021. Research on the faults identification based on gravity anomaly in Beijing plain[J]. Chinese Journal of Geophysics,64(4): 1253-1265 (in Chinese). doi: 10.6038/cjg2021O0210
    [69] 李辉, 申重阳, 孙少安, 等. 2009. 中国大陆近期重力场动态变化图像[J]. 大地测量与地球动力学, 29(3):1-10.

    Li H, Shen C Y, Sun S A, et al. 2009. Dynamic gravity change in recent years in China continent[J]. Journal of geodesy and geodynamics, 29(3):1-10 (in Chinese).
    [70] 李红蕾, 方剑, 王新胜, 等. 2017. 重力及重力梯度联合反演青藏高原及邻区岩石圈三维密度结构[J]. 地球物理学报, 60(6):2469-2479. doi: 10.6038/cjg20170634

    Li H L, Fang J, Wang X S, et al. 2017. Lithospheric 3-D density structure beneath the Tibetan plateau and adjacent areas derived from joint inversion of satellite gravity and gravity-gradient data[J]. Chinese Journal of Geophysics, 60(6):2469-2479 (in Chinese). doi: 10.6038/cjg20170634
    [71] 李红蕾, 陈石, 庄建仓, 等. 2021. 贝叶斯同化重力反演方法构建龙门山地壳密度模型[J]. 地球物理学报, 64(4):1236-1252. doi: 10.6038/cjg2021O0130

    Li H L, Chen S, Zhuang J C, et al. 2021. Gravity inversion method base on Bayesian-assimilation and its application in constructing crust density model of the Longmenshan region[J]. Chinese Journal of Geophysics, 64(4):1236-1252 (in Chinese). doi: 10.6038/cjg2021O0130
    [72] 李海龙, 吴招才, 纪飞, 等. 2020. 南海北部地壳密度结构:基于约束三维重力反演[J]. 地球物理学报, 63(5):1894-1912. doi: 10.6038/cjg2020N0064

    Li H L, Wu Z C, Ji F, et al. 2020. Crustal density structure of the northern South China Sea from constrained 3-D gravity inversion[J]. Chinese Journal of Geophysics, 63(5):1894-1912 (in Chinese). doi: 10.6038/cjg2020N0064
    [73] 李建成, 陈俊勇, 宁津生, 等. 2003. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉: 武汉大学出版社.

    Li J C, Chen J Y, Ning J S, et al. 2003. The Theory of Earth's Gravity Field Approximation and Determination of the China Guasi-Geoid 2000[M].Wuhan: Wuhan University Press (in Chinese).
    [74] 李建成. 2012. 最新中国陆地数字高程基准模型: 重力似大地水准面CNGG2011[J]. 测绘学报, 41(5):651-660,669.

    Li J C. 2012. The recent Chinese terrestrial digital height datum model: Gravimetric quasi-geoid CNGG2011[J]. Acta Geodaeticaet Cartographica Sinica, 41(5):651-660,669 (in Chinese).
    [75] Li Y, Oldenburg D. 1998. 3-D inversion of gravity data[J]. Geophysics, 63(1):109-119. doi: 10.1190/1.1444302
    [76] 李永东, 郑勇, 熊熊, 等. 2013. 青藏高原东北部岩石圈有效弹性厚度及其各向异性[J]. 地球物理学报, 56(4): 1132-1145. doi: 10.6038/cjg20130409

    Li Y D, Zheng Y, Xiong X, et al. 2013. Lithospheric effective elastic thickness and its anisotropy in the northeast Qinghai-Tibet plateau[J]. Chinese Journal of Geophysics, 56(4):1132-1145 (in Chinese). doi: 10.6038/cjg20130409
    [77] 刘经南, 罗志才, 李建成. 2000. 从第22届IUGG大会看现代大地测量的进展[J]. 武汉测绘科技大学学报. 25(1):12-17,48. doi: 10.3969/j.issn.1671-8860.2000.01.003

    Liu J N, Luo Z C, Li J C. 2000. The progress of modern geodesy from the 22nd general assembly of IUGG[J]. Geomatics and Information Science of Wuhan University, 2000, 25(1):12-17,48 (in Chinese). doi: 10.3969/j.issn.1671-8860.2000.01.003
    [78] 楼海. 2001. 重力方法在地壳结构研究中的应用[D]. 北京: 中国地震局地球物理研究所.

    Lou H. 2001. The application of gravity methods in the investigation of crustal structure[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese).
    [79] 鲁宝亮, 王万银, 赵志刚, 等. 2018. 南海深部构造特征及其地质意义:来自重磁位场反演的认识[J]. 地球物理学报, 61(10): 4231-4241. doi: 10.6038/cjg2018L0564

    Lu B L, Wang W Y, Zhao Z G, et al. 2018. Characteristics of deep structure in the South China Sea and geological implications: Insights from gravity and magnetic inversion[J]. Chinese Journal of Geophysics, 61(10):4231-4241 (in Chinese). doi: 10.6038/cjg2018L0564
    [80] Lu Z Z, Li C-F, Zhu S, et al. 2020. Effective elastic thickness over the Chinese mainland and surroundings estimated from a joint inversion of Bouguer admittance and coherence[J]. Physics of the Earth and Planetary Interiors, 301:106456. doi: 10.1016/j.pepi.2020.106456
    [81] 马宗晋, 高祥林, 宋正范. 2006. 中国布格重力异常水平梯度图的判读和构造解释[J]. 地球物理学报, 49(1):106-114. doi: 10.3321/j.issn:0001-5733.2006.01.015

    Ma Z J, Gao X L, Song Z F. 2006. Analysis and tectonic interpretation to the horizontal gradient map calculated from Bouguer gravity data in the China mainland[J]. Chinese Journal of Geophysics, 49(1):106-144 (in Chinese). doi: 10.3321/j.issn:0001-5733.2006.01.015
    [82] Maceira M, Ammon C. J. 2009. Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure[J]. Journal of Geophysical Research, 114:B02314.
    [83] 毛经伦, 祝意青. 2018. 陆地重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 33(3):236-247. doi: 10.11867/j.issn.1001-8166.2018.03.0236

    Mao J L, Zhu Y Q. 2018. Progress in the application of ground gravity observation data in earthquake prediction[J]. Advances in Earth Science, 33(3):236-247 (in Chinese). doi: 10.11867/j.issn.1001-8166.2018.03.0236
    [84] Mazzotti S, Lambert A, Henton J, et al. 2011. Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America[J]. Geophysical Research Letters, 38:L24311.
    [85] Ménoret V, Vermeulen P, Le Moigne,N. et al. 2018. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter[J]. Scientific Reports, 8:12300. doi: 10.1038/s41598-018-30608-1
    [86] Moorkamp M, Heincke B, Jegen M, et al. 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data[J]. Geophysical Journal International, 184(1):477-493. doi: 10.1111/j.1365-246X.2010.04856.x
    [87] Mouyen M, Chao B F, Hwang C, et al. 2016. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations[J]. Journal of Volcanology and Geothermal Research, 328:45-58. doi: 10.1016/j.jvolgeores.2016.10.001
    [88] Murata Y. 1993. Estimation of optimum average surficial density from gravity data-an objective Bayesian approach[J]. Journal of Geophysical Research, 98(B7):12097-12109. doi: 10.1029/93JB00192
    [89] Nabighian M, Ander M, Grauch V, et al. 2005. Historical development of the gravity method in exploration[J]. Geophysics, 70(6):63-89. doi: 10.1190/1.2133785
    [90] Nawa K, Fukao Y, Shichi R, et al. 1997. Inversion of gravity data to determine the terrain density distribution in southwest Japan[J]. Journal of Geophysical Research, 102(B12):27703-27719. doi: 10.1029/97JB02543
    [91] Niebauer T, Sasagawa G, Faller J, et al. 2005. A new generation of absolute gravimeters[J]. Metrologia, 32(3):159-180.
    [92] Niebauer T. 2015. Gravimetric Methods - Absolute and Relative Gravity Meter: Instruments Concepts and Implementation[M]//Schubert G. Treatise on Geophysics (2ed), Amsterdam: Elsevier, 3: 37-57..
    [93] 牛源源, 郭良辉, 石磊, 等. 2019. 近地表密度估计的重力贝叶斯分析方法及在云南地区的应用[J]. 地球物理学报, 62(6):2101-2114. doi: 10.6038/cjg2019M0332

    Niu Y Y, Guo L H, Shi L, et al. 2019. Estimation of near-surface density based on gravity Bayesian analysis and its application in Yunnan area[J]. Chinese Journal of Geophysics, 62(6):2101-2114 (in Chinese). doi: 10.6038/cjg2019M0332
    [94] Pašteka R, Mikuška J, Meurers B. 2017. Understanding the Bouguer Anomaly—A Gravimetry Puzzle[M]. Amsterdam: Elsevier.
    [95] Pavlis N K, Holmes S A, Kenyon S C, et al. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) [J]. Journal of Geophysical Research, 117, B04406.
    [96] Pavlis N K, Holmes S A, Kenyon S C, et al. 2013. Correction to “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”[J]. Journal of Geophysical Research, 118:2633.
    [97] Pérez-Gussinyé M, Lowry A R, Watts A B, et al. 2004. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield[J]. Journal of Geophysical Research, 109(B10):B10409.
    [98] Pérez-Gussinyé M, Metois M, Fernández M, et al. 2009. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics[J]. Earth and Planetary Science Letters, 287(1-2):152-167. doi: 10.1016/j.jpgl.2009.08.004
    [99] Pool D R, Eychaner J H. 1995. Measurements of aquifer-storage change and specific yield using gravity surveys[J]. Ground Water, 33(3):425-432. doi: 10.1111/j.1745-6584.1995.tb00299.x
    [100] 秦朋波, 黄大年. 2016. 重力和重力梯度数据联合聚焦反演方法[J]. 地球物理学报, 59(6):2203-2224. doi: 10.6038/cjg20160624

    Qin P B, Huang D N. 2016. Integrated gravity and gravity gradient data focusing inversion[J]. Chinese Journal of Geophysics, 59(6):2203-2224 (in Chinese). doi: 10.6038/cjg20160624
    [101] 区域重力调查规范编写组. 2006. 区域重力调查规范 (DZ/T 0082—2006)[S]. 中华人民共和国国土资源部.
    [102] Saleh J, Li X, Wang Y M, et al. 2012. Error analysis of the NGS’ surface gravity database[J]. Journal of Geodesy, 87:203-221. doi: 10.1007/s00190-012-0589-9
    [103] Sato T, Miura S, Sun W, et al. 2012. Gravity and uplift rates observed in southeast Alaska and their comparison with GIA model predictions[J]. Journal of Geophysical Research, 117:B01401.
    [104] 佘雅文, 付广裕, 高原, 等. 2018. 华北地区中东部岩石圈挠曲与均衡特性以及地震活动性分析[J]. 地球物理学报, 61(11): 4448-4458. doi: 10.6038/cjg2018L0620

    She Y W, Fu G Y, Gao Y, et al. 2018. Flexure of the lithosphere, isostatic characteristic and seismicity in middle east area of North China[J]. Chinese Journal of Geophysics, 61(11):4448-4458 (in Chinese). doi: 10.6038/cjg2018L0620
    [105] 申重阳, 李辉, 孙少安, 等. 2009. 重力场动态变化与汶川MS8.0地震孕育过程[J]. 地球物理学报, 52(10):2547-2557. doi: 10.3969/j.issn.0001-5733.2009.10.013

    Shen C Y, Li H, Sun S A, et al. 2009. Dynamic variations of gravity and the preparation process of the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(10):2547-2557 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.10.013
    [106] Shen C Y, Xuan S B, Zou Z B, et al. 2015. Trends in gravity changes from 2009 to 2013 derived from ground-based gravimetry and GRACE data in North China[J]. Geodesy and Geodynamics, 6(6):423-428. doi: 10.1016/j.geog.2015.08.001
    [107] 申重阳, 杨光亮, 谈洪波, 等. 2015. 维西—贵阳剖面重力异常与地壳密度结构特征[J]. 地球物理学报, 58(11):3952-3964.

    Shen C Y, Yang G L, Tan H B, et al. 2015. Gravity anomalies and crustal density structure characteristics of profile Weixi-Guiyang[J]. Chinese Journal of Geophysics, 58(11):3952-3964 (in Chinese).
    [108] 申重阳, 祝意青, 胡敏章, 等. 2020. 中国大陆重力场时变监测与强震预测[J]. 中国地震, 36(4):729-743.

    Shen C Y, Zhu Y Q, Hu M Z, et al. 2020. Time-varying gravity field monitoring and strong earthquake prediction on the Chinese mainland[J]. Earthquake Research in China, 36(4):729-743 (in Chinese).
    [109] Shen W B, Wang D J, Hwang C. 2011. Anomalous signals prior to Wenchuan earthquake detected by superconducting gravimeter and broadband seismometers records[J]. Journal of Earth Science, 22(5):640-651. doi: 10.1007/s12583-011-0215-4
    [110] 石磊, 楼海, 王谦身, 等. 2015. 攀西地区重力场特征及地壳密度结构[J]. 地球物理学报, 58(7):2402-2412. doi: 10.6038/cjg20150717

    Shi L, Lou H, Wang Q S, et al. 2015. Gravity field characteristics and crust density structure in the Panxi region, China[J]. Chinese Journal of Geophysics, 58(7): 2402-2412 (in Chinese). doi: 10.6038/cjg20150717
    [111] Shi W, Chen S, Han J C, et al. 2020. Effective elastic thickness of the lithosphere from joint inversion in western China and its implications[J]. Earthquake Science, 33(1):1-10. doi: 10.29382/eqs-2020-0001-01
    [112] 侍文, 陈石, 韩建成, 等. 2021. 中国大陆岩石圈有效弹性厚度与强震构造区力学特征研究[J]. 地震, 41(1):1-12. doi: 10.12196/j.issn.1000-3274.2021.01.001

    Shi W, Chen S, Han J C, et al. 2021. Study on the effective elastic thickness of lithosphere and mechanical characteristics of great earthquake tectonic areas in the Chinese Mainland[J]. Earthquake, 41(1):1-12 (in Chinese). doi: 10.12196/j.issn.1000-3274.2021.01.001
    [113] Shin Y, Xu H, Braitenberg C, et al. 2007. Moho undulations beneath Tibet from GRACE-integrated gravity data[J]. Geophysical Journal International, 170(3):971-985.
    [114] Simons F J, Zuber M T, Korenaga J. 2000. Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis[J]. Journal of Geophysical Research, 105(B8):19163-19184. doi: 10.1029/2000JB900157
    [115] Sjöberg L E, Bagherbandi M. 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0[J]. Acta Geophysica, 59:502-525. doi: 10.2478/s11600-011-0004-6
    [116] 孙和平, 徐建桥, 崔小明. 2017. 重力场的地球动力学与内部结构应用研究进展[J]. 测绘学报, 46(10):1290-1299. doi: 10.11947/j.AGCS.2017.20170298

    Sun H P, Xu J Q, Cui X M. 2017. Research progress of the gravity field application in Earth's geodynamics and interior structure[J]. Acta Geodaetica et Cartographica Sinica, 46(10): 1290-1299 (in Chinese). doi: 10.11947/j.AGCS.2017.20170298
    [117] 孙和平, 刘清超, 崔小明, 等. 2018. 利用重力和VLBI技术检测地球液态核的动力学效应[J]. 武汉大学学报·信息科学版, 43(12):2058-206.

    Sun H P, Liu Q C, Cui X M, et al. 2018. Detection of the geodynamics of Earth's liquid core by using gravity and VLBI techniques[J]. Geomatics and Information Science of Wuhan University, 43(12): 2058-2063 (in Chinese).
    [118] Sun H P, Zhang M M, Xu J Q, et al. 2019. Reanalysis of background free oscillations using recent SG data. Terrestrial, Atmospheric and Oceanic Sciences[J], 30(6): 757-763. doi: 10.3319/TAO.2019.03.14.03
    [119] 孙和平, 孙文科, 申文斌, 等. 2021. 地球重力场及其地学应用研究进展——2020 中国地球科学联合学术年会专题综述[J]. 地球科学进展, 36(5):445-460.

    Sun H P, Sun W K, Shen W B, et al. 2021. Research progress of Earth's gravity field and its application in geosciences—A summary of annual meeting of Chinese Geoscience Union in 2020[J]. Advances in Earth Science, 36(5):445-460 (in Chinese).
    [120] Sun W K, Wang Q, Li H, et al. 2009: Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness[J]. Geophysical Research Letters, 36:L02303.
    [121] Sun W K, Wang Q, Li H, et al. 2011. A reinvestigation of crustal thickness in the Tibetan Plateau using absolute gravity, GPS and GRACE data[J]. Terrestrial, Atmospheric and Oceanic Science, 22:109-119. doi: 10.3319/TAO.2010.06.07.01(TibXS)
    [122] 索奎, 张贵宾, 江国明, 等. 2015. 重震反演中国东北地壳上地幔三维密度结构[J]. 地球物理学报, 58(7): 2436-2444. doi: 10.6038/cjg20150720

    Suo K, Zhang G B, Jiang G M, et al. 2015. 3-D density distribution of the crust and upper mantle beneath Northeast China by joint inversion of gravity and seismic data[J]. Chinese Journal of Geophysics, 58(7): 2436-2444 (in Chinese). doi: 10.6038/cjg20150720
    [123] Syracuse E M, Maceira M, Prieto G A, et al. 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data[J]. Earth and Planetary Science Letters, 444:139-149. doi: 10.1016/j.jpgl.2016.03.050
    [124] Tenzer R, Chen W. 2014. Regional gravity inversion of crustal thickness beneath the Tibetan plateau[J]. Earth Science Informatics, 7:265-276. doi: 10.1007/s12145-014-0146-6
    [125] Tian Y, Li H L, Wang Y, et al. Gravity gradient inversion of gravity field and steady-state ocean circulation explorer satellite data for the lithospheric density structure in the Qinghai-Tibet plateau region and the surrounding regions[J]. Journal of Geophysical Research, 126, e2020JB021291.
    [126] Torge W. 1989. Gravimetry[M]. Berlin and New York: Walter de Gruyter.
    [127] Van Camp M, de Viron O, Watlet A, et al. 2017. Geophysics from terrestrial time-variable gravity measurements[J]. Reviews of Geophysics, 55(4):938-992. doi: 10.1002/2017RG000566
    [128] Wan X Y, Annan R F, Wang W B. 2020. Assessment of HY-2A GM data by deriving the gravity field and bathymetry over the Gulf of Guinea[J]. Earth Planets Space, 72:151. doi: 10.1186/s40623-020-01291-2
    [129] 王迪晋, 刘子维, 韦进, 等. 2018. 基于EEMD分解的气压改正方法研究[J]. 地球物理学报, 61(2): 504-520. doi: 10.6038/cjg2018L0139

    Wang D J, Liu Z W, Wei J, et al. 2018. Method to correct atmospheric pressure effects based on ensemble empirical mode decomposition[J]. Chinese Journal of Geophysics, 61(2):504-520 (in Chinese). doi: 10.6038/cjg2018L0139
    [130] 王林海, 陈石, 庄建仓, 等. 2020. 精密重力测量中相对重力仪格值系数的贝叶斯估计方法[J]. 测绘学报, 49(12):1543-1553.

    Wang L H, Chen S, Zhuang J C, et al. 2020. Bayesian estimation of the scale factor of relative gravimeter in precise gravity survey[J]. Acta Geodaetica et Cartographica Sinica, 49(12): 1543-1553 (in Chinese).
    [131] 王谦身, 滕吉文, 张永谦, 等. 2009. 四川中西部地区地壳结构与重力均衡[J]. 地球物理学报, 52(2):579-583.

    Wang Q S, Teng J W, Zhang Y Q, et al. 2009. The crustal structure and gravity isostasy in the middle western Sichuan area[J]. Chinese Journal of Geophysics, 52(2): 579-583 (in Chinese).
    [132] 王鑫, 姜文亮, 张景发, 等. 2020. 青藏高原东北缘重力场深部结构及其动力学特征[J]. 地球物理学报, 63(3): 988-1001. doi: 10.6038/cjg2020N0219

    Wang X, Jiang W L, Zhang J F, et al. 2020. Deep structure of the gravity field and dynamic characteristics of the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3):988-1001 (in Chinese). doi: 10.6038/cjg2020N0219
    [133] 王新胜, 方剑, 许厚泽, 等. 2012. 华北克拉通岩石圈三维密度结构[J]. 地球物理学报, 55(4):1154-1160. doi: 10.6038/j.issn.0001-5733.2012.04.011

    Wang X S, Fang J, Xu H Z, et al. 2012. Density structure of the lithosphere beneath North China Craton[J]. Chinese Journal of Geophysics, 55(4): 1154-1160 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.04.011
    [134] 王新胜, 方剑, 许厚泽. 2013. 青藏高原东北缘岩石圈三维密度结构[J]. 地球物理学报, 56(11):3770-3778. doi: 10.6038/cjg20131118

    Wang X S, Fang J, Xu H Z. 2013. 3D density structure of lithosphere beneath northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 56(11): 3770-3778 (in Chinese). doi: 10.6038/cjg20131118
    [135] Wang Y, Li X, Ahlgren K. et al. 2020. Colorado geoid modeling at the US National Geodetic Survey[J]. Journal of Geodesy, 94:106. doi: 10.1007/s00190-020-01429-w
    [136] Working Group of the Standard for Regional Gravity Survey. 2006. The Standard for Regional Gravity Survey (DZ/T 0082—2006)[S]. Ministry of Land and Resources of the People's Republic of China (in Chinese).
    [137] 吴怿昊, 罗志才, 周波阳. 2016. 基于泊松小波径向基函数融合多源数据的局部重力场建模[J]. 地球物理学报, 59(3):852-864. doi: 10.6038/cjg20160308

    Wu Y H, Luo Z C, Zhou B Y. 2016. Regional gravity modeling based on heterogeneous data sets by using Poisson wavelets radial basis functions[J]. Chinese Journal of Geophysics, 59(3):852-864 (in Chinese). doi: 10.6038/cjg20160308
    [138] 吴招才, 高金耀, 丁巍伟, 等. 2017. 南海海盆三维重力约束反演莫霍面深度及其特征[J]. 地球物理学报, 60(7): 2599-2613. doi: 10.6038/cjg20170709

    Wu Z C, Gao J Y, Ding W W, et al. 2017. Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points[J]. Chinese Journal of Geophysics, 60(7):2599-2613 (in Chinese). doi: 10.6038/cjg20170709
    [139] 邢乐林, 孙文科, 李辉, 等. 2011. 用拉萨点大地测量资料检测青藏高原地壳的增厚[J]. 测绘学报, 40(1):41-45.

    Xing L L, Sun W K, Li H, et al. 2011. Present-day crust thickness increasing beneath the Qinghai-Tibetan Plateau by using geodetic data at Lhasa station[J]. Acta Geodaetica et Cartographica Sinica, 40(1):41-45 (in Chinese).
    [140] 邢乐林, 王林海, 胡敏章, 等. 2017. 时变重力测量确定青藏高原地壳隆升与增厚速率[J]. 武汉大学学报(信息科学版), 42(5):569-574.

    Xing L L, Wang L H, Hu M Z, et al. 2017 Determination of crust uplifting and thickening of Qinghai-Tibetan Plateau from time-variable gravity measurements[J]. Geomatics and Information Science of Wuhan University, 42(5):569-574 (in Chinese).
    [141] 许才军, 尹智. 2014. 利用大地测量资料反演构造应力应变场研究进展[J]. 武汉大学学报(信息科学版), 39(10):1135-1146,1178.

    Xu C J, Yin Z. 2014. Progress in inversion for tectonic stress-strain fields using geodetic data. Geomatics and Information Science of Wuhan University, 39(10):1135-1146,1178 (in Chinese).
    [142] 许厚泽. 2003. 重力观测在中国地壳运动观测网络中的作用[J]. 大地测量与地球动力学, 23(3):1-3.

    Xu H Z. 2003. Function of gravimetry in CMONOC[J]. Journal of Geodesy and Geodynamics, 23(3):1-3 (in Chinese).
    [143] 许厚泽, 陆洋, 钟敏, 等. 2012. 卫星重力测量及其在地球物理环境变化监测中的应用[J]. 中国科学: 地球科学, 42(6):843-853. doi: 10.1360/zd-2012-42-6-843

    Xu H Z, Lu Y, Zhong M, et al. 2012. Satellite gravity and its application to monitoring geophysical environmental change. Scientia Sinica Terrae, 42(6):843-853 (in Chinese). doi: 10.1360/zd-2012-42-6-843
    [144] 徐伟民, 陈石, 阮明明, 等. 2021. 川滇地区陆地流动重力测网场源分辨能力评估[J]. 地震, 41(1):191-204. doi: 10.12196/j.issn.1000-3274.2021.01.015

    Xu W M, Chen S, Ruan M M, et al. 2021. Evaluation of field source resolution of terrestrial mobile gravity network in Sichuan-Yunnan region[J]. Earthquake, 41(1):191-204 (in Chinese). doi: 10.12196/j.issn.1000-3274.2021.01.015
    [145] 玄松柏, 邢乐林, 谈洪波, 等. 2012. 中国大陆2000-2007年重力场变化多尺度分解[J]. 大地测量与地球动力学, 32(3):7-16.

    Xuan S B, Xing L L, Tan H B, et al. 2012. Wavelet multi-scale decomposition of gravity field variations during 2000–2007 in China Mainland[J]. Journal of Geodesy and Geodynamics, 32(3):7-16 (in Chinese).
    [146] 杨光亮, 申重阳, 黎哲君, 等. 2020. 巴颜喀拉地块东部及邻区重力均衡与岩石圈有效弹性厚度[J]. 地球物理学报, 63(3):956-968. doi: 10.6038/cjg2020N0221

    Yang G L, Shen C Y, Li Z J, et al. 2020. Gravity isostasy and effective elastic thickness of the eastern Bayan Har block and adjacent areas[J]. Chinese Journal of Geophysics, 63(3):956-968 (in Chinese). doi: 10.6038/cjg2020N0221
    [147] 杨锦玲, 陈石, 王林海, 等. 2021. 华南陆地时变重力观测数据质量评估[J]. 测绘学报, 50(3): 333-342.

    Yang J L, Chen S, Wang L H, et al. 2021. Data quality assessment of time-varying terrestrial gravity observation in South China[J]. Acta Geodaetica et Cartographica Sinica, 50(3):333-342 (in Chinese).
    [148] 杨亭, 傅容珊, 黄金水. 2013. 利用Moho地形导纳法 (MDDF) 反演中国大陆岩石圈有效弹性厚度[J]. 地球物理学报, 56(6):1877-1886. doi: 10.6038/cjg20130610

    Yang T, Fu R S, Huang J S. 2013. Effective elastic thickness of continental lithosphere in China with Moho topography admittance method[J]. Chinese Journal of Geophysics, 56(6):1877-1886 (in Chinese). doi: 10.6038/cjg20130610
    [149] 姚宜斌, 杨元喜, 孙和平, 等. 2020. 大地测量学科发展现状与趋势[J]. 测绘学报, 49(10):1243-1251. doi: 10.11947/j.AGCS.2020.20200358

    Yao Y B, Yang Y X, Sun H P, et al. 2020. Geodesy discipline: progress and perspective[J]. Acta Geodaetica et Cartographica Sinica, 49(10): 1243-1251 (in Chinese). doi: 10.11947/j.AGCS.2020.20200358
    [150] Ye Z, Tenzer R, Sneeuw N, et al. 2016. Generalized model for a Moho inversion from gravity and vertical gravity-gradient data[J]. Geophysical Journal International, 207(1):111-128. doi: 10.1093/gji/ggw251
    [151] Zhan F, Zhu Y, Ning J, et al. 2011. Gravity changes before large earthquakes in China: 1998–2005[J]. Geo-Spatial Information Science, 14(1):1-9. doi: 10.1007/s11806-011-0440-0
    [152] 张贝, 陈石, 李红蕾, 等. 2021. 时变重力场球面模型反演算法和模拟实验[J]. 地震, 41(1):13-24. doi: 10.12196/j.issn.1000-3274.2021.01.002

    Zhang B, Chen S, Li H L, et al. 2021. Time-varying gravity inversion using spherical model and synthetic test[J]. Earthquake, 41(1):13-24 (in Chinese). doi: 10.12196/j.issn.1000-3274.2021.01.002
    [153] 章传银, 郭春喜, 陈俊勇, 等. 2009. EGM2008地球重力场模型在中国大陆适用性分析[J]. 测绘学报, 38(4):282-289.

    Zhang C Y, Guo C X, Chen J Y, et al. 2009. EGM2008 and its application analysis in Chinese Mainland[J]. Acta Geodaetica et Cartographica Sinica, 38(4):282-289 (in Chinese).
    [154] 张杰, 杨光亮, 谈洪波, 等. 2020. 基于接收函数约束的川滇地区莫霍面深度反演研究[J]. 地球物理学报, 63(7):2579-2591. doi: 10.6038/cjg2020N0441

    Zhang J, Yang G L, Tan H B, et al. 2020. Inversion of Moho surface depth in Sichuan-Yunnan area based on the constraint of receiving function. Chinese Journal of Geophysics, 63(7):2579-2591 (in Chinese). doi: 10.6038/cjg2020N0441
    [155] 张晰, 王芃, 邓阳凡, 等. 2016. 利用重力异常构建壳幔密度结构方法及应用[J]. 地球物理学进展, 31(1): 143-151. doi: 10.6038/pg20160115

    Zhang X, Wang P, Deng Y F, et al. 2016. Constructing crust-mantle density structure using gravity anomalies and its application[J]. Progress in Geophysics, 31(1): 143-151 (in Chinese). doi: 10.6038/pg20160115
    [156] 张永谦, 王谦身, 滕吉文. 2010. 川西藏东地区的地壳均衡异常及其与地震分布的关系[J]. 地球物理学报, 53(11):2631-2638.

    Zhang Y Q, Wang Q S, Teng J W. 2010. The crustal isostatic anomaly beneath eastern Tibet and western Sichuan and its relationship with the distribution of earthquakes[J]. Chinese Journal of Geophysics, 53(11):2631-2638 (in Chinese).
    [157] Zhao Y, Guo L, Shi L, et al. 2018. The crustal structure of the North–South Earthquake Belt in China revealed from deep seismic soundings and gravity data[J]. Pure and Applied Geophysics. 175:193-205. doi: 10.1007/s00024-017-1691-y
    [158] 赵云峰, 祝意青, 梁伟锋, 等. 2018. Burris型重力仪性能分析[J]. 地震地磁观测与研究, 39(2):178-185. doi: 10.3969/j.issn.1003-3246.2018.02.026

    Zhao Y F, Zhu Y Q, Liang W F, et al. 2018. Study on the characteristics of Burris gravimeter[J]. Seismological and Geomagnetic Observation and Research, 39(2): 178-185 (in Chinese). doi: 10.3969/j.issn.1003-3246.2018.02.026
    [159] Zhdanov M S, Ellis R, Mukherjee S. 2004. Three-dimensional regularized focusing inversion of gravity gradient tensor component data[J]. Geophysics, 69(4), 925-937. doi: 10.1190/1.1778236
    [160] 郑勇, 李永东, 熊熊. 2012. 华北克拉通岩石圈有效弹性厚度及其各向异性[J]. 地球物理学报, 55(11):3576-3590. doi: 10.6038/j.issn.0001-5733.2012.11.007

    Zheng Y, Li Y D, Xiong X. 2012. Effective lithospheric thickness and its anisotropy in the North China Craton[J]. Chinese Journal of Geophysics, 55(11):3576-3590 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.11.007
    [161] 中国地震局. 2020. 中国地球物理站网(重力)规划(2020-2030)[R]. 北京. https://www.cea.gov.cn/cea/xwzx/zyzt/5576318/5576317/5576635/index.html.
    [162] 祝意青, 徐云马, 吕弋培, 等. 2009. 龙门山断裂带重力变化与汶川8.0级地震关系研究[J]. 地球物理学报, 52(10):2538-2546. doi: 10.3969/j.issn.0001-5733.2009.10.012

    Zhu Y Q, Xu Y M, Lv Y P, et al. 2009. Relations between gravity variation of Longmenshan fault zone and Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(10): 2538-2546 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.10.012
    [163] Zhu Y Q, Zhan F B, Zhou J C, et al. 2010. Gravity Measurements and Their Variations before the 2008 Wenchuan Earthquake[J]. Bulletin of the Seismological Society of America, 100(5B):2815-2824. doi: 10.1785/0120100081
    [164] 祝意青, 梁伟锋, 湛飞并, 等. 2012. 中国大陆重力场动态变化研究[J]. 地球物理学报, 55(3), 804-813. doi: 10.6038/j.issn.0001-5733.2012.03.010

    Zhu Y Q, Liang W F, Zhan F B, et al. 2012. Study on dynamic change of gravity field in China continent[J]. Chinese Journal Of Geophysics, 55(3): 804-813 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.03.010
    [165] 祝意青, 闻学泽, 孙和平, 等. 2013a. 2013年四川芦山MS7.0地震前的重力变化[J]. 地球物理学报, 56(6):1887-1894.

    Zhu Y Q, Wen X Z, Sun H P, et al. 2013a. Gravity changes before the Lushan, Sichuan, MS=7.0 Earthquake of 2013[J]. Chinese Journal of Geophysics, 56(6): 1887-1894 (in Chinese).
    [166] 祝意青, 闻学泽, 张晶, 等. 2013b. 华北中部重力场的动态变化及其强震危险含义[J]. 地球物理学报, 56(2):531-541. doi: 10.6038/cjg20130217

    Zhu Y Q, Wen X Z, Zhang J, et al. 2013b. Dynamic variation of the gravity field in middle North China and its implication for seismic potential[J]. Chinese Journal of Geophysics, 56(2):531-541 (in Chinese). doi: 10.6038/cjg20130217
    [167] 祝意青, 刘芳, 李铁明, 等. 2015. 川滇地区重力场动态变化及其强震危险含义[J]. 地球物理学报, 58(11):4187-4196.

    Zhu Y Q, Liu F, Li T M, et al. 2015. Dynamic variation of the gravity field in the Sichuan-Yunnan region and its implication for seismic risk[J]. Chinese Journal of Geophysics, 58(11):4187-4196 (in Chinese).
    [168] 祝意青, 李铁明, 郝明, 等. 2016. 2016年青海门源MS6.4地震前重力变化[J]. 地球物理学报, 59(10): 3744-3752. doi: 10.6038/cjg20161019

    Zhu Y Q, Li T M, Hao M, et al. 2016. Gravity changes before the Menyuan, Qinghai MS6.4 earthquake of 2016[J]. Chinese Journal of Geophysics, 59(10): 3744-3752 (in Chinese). doi: 10.6038/cjg20161019
    [169] 祝意青, 梁伟锋, 赵云峰, 等. 2017. 2017年四川九寨沟MS7.0地震前区域重力场变化[J]. 地球物理学报, 60(10): 4124-4131. doi: 10.6038/cjg20171037

    Zhu Y Q, Liang W F, Zhao Y F, et al. 2017. Gravity changes before the Jiuzhaigou, Sichuan, MS7.0 earthquake of 2017[J]. Chinese Journal of Geophysics, 60(10):4124-4131 (in Chinese). doi: 10.6038/cjg20171037
    [170] 祝意青, 申重阳, 张国庆, 等. 2018. 我国流动重力监测预报发展之再思考[J]. 大地测量与地球动力学, 38(5):441-446.

    Zhu Y Q, Shen C Y, Zhang G Q, et al. 2018. Rethinking the development of earthquake monitoring and prediction in mobile gravity[J]. Journal of Geodesy and Geodynamics, 38(5): 441-446 (in Chinese).
    [171] Zingerle P, Pail R, Gruber T, et al. 2020. The combined global gravity field model XGM2019e[J]. Journal of Geodesy, 94:66. doi: 10.1007/s00190-020-01398-0
  • 加载中
图(4)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  278
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 录用日期:  2021-07-19
  • 网络出版日期:  2021-07-26
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回