Preliminary judgment of ground motion characteristics of Yematan bridge in Qinghai Maduo M7.4 earthquake
-
摘要: 2021年5月22日青海省玛多县发生M7.4地震,造成玛多县境内的野马滩大桥和野马滩2号桥发生落梁破坏. 中国地震局公布的地震烈度表明野马滩大桥处的地震烈度为Ⅸ. 然而野马滩大桥附近无强震台站,未能记录到大桥附近的加速度时程,这也阻碍了野马滩大桥在地震作用下破坏机理的研究. 因此,本文尝试采用经验格林函数方法、并参考医学上自身异位皮肤移植的理念,尝试评估野马滩大桥处的地震动的主要特征[包括地震动峰值加速度(PGA)的可能的取值范围和加速度时程],并与已公布的玛多地震的地震烈度、中国地震烈度表(GB/T17742—2020)、第五代地震动区划图(GB18306—2015)中的设计反应谱进行对比. 结果表明:(1)本文得到的PGA的取值范围(320~620 cm/s2)与中国地震烈度表(GB/T17742—2020)中地震烈度为Ⅸ区内的PGA的取值范围(402~830 cm/s2)匹配程度较好;(2)本文合成的地震动反应谱与第五代地震动区划图中,野马滩大桥处的极罕遇地震动的加速度设计反应谱整体匹配较好,表明本文合成的加速度时程可以造成野马滩大桥落梁破坏. 研究表明本文给出的野马滩大桥附近的地震动强度特征具备一定的参考价值,可作为野马滩大桥处的加速度时程输入,为研究该桥的坍塌机理提供数据支持.Abstract: On May 22, 2021, an earthquake of M7.4 occurred in Maduo County, Qinghai Province, causing the collapse of the Yematan bridge and the Yematan No.2 bridge in Maduo County. According to the earthquake intensity announced by China Earthquake Administration, the earthquake intensity of the Yematan bridge is IX. However, the lack of strong seismic stations and the unrecorded time history of ground motion near the bridge is also hindering the research work on earthquake-induced failure mechanisms of the Yematan bridge. Therefore, this paper attempts to use the empirical Green's function method and refer to the concept of self-heterotopic skin transplantation in medicine to preliminarily evaluate the main characteristics of the ground motion intensity at the Yematan bridge, and try to give the possible range of peak ground acceleration (PGA) and the ground motion time history. The latest China seismic intensity table (GB/T17742—2020) and the design response spectra of the fifth generation seismic zoning map (GB18306—2015) are compared. The results show that: (1) the range of PGA (320~620 cm/s2) obtained in this paper matches well with the range of PGA (402~830 cm/s2) in China seismic intensity table (GB/T17742—2020); (2) The ground motion response spectrum synthesized matches well with the acceleration design response spectrum of extremely rare ground motions at the Yematan bridge in the fifth generation seismic zoning map (GB18306—2015), which indicates that the acceleration time history synthesized in this paper can cause the beam falling failure of the bridge. Our results show that the characteristics of ground motion intensity near the Yematan bridge are very possible and have a certain reference value. It can be used as the time history input of ground motion for the Yematan bridge and provide data support for the study of the collapse mechanism of bridge.
-
表 1 玛多地震基本震源参数
Table 1. The source parameters of Maduo earthquake
名称 参数 参考来源 震级 M7.4 震中 98.38°E, 34.65°N 王未来等(2021) 震源深度 7.6 km 断层面积 170 km×20 km 地震矩 1.9E+20N·m 王为民等(2021) 震源机制
(走向/倾角/滑动角)节面1: (101.72°,81.65°,-4.20°) 节面2: (192.33°,85.84°,-171.62°) 剪切波速VS 3.4 km/s 李永华等(2021) 破裂速度Vr 2.45 km/s Geller
(1976)表 2 等效震级的基本参数
Table 2. The basic parameters of equivalent magnitude
等效震级 应力降
比值C划分子断层个数N 地震矩/
(dyne.cm)破裂面积/
m2M5.3 5.21 3.74 2.45E+24 5.35E+08 M5.4 4.98 3.39 3.13E+24 6.10E+08 M5.5 4.76 3.07 3.99E+24 6.96E+08 M5.6 4.54 2.78 5.09E+24 7.95E+08 M5.7 4.34 2.52 6.49E+24 9.07E+08 注:具体计算时,N值取大于N值最近的整数. -
[1] Afzali L, Mirahmadi-Babaheydari F, Shojaei-Ghahrizjani F, et al. 2020. The Effect of Encapsulated Umbilical Cord-derived Mesenchymal Stem Cells in PRPCryogel on Regeneration of Grade-II Burn Wounds[J]. Regenerative Engineering and Translational Medicine, 1-11. https://doi.org/10.1007/s40883-020-00188-6. [2] 高孟潭. 2015. GB 18306—2015《中国地震动参数区划图》宣贯教材[M]. 北京: 中国质检出版社.Gao M T. 2015. GB 18306—2015 "Seismic Ground Motion Parameters Zonation Map of China" Teaching Material[M]. Beijing: China Quality Inspection Press(in Chinese). [3] Geller R J. 1976. Scaling relations for earthquake source parameters and magnitudes[J]. Bulletin of the Seismological Society of America, 66(5): 1501-1523. [4] Hartzell S H. 1978. Earthquake aftershocks as Green's functions[J]. Geophysical Research Letters, 5(1): 1-4. doi: 10.1029/GL005i001p00001 [5] Irikura K. 1986. Prediction of strong acceleration motion using empirical Green's function[C]//Proc. 7th Japan Earthquake Engineering Symposium, 151-156. [6] Irikura K, Kamae K. 1994. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique[J]. Annals of Geophysics, 37(6): 1721-1743. [7] Irikura K, Miyake H. 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios[J].Pure and Applied Geophysics, 168(1-2): 85-104. doi: 10.1007/s00024-010-0150-9 [8] Irikura K, Miyakoshi K, Kamae K, et al. 2017. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake[J]. Earth Planets Space, 69: 10. doi: 10.1186/s40623-016-0586-y [9] 李永华, 石磊, 祝爱玉, 等. 2021.国家重点研发计划项目《地震构造主动源监测技术系统研究》积极做好震后科技支撑[EB]. http://www.cea-igp.ac.cn/cxdt/278267.html.Li Y H, Shi L, Zhu A Y, et al. 2021.The national key R & D program "Study on active source monitoring technology system of seismic structure" actively provides scientific and technological support after earthquake[EB]. http://www.cea-igp.ac.cn/cxdt/278267.html (in Chinese). [10] Li Z, Gao M, Jiang H, et al. 2018. Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion[J]. Acta Geophysica, 66(4): 523–540. doi: 10.1007/s11600-018-0171-9 [11] Li Z, Sun J, Chen X. et al. 2021a. Predicting the near-field strong ground motion based on uncertainties in asperities: an opportunity to reproduce the characteristics of the 1970 Tonghai earthquake (Ms7.8)[J]. Journal of Seismology, 25: 875–898. doi: 10.1007/s10950-021-09997-w [12] Li Z, Chen X, Chen K. et al. 2021b. Predicting near-field strong ground motion of the Huaxian Ms8.5 earthquake based on uncertainty factors of asperities[J]. Pure and Applied Geophysics, 178: 889–906. https://doi.org/10.1007/s00024-021-02682-6. [13] 李宗超, 陈学良, 高孟潭, 等.2016.经验格林函数方法模拟强地面运动的研究进展[J].世界地震工程, 32(2): 209-216.Li Z C, Chen X L, Gao M T, et al. 2016. Research progress of empirical Green function method simulation strong ground motinon[J]. World Earthquake Engineering, 32(2): 209-216 (in Chinese). [14] 李宗超, 高孟潭, 陈学良, 等. 2019a. 九寨沟MS7.0地震强地震动模拟及漳扎镇地震动强度预测[J].地球物理学报, 62(7): 2567-2581. doi: 10.6038/cjg2019L0688Li Z C, Gao M T, Chen X L, et al. 2019a. Simulation of ground motion by the 2017 Jiuzhaigou MS7.0 earthquake and estimation of ground motion intensity in the Zhangzha Town[J]. Chinese Journal of Geophysics, 62(7): 2567-2581 (in Chinese). doi: 10.6038/cjg2019L0688 [15] 李宗超, 高孟潭, 陈学良, 吴清. 2019b. 2016年熊本MJ7.3地震的工程地震动参数模拟及分布特征分析[J].地震学报, 41(1): 100-110. doi: 10.11939/jass.20180070Li Z C, Gao M T, Chen X L, Wu Q. 2019b. Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016[J]. Acta Seismologica Sinica, 41(1): 100-110 (in Chinese). doi: 10.11939/jass.20180070 [16] Miyake H, Iwata T, Irikura K. 2003. Source characterization for broadband ground-motion of the Seismological Society of America, 93(6): 2531-2545. [17] 王未来, 房立华, 吴建平, 等. 2021. 2021年青海玛多MS7.4地震序列精定位研究[J].中国科学: 地球科学, 51: 1–10. doi: 10.1360/SSTe-2021-0149.Wang W L, Fang L H, Wu J P, et al. 2021. Aftershock sequence relocation of the 2021MS7.4 Maduo Earthquake, Qinghai, China[J]. Science China: Earth Sciences, 51: 1-10. https://doi.org/10.1007/s11430-021-9803-3(in Chinese). [18] 王为民, 何建坤, 郝金来, 姚振兴. 2021. 2021年5月22日青海玛多M7.4级地震震源破裂过程反演初步结果(投稿中).Wang W M, He J K, Hao J L, Yao Z X. 2021. Preliminary inversion results of source rupture process of Maduo M7.4 earthquake on May 22, 2021 in Qinghai Province(in Chinese) (Submitted to Journal). [19] 中国地震动参数区划图编写组. 2015. GB 18306—2015《中国地震动参数区划图》[S]. 北京: 中国标准出版社.Working Group on the seismic ground motion parameters zonation map of China. 2015. GB 18306—2015 "Seismic Ground Motion Parameters Zonation Map of China" [S]. Beijing: China Standard Press (in Chinese). [20] 中国地震烈度表编写组. 2020. GB/T17742—2020中国地震烈度表[S]. 中国地震局.Working Group on the Chinese seismic intensity scale. 2020. GB/T17742—2020 "The Chinese Seismic Intensity Scale" [S]. China Earthquake Administration (in Chinese). -