Research progress and prospect of moonquakes
-
摘要: 月球内部的圈层结构对于理解月球的形成和演化至关重要,因为它与岩浆洋冷凝、密度分异和物质对流等过程密切关联. 阿波罗任务在月球正面中低纬度建立了第一个月震观测台网,为我们提供了研究月球内部结构以及月震的宝贵实测资料. 然而,阿波罗时代的月震仪在灵敏度等方面存在较大限制,导致原始信噪比低,严重影响了月球内部圈层结构的探测能力,迄今尚未观测到切实可靠的深部反射震相,导致在月壳厚度、月核大小及深部物性状态等方面均存在很大的学术争论. 本文回顾了阿波罗月震探测的仪器、数据及应用情况,特别关注月球内部圈层结构、月震波散射和衰减等方面的研究进展;最后,展望了未来月震研究的发展方向,并介绍了我国首台月震仪研制的基本构想.Abstract: The Lunar interior structure is important for understanding the formation and evolution of the Moon, because it is closely related to the processes of magma ocean condensation, density differentiation and material convection. The Apollo missions established the first moonquakes observation network in the middle and low latitudes on the near side of the Moon, which provides us with a lot of valuable observations to study the moonquakes and interior structure of the Moon. However, the lunar seismography in the Apollo era was greatly limited on the sensitivity and some other aspects, which seriously affected the detection ability of the lunar interior structure. Up to now, no reliable internal reflection phase has been observed, which has led to a great academic debate on the thickness of the lunar crust, the size of the lunar core and the state of deep physical properties. In this paper, we review the Apollo instruments, data and applications, with special attention to the research progress in the interior structure, the scattering and the attenuation of lunar seismic waves. Finally, we prospect the future research direction of the lunar seismicity and present the basic conception of the first lunar seismometer from China.
-
Key words:
- Moon seismometer /
- lunar structure /
- Apollo /
- scattering waves
-
图 1 阿波罗月面着陆点的位置分布图(修改自Nunn et al., 2020). 被动月震实验(PSE)是在阿波罗11、12、14、15和16号站进行的(11号站只运行了大约3个星期). 第一种主动月震实验(ASE)设在14和16号站. 第二种主动实验,也称为月球表面剖面实验(LSPE),设在17号站. 17号站还包括月球表面重力仪(LSG),能够提供额外的被动月震信息
Figure 1. Locations of the Apollo stations on the Moon (modified from Nunn et al., 2020). Passive Seismic Experiments (PSE) were based at Apollo 11, 12, 14, 15 and 16 (station 11 was only operational for 3 weeks). Active Seismic Experiments (ASE) were based at Stations 14 and 16. A second active experiment, known as the Lunar Seismic Profiling Experiment (LSPE) was based at station 17. Station 17 also included the Lunar Surface Gravimeter (LSG), which is a source of additional passive seismic information
图 2 阿波罗月震实验的运行周期和数据可用性(修改自Nunn et al., 2020). 蓝色实线表示仪器主要运行时间(偶尔会出现停机和数据丢失). 虚线表示仪器大多处于待机状态,偶尔开启接收模式
Figure 2. Overview of the operating periods of the Apollo seismic experiments and data availability (modified from Nunn et al., 2020). Solid blue lines indicate mainly operational instruments (with just occasional outages and data loss). Dashed lines indicate instruments which were mostly on standby but were occasionally turned on in their listening mode
图 3 深部月震、陨石撞击、浅层月震和人工撞击事件的例子(修改自Nunn et al., 2020). 这些事件是在阿波罗12号台站的3个分量(MHZ、MH1和MH2)上记录到的
Figure 3. Examples of a deep moonquake, a meteoroid impact, a shallow moonquake and an artificial impact event (modified from Nunn et al., 2020). The events were recorded at seismic station S12 on 3 components (MHZ, MH1 and MH2)
图 4 2019年以前发表的月球速度和密度模型的比较(修改自Garcia et al., 2019).(a)从月球表面到月球中心的P波速度、S波速度和密度的径向剖面;(b)月壳和月幔上部的局部放大图. 实线表示每个研究的平均值或最可能的模型,虚线表示可用的一个标准偏差误差栏. 黑色虚线表示等值线,包括Khan和Mosegaard(2002)中概率密度最高的模型分布的一半,仅限于月球的前500 km
Figure 4. Comparison of previously published lunar seismic velocity models (modified from Garcia et al., 2019). Radial profiles of P-wave velocity on the left, S-wave velocity in the center, and density on the right are presented from the surface to center of the Moon (a) and a zoom on crust and uppermost mantle (b). Solid lines indicate either mean or most likely model for each study, dashed lines indicate one standard deviation error bar where available. Black dashed lines indicate the contour lines including half of the model distribution with highest probability density in Khan and Mosegaard (2002), limited to the first 500 km of the Moon
图 5 Garcia等(2019)发表的月球内部结构模型与以前模型的比较.(a~c)从月球表面到月球中心的P波速度、S波速度和密度的径向剖面;(d~f)地壳和最上地幔的局部放大
Figure 5. Comparison of previously published lunar internal structure models with model suites M1, M2, and M3. Radial profiles of P-wave velocity (a), and S-wave velocity (b), and density (c) as a function of depth. Plots in the bottom panel (d~f) show a zoom on upper mantle structure (modified from Garcia et al., 2019)
表 1 阿波罗月震仪器位置坐标(修改自Nunn et al., 2020)
Table 1. Locations of the Apollo seismic stations (modified from Nunn et al., 2020)
台站 坐标 纬度 经度 A11PSE 0.67322 23.47315 A12PSE −3.00990 336.57520 A14PSE −3.64408 342.52233 A14ALSEP −3.64419 342.52232 A15PSE 26.13411 3.62980 A15ALSEP 26.13406 3.62991 A16PSE −8.97590 15.49860 A16ALSEP −8.97590 15.49860 A17ALSEP 20.19230 30.76550 表 2 长周期月震仪平坦模式运行时间(修改自Nunn et al., 2020). 长周期月震仪以平坦模式运行的主要时间,在剩下的时间里,它们以峰值模式运行
Table 2. Flat Mode Operation (modified from Nunn et al., 2020). The main times when the long-period seismometers were operating in flat mode. For the remainder of the time they operated in peaked mode
台站 平坦模式运行时间 S12 1974-10-16,14:02:36.073~1975-04-09,15:31:03.702 1975-06-28,13:48:23.124~1977-03-27,15:41:06.247 S14 1976-09-18,08:24:35.026~1976-11-17,15:34:34.524 S15 1971-10-24,20:58:47.248~1971-11-08,00:34:39.747 1975-06-28,14:36:33.034~1977-03-27,15:24:05.361 S16 1972-05-13,14:08:03.157~1972-05-14,14:47:08.185 1975-06-29,02:46:45.610~1977-03-26,14:52:05.483 表 3 Nakamura等(1981)探测到并编目的月震类型及数量,并于2008年更新,2018年略有更正. 这些事件是在长周期仪器上探测到的
Table 3. Number of moonquakes of each different type detected and cataloged by Nakamura et al. (1981) and updated in 2008 with minor corrections in 2018. These events were detected on the long-period instruments
月震类型 数量 人工撞击 9 陨石撞击 1743 浅层月震 28 深部月震(分配到群组) 7083 深部月震(未分配到群组) 317 其它类型(包括热月震) 555 未分类 3323 合计 13058 -
[1] Blanchette-Guertin J F, Johnson C L, Lawrence J F. 2012. Investigation of scattering in lunar seismic coda[J]. Journal of Geophysical Research: Planets, 117(E6): E06003. [2] Blanchette-Guertin J F, Johnson C L, Lawrence J F. 2015. Modeling seismic energy propagation in highly scattering environments[J]. Journal of Geophysical Research: Planets, 120(3): 515-537. doi: 10.1002/2014JE004654 [3] Bulow R C, Johnson C L, Bills B G, et al. 2007. Temporal and spatial properties of some deep moonquake clusters[J]. Journal of Geophysical Research, 112(E9): E09003. [4] Cooper M R, Kovach R L, Watkins J S. 1974. Lunar near-surface structure[J]. Reviews of Geophysics, 12(3): 291-308. doi: 10.1029/RG012i003p00291 [5] Dainty A M, Toksöz M N, Anderson K R, et al. 1974. Seismic scattering and shallow structure of the moon in Oceanus Procellarum[J]. Earth Moon and Planets, 9(1-2): 11-29. [6] Daubar I, Lognonné P, Teanby N A, et al. 2018. Impact-seismic investigations of the InSight mission[J]. Space Science Reviews, 214(8): 1-68. [7] Dimech J L, Knapmeyer-Endrun B, Phillips D, et al. 2017. Preliminary analysis of newly recovered Apollo 17 seismic data[J]. Results in Physics, 7: 4457-4458. doi: 10.1016/j.rinp.2017.11.029 [8] Duennebier F, Sutton G H. 1974. Thermal moonquakes[J]. Journal of Geophysical Research, 79(29): 4351-4363. doi: 10.1029/JB079i029p04351 [9] Efroimsky M. 2012. Bodily tides near spin-orbit resonances[J]. Celestial Mechanics and Dynamical Astronomy, 112(3): 283-330. doi: 10.1007/s10569-011-9397-4 [10] Frohlich C, Nakamura Y. 2009. The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different?[J]. Physics of the Earth & Planetary Interiors, 173(3-4): 365-374. [11] Gagnepain-Beyneix J, Lognonné P, Chenet H, et al. 2006. A seismic model of the lunar mantle and constraints on temperature and mineralogy[J]. Physics of the Earth and Planetary Interiors, 159(3-4): 140-166. doi: 10.1016/j.pepi.2006.05.009 [12] Garcia R F, Gagnepain-Beyneix J, Chevrot S, et al. 2011. Very preliminary reference Moon model[J]. Physics of the Earth and Planetary Interiors, 188(1-2): 96-113. doi: 10.1016/j.pepi.2011.06.015 [13] Garcia R F, Khan A, Drilleau M, et al. 2019. Lunar seismology: An update on interior structure models[J]. Space Science Reviews, 215(8): 50. doi: 10.1007/s11214-019-0613-y [14] Giardini D, Lognonné P, Banerdt W. et al. 2020. The seismicity of Mars[J]. Nature Geoscience, 13(3): 205-212. doi: 10.1038/s41561-020-0539-8 [15] Gillet K, Margerin L, Calvet M, et al. 2017. Scattering attenuation profile of the Moon: Implications for shallow moonquakes and the structure of the megaregolith[J]. Physics of the Earth and Planetary Interiors, 262: 28-40. doi: 10.1016/j.pepi.2016.11.001 [16] Goins N R, Dainty A M, Toksöz M N. 1981. Lunar seismology: The internal structure of the Moon[J]. Journal of Geophysical Research: Solid Earth, 86(B6): 5061-5074. doi: 10.1029/JB086iB06p05061 [17] Haase I, Glser P, Knapmeyer M, et al. 2013. Improved coordinates of the Apollo 17 lunar seismic profiling experiment (LSPE) components[C]//Lunar and Planetary Science Conference (LPSC) [18] Hao J L, Zhang J H, Yao Z X. 2019. Evidence for diurnal periodicity of earthquakes from midnight to daybreak[J]. National Science Review, 6(5): 1016-1023. doi: 10.1093/nsr/nwy117 [19] Harada Y, Goossens S, Matsumoto K, et al. 2014. Strong tidal heating in an ultralow-viscosity zone at the core-mantle boundary of the Moon[J]. Nature Geoscience, 7(8): 569-572. doi: 10.1038/ngeo2211 [20] Heffels A, Knapmeyer M, Oberst J, et al. 2017. Re-evaluation of Apollo 17 lunar Seismic profiling experiment data[J]. Planetary and Space Science, 135: 43-54.. doi: 10.1016/j.pss.2016.11.007 [21] Jaumann R, Hiesinger H, Anand M, et al. 2012. Geology, geochemistry, and geophysics of the Moon: Status of current understanding[J]. Planetary and Space Science, 74(1): 15-41. doi: 10.1016/j.pss.2012.08.019 [22] 姜明明, 艾印双. 2010. 月震与月球内部结构[J]. 地球化学, 39(1): 18-27.Jiang M M, Ai Y S. 2010. Moonquakes and lunar interior[J]. Geochimica, 39(1): 18-27(in Chinese). [23] 祥华, 王彦宾, 古村孝志. 2015. 上月壳中的散射引起月震尾波的数值模拟研究[J]. 地球物理学报, 58(5): 1675-1691.Jiang X H, Wang Y B, Takashi F. 2015. Numerical simulation of lunar seismic coda caused by scattering in upper Moon crust[J]. Chinese Journal of Geophysics, 58(5): 1675-1691(in Chinese).姜 [24] Jolliff B L, Wieczorek M A, Shearer C K, et al. 2006. New Views of the Moon[M]. Chantilly, V A : Mineralogical Society of America. [25] Kawamura T, Kobayashi N, Tanaka S, et al. 2015. Lunar surface gravimeter as a lunar seismometer: Investigation of a new source of seismic information on the Moon[J]. Journal of Geophysical Research: Planets, 120(2): 343-358. doi: 10.1002/2014JE004724 [26] Kawamura T, Lognonné P, Nishikawa Y, et al. 2017. Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state[J]. Journal of Geophysical Research: Planets, 122(7): 1487-1504. doi: 10.1002/2016JE005147 [27] Khan A, Mosegaard K, Rasmussen K L. 2000. A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data[J]. Geophysical Research Letters, 27(11): 1591-1594. doi: 10.1029/1999GL008452 [28] Khan A, Mosegaard K. 2002. An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data[J]. Journal of Geophysical Research-Planets, 107(E6): 5036. doi: 10.1029/2001JE001658 [29] Khan A, Connolly J, Maclennan J, et al. 2007. Joint inversion of seismic and gravity data for lunar composition and thermal state[J]. Geophysical Journal International, 168(1): 243-258. doi: 10.1111/j.1365-246X.2006.03200.x [30] Khan A, Pommier A, Neumann G A, et al. 2013. The lunar moho and the internal structure of the Moon: A geophysical perspective[J]. Tectonophysics, 609: 331-352. doi: 10.1016/j.tecto.2013.02.024 [31] Khan A, Connolly J, Pommier A, et al. 2014. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution[J]. Journal of Geophysical Research: Planets, 119(10): 2197-2221. doi: 10.1002/2014JE004661 [32] Lammlein D R, Latham G V, Dorman J, et al. 1974. Lunar seismicity, structure, and tectonics[J]. Reviews of Geophysics, 12(1): 1-21. doi: 10.1029/RG012i001p00001 [33] Lammlein D R. 1977. Lunar seismicity and tectonics[J]. Physics of the Earth & Planetary Interiors, 14(3): 224-273. [34] Larose E, Khan A, Nakamura Y, et al. 2005. Lunar subsurface investigated from correlation of seismic noise[J]. Geophysical Research Letters, 32(16): L16201. doi: 10.1029/2005GL023518 [35] Latham G V, Ewing M, Press F, et al. 1970. Passive seismic experiment[J]. science, 167(3918): 455-457. doi: 10.1126/science.167.3918.455 [36] Li C, Liu D, Liu B, et al. 2019. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials[J]. Nature, 569: 378-382. doi: 10.1038/s41586-019-1189-0 [37] 林红磊, 丁春雨, 许学森, 张金海, 魏勇, 林杨挺. 2021. 月球就位光谱和雷达遥感科学研究进展[J]. 地球与行星物理论评, 52(4): 373-390.Lin H L, Ding C Y, Xu X S, et al. 2021. Review on the in-situ spectroscopy and radar remote sensing on the Moon[J]. Reviews of Geophysics and Planetary Physics, 52(4): 373=390(in Chinese). [38] 刘澜波. 2021. “洞察”号能够完成火星内部结构探测的使命吗?[J]. 地球与行星物理论评, 52(1): 115-122.Liu L B. 2021. Will InSight be able to accomplish the task to image Mars interior?[J] Reviews of Geophysics and Planetary Physics, 52(1): 115-122(in Chinese). [39] Lognonné P, Gagnepain-Beyneix J, Chenet H. 2003. A new seismic model of the Moon: Implications for structure, thermal evolution and formation of the Moon[J]. Earth and Planetary Science Letters, 211(1-2): 27-44. doi: 10.1016/S0012-821X(03)00172-9 [40] Lognonné P, Banerdt W B, Giardini D, et al. 2019. SEIS: Insight’s seismic experiment for internal structure of Mars[J]. Space Science Reviews, 215(1): 12. doi: 10.1007/s11214-018-0574-6 [41] Lognonné P, Banerdt W B, Pike W. et al. 2020. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data[J]. Nature Geoscience, 13(3): 213. doi: 10.1038/s41561-020-0536-y [42] Matsumoto K, Yama Da R, Kikuchi F, et al. 2015. Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR[J]. Geophysical Research Letters, 42(18): 7351-7358. doi: 10.1002/2015GL065335 [43] Nakamura Y. 1977. Hft events: Shallow moonquakes[J]. Physics of the Earth and Planetary Interiors, 14(3): 217-223. doi: 10.1016/0031-9201(77)90174-1 [44] Nakamura Y. 1978. A1 moonquakes: Source distribution and mechanism[C]//Lunar and Planetary Science Conference Proceedings. [45] Nakamura Y, Latham G V, Dorman H J, et al. 1979. Shallow moonquakes: Depth, distribution and implications as to the present state of the lunar interior[C]//Lunar and Planetary Science Conference Proceedings. [46] Nakamura Y. 1980. Shallow moonquakes: How they compare with earthquakes[C]//Lunar and Planetary Science Conference Proceedings. [47] Nakamura Y, Latham G V, Dorman H J, et al. 1981. Passive seismic experiment, long period event catalog, final version (1969 Day 202 - 1977 Day 273, ALSEP Stations 11, 12, 13, 14, 15, and 16)[R]. University of Texas Institute for Geophysics Technical Report. [48] Nakamura Y, Latham G V, Dorman H J. 1982. Apollo lunar seismic experiment: Final summary[J]. Journal of Geophysical Research, 87(S01): A117-A123. doi: 10.1029/JB087iS01p0A117 [49] Nakamura Y. 1983. Seismic velocity structure of the lunar mantle[J]. Journal of Geophysical Research, 88(Nb1): 677-686. doi: 10.1029/JB088iB01p00677 [50] Nakamura Y. 2003. New identification of deep moonquakes in the Apollo lunar seismic data[J]. Physics of the Earth & Planetary Interiors, 139(3-4): 197-205. [51] Nakamura Y. 2005. Farside deep moonquakes and deep interior of the Moon[J]. Journal of Geophysical Research, 110(E1): E01001. [52] Nimmo F, Faul U H, Garnero E J. 2012. Dissipation at tidal and seismic frequencies in a melt-free Moon[J]. Journal of Geophysical Research: Planets, 117(E9): E09005. [53] Nishitsuji Y, Rowe C A, Wapenaar K, et al. 2016. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry[J]. Journal of Geophysical Research: Planets, 121(4): 695-713. doi: 10.1002/2015JE004975 [54] Nishitsuji Y, Ruigrok E, Draganov D. 2020. Azimuthal anisotropy of the megaregolith at the Apollo 14 landing site[J]. Journal of Geophysical Research: Planets, 125(5): e2019JE006126. [55] Nunn C, Garcia R F, Nakamura Y, et al. 2020. Lunar seismology: A data and instrumentation review[J]. Space Science Reviews, 216(5): 89. doi: 10.1007/s11214-020-00709-3 [56] Oberst J. 1987. Unusually high stress drops associated with shallow moonquakes[J]. Journal of Geophysical Research, 92(B2): 1397-1405. doi: 10.1029/JB092iB02p01397 [57] Oberst J, Nakamura Y. 1991. A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network[J]. Icarus, 91(2): 315-325. doi: 10.1016/0019-1035(91)90027-Q [58] Onodera K, Kawamura T, Tanaka S, et al. 2021. Numerical simulation of lunar seismic wave propagation: Investigation of subsurface scattering properties near Apollo 12 landing site[J]. Journal of Geophysical Research: Planets, 126(3): e2020JE006406. [59] 裴照宇, 刘继忠, 王倩, 等. 2020. 月球探测进展与国际月球科研站[J]. 科学通报, 65: 2577-2586. doi: 10.1360/TB-2020-0582Pei Z Y, Liu J Z, Wang Q, et al. 2020. Overview of lunar exploration and International Lunar Research Station[J]. Chinese Science Bulletin, 65: 2577-2586(in Chinese). doi: 10.1360/TB-2020-0582 [60] Saal A., Hauri E H, Cascio M L, et al. 2008. Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior[J]. Nature, 454(7201): 192-195. doi: 10.1038/nature07047 [61] Sellers P C. 1992. Seismic evidence for a low-velocity lunar core[J]. Journal of Geophysical Research: Planets, 97(E7): 11663-11672. doi: 10.1029/92JE00958 [62] Sens-Schönfelder C, Larose E. 2010. Lunar noise correlation, imaging and monitoring[J]. Earthquake Science, 23(5): 519-530. doi: 10.1007/s11589-010-0750-6 [63] Sollberger D, Schmelzbach C, Robertsson J, et al. 2016. The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis[J]. Geophysical Research Letters, 43(19): 10078-10087. doi: 10.1002/2016GL070883 [64] 孙伟家, 王一博, 魏勇, 赵亮. 2021. 火星地震学与内部结构研究[J]. 地球与行星物理论评, 52(4): 437-449.Sun W J, Wang Y B, Wei Y, Zhao L. 2021. Martian seismology and review of Martian interior structure[J]. Reviews of Geophysics and Planetary Physics, 52(4):437-449(in Chinese). [65] Tanimoto T, Eitzel M, Yano T. 2008. The noise cross-correlation approach for Apollo 17 LSPE data: Diurnal change in seismic parameters in shallow lunar crust[J]. Journal of Geophysical Research, 113(E8): E08011. [66] Toksöz M N, Dainty A M, Solomon S C, et al. 1974. Structure of the moon[J]. Reviews of Geophysics, 12(4): 539-567. doi: 10.1029/RG012i004p00539 [67] Vinnik L, Chenet H, Gagnepain-Beyneix J, et al. 2001. First seismic receiver functions on the Moon[J]. Geophysical Research Letters, 28(15): 3031-3034. doi: 10.1029/2001GL012859 [68] Wang Y B, Takenaka H, Jiang X, et al. 2013. Modelling two-dimensional global seismic wave propagation in a laterally heterogeneous whole-Moon model[J]. Geophysical Journal International, 192(3): 1271-1287. [69] Watters T R, Weber R C, Collins G C, et al. 2017. Shallow lunar seismic activity and the current stress state of the Moon[C]//Lunar and Planetary Science Conference Proceedings. [70] Weber R C, Lin P Y, Garnero E J, et al. 2011. Seismic detection of the lunar core[J]. science, 331(6015): 309-312. doi: 10.1126/science.1199375 [71] Wieczorek M A, Neumann G A, Nimmo F, et al. 2013. The crust of the Moon as seen by GRAIL[J]. science, 339(6120): 671-675. doi: 10.1126/science.1231530 [72] Williams J G. 2014. Lunar interior properties from the GRAIL mission[J]. Journal of Geophysical Research: Planets, 119: 1546-1578. doi: 10.1002/2013JE004559 [73] Wu W, Li C, Zuo W, et al. Lunar farside to be explored by Chang’e-4[J]. Nature Geoscience, 2019. 12(4): 222-223. doi: 10.1038/s41561-019-0341-7 [74] 占伟, 李斐. 2007. 月球内部构造研究综述[J]. 地球物理学进展, 22(3): 83-88.Zhan W, Li P. 2007. The inner structure of the moon[J]. Progress in Geophysics, 22(3): 83-88(in Chinese). [75] Zhang X, Lv W, Zhang L, Zhang J, Lin Y, Yao Z. 2021. Self-organization characteristics of lunar regolith detected by lunar penetrating radar data[J]. Remote Sensing (uner review) [76] 赵娜, 朱培民, 袁悦锋, 等. 2012. 中国未来载人登月月震实验必要性和方案设计[J]. 地质科技情报, 31(4): 137-142.Zhao N, Zhu P M, Yuan Y F, et al. 2012. Necessity and design for seismic experiment of China future manned Moon landing missions[J]. Geological Science and Technology Information, 31(4): 137-142(in Chinese). [77] Zhong S, Qin C, Geruo A, et al. 2012. Can tidal tomography be used to unravel the long‐wavelength structure of the lunar interior?[J]. Geophysical Research Letters, 39(15): L15201. -