• ISSN 2097-1893
  • CN 10-1855/P

月球就位光谱和雷达遥感科学研究进展

林红磊 丁春雨 许学森 张金海 魏勇 林杨挺

引用本文: 林红磊,丁春雨,许学森,张金海,魏勇,林杨挺. 2021. 月球就位光谱和雷达遥感科学研究进展. 地球与行星物理论评,52(4):373-390
Lin H L, Ding C Y, Xu X S, Zhang J H, Wei Y, Lin Y T. 2021. Review on the in-situ spectroscopy and radar remote sensing on the Moon. Reviews of Geophysics and Planetary Physics, 52(4): 373-390

月球就位光谱和雷达遥感科学研究进展

doi: 10.19975/j.dqyxx.2021-031
基金项目: 国家自然科学基金资助项目(42004099,41902318);中国科学院月球与深空探测重点实验室开放基金(LDSE202005,LDSE2020003);中国科学院地质与地球物理研究所重点部署项目(IGGCAS-201905);中国科学院空间主动光电技术重点实验室开放基金(2021-ZDKF-3)
详细信息
    作者简介:

    林红磊(1992-),男,副研究员,主要从事月球与行星遥感的研究. E-mail:linhonglei@mail.iggcas.ac.cn

    通讯作者:

    林杨挺(1962-),男,研究员,主要从事行星科学的研究. E-mail:linyt@mail.iggcas.ac.cn

  • 中图分类号: P184

Review on the in-situ spectroscopy and radar remote sensing on the Moon

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 42004099, 41902318), the Key Laboratory of Lunar and Deep Space Exploration, CAS (LDSE202005, LDSE2020003), the Key Research Program of the Institute of Geology and Geophysics, CAS (IGGCAS-201905) and the Open Funding of Key Laboratory of Space Active Optical-electro Technology, CAS (2021-ZDKF-3)
  • 摘要: 本文对月球就位光谱和雷达探测的科学研究进展进行综述,着重介绍了嫦娥三号和嫦娥四号探测器在月表巡视探测过程中获取的重要成果. 光谱探测包括月表物质组成、光度特性、太空风化信息和热辐射特征等方面. 雷达探测包括月表浅层结构探测、月表之下空洞/熔岩管道的探测和月壤介电特性参数反演. 最后对月球就位光谱和雷达探测的发展趋势进行了展望和探讨.

     

  • 图  1  月球就位探测器.(a)嫦娥三号着陆器;(b)嫦娥四号着陆器;(c)“玉兔号”月球车;(d)“玉兔二号”月球车. 着陆器图像为月球车上的全景相机拍摄;月球车图像为着陆器上的地形相机拍摄

    Figure  1.  The in-situ spacecraft on the Moon. (a) The Chang'E-3 lander. (b) The Chang'E-4 lander. (c) The Yutu rover. (d) The Yutu-2 rover. The lander images were acquired by panorama cameras onboard the rover. The rover images were acquired by the terrain cameras onboard the lander

    图  2  嫦娥三号着陆区地质背景与月球车行进路线(修改自Ding et al., 2020b).(a)着陆点(白色五角星)位于直径约450 m的紫微撞击坑边缘,“b”表示图(b)的位置和范围. 背景为LROC WAC图像.(b)嫦娥三号降落相机拍摄的图像显示着陆点周围存在许多小撞击坑,“c”表示图(c)的范围. 白色线条表示月球车的行进轨迹.(c)导航点N101到 N208行进路线和速度,颜色表示月球车运动速度,平均速度为~5.5 cm/s

    Figure  2.  Geological context of the Chang'E 3 (CE-3) landing site and the traveling route of Yutu Rover (modified from Ding et al., 2020b). (a) The lander, marked as a white star, is located at the eastern rim of the Ziwei crater, which has a diameter of ~ 450 m. The base map is from Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) image. (b) Image acquired by the CE-3 descent camera shows numerous small craters within the landing area. The solid white line illustrates the route of the Yutu rover. (c) Traveling route and voloecity of the Yutu rover from N101 to N208. The color bar is for traveling speed of the rover which has an average value of ~ 5.5 cm/s

    图  3  嫦娥四号探测器着陆区(修改自Lin et al., 2020a).(a)嫦娥四号着陆区地质背景,黄色为着陆点. 背景图为LROC WAC图像;(b)着陆区附近芬森撞击坑的溅射纹;图像来自于KAGUYA Multiband Imager数据;(c)“玉兔二号”月球车前24月昼的行驶路径,背景图像为LROC NAC图像

    Figure  3.  The landing of the Chang'E-4 lander (modified from Lin et al., 2020a). (a) The geologic context of the Chang'E-4 landing site (yellow star). The background is LROC WAC image. (b) The ejecta strips radiating from Finsen crater. (c) The rover path in the first 24 lunar days of mission operations. The background is LROC Narrow Angle Camera (NAC) image

    图  4  嫦娥三号探测器着陆区月壤光谱

    Figure  4.  The in-situ spectra acquired by the Yutu rover at the Chang'E-3 landing site

    图  5  “玉兔二号”月球车在月表的光度测量实验(修改自Lin et al., 2020d).(a)月壤光度测量示意图;(b)地形对局地观测角度的影响,图中iegφθ1θ2分别为入射角、出射角、相位角、月球车与太阳的相对方位角以及平行和垂直于观测方向的月表坡度,i'、e '则为地形校正后的入射角和出射角

    Figure  5.  Spectrophotometric measurements of lunar regolith by the Yutu-2 rover (modified from Lin et al., 2020d). (a) illustration of photometric experiments conducted by the Yutu-2 rover. (b) Illustration of viewing geometries and effect of micro-topography

    图  6  地形校正前后嫦娥四号着陆区的月表散射特性(修改自Lin et al., 2020d).(a)相曲线拟合,空心点代表测量值,实心点代表拟合值;(b)单次散射反照率随波长的变化;(c)Henyey-Greenstein (HG)相函数参数b 随波长的变化;(d)Henyey-Greenstein (HG)相函数参数c随波长的变化

    Figure  6.  Photometric properties of lunar regolith at the Chang'E-4 landing site retrieved from the spectra before and after topographic correction (modified from Lin et al., 2020d). (a) Model fits of the phase curves. The open circles show measurements, and the solid circles show the modeled values. (b) Single-scattering albedo spectra. (c) Phase function parameter b. (d) Phase function parameter c

    图  7  月岩粉末与成熟月壤光谱对比. 实线为没有受太空风化影响的月岩粉末,虚线为受太空风化强烈影响的成熟月壤(修改自Hapke, 2001

    Figure  7.  Spectral comparison between lunar rock powder and mature lunar soil. The solid line is the lunar rock powder not affected by space weathering, while the dotted line is the mature lunar soil strongly affected by space weathering (modified from Hapke, 2001)

    图  8  嫦娥四号着陆区月壤光谱热辐射特征(修改自Lin et al., 2021).(a)单次散射反照率(SSA)光谱;(b)归一化到1.55 μm的SSA光谱;(c)1.55 μm和2.38 μm的SSA的关系;(d)着陆区月表温度. 黑色点为LRO轨道器Diviner测量温度(修改自Williams et al., 2017

    Figure  8.  Thermal characteristics of spectra of lunar soil at the Chang'E-4 landing site (modified from Lin et al., 2021). (a) Single-scattering albedo (SSA) spectra. (b) SSA spectra normalized at 1.55 μm. (c) Correlation between SSA at 1.55 and 2.38 μm. (d) The temperatures at the Chang'E-4 landing site. The black points are diurnal variations of Diviner bolometric temperatures (modified from Williams et al., 2017)

    图  9  嫦娥三号着陆区高频雷达揭示浅层月壤层内结构(修改自Fa et al., 2015; Xiao et al., 2015; Zhang J et al., 2015; Zhang et al., 2019

    Figure  9.  The shallow regolith structure revealed by the high-frequency lunar penetrating radar onboard CE-3 mission (modified from Fa et al., 2015; Xiao et al., 2015; Zhang J et al., 2015; Zhang et al., 2019)

    图  10  嫦娥四号着陆区高频雷达揭示冯·卡门撞击坑月表下大于40 m层序结构.(a)修改自Li等(2020);(b)修改自Zhang J 等(2021);(c)修改自Lai等(2019);(d)修改自Dong等(2020b);(e)修改自Xiao等(2021);(f)修改自Zhang L等(2021)

    Figure  10.  Subsurface structure (> 40 m) revealed by the high-frequency lunar penetrating radar on the floor of the Von Karman crater at CE-4 landing site. (a) Modified from Li et al. (2020); (b) Modified from Zhang J et al. (2021); (c) Modified from Lai et al. (2019); (d) Modified from Dong et al. (2020b); (e) Modified from Xiao et al. (2021); (f) Modified from Zhang L et al. (2021)

    图  11  嫦娥四号着陆区低频雷达揭示月表下大于 400 m 内的层序结构.(a)修改自Zhang J等(2021);(b)~(c)修改自Lai等(2020);(d)~(e)修改自Zhang等(2020)

    Figure  11.  Subsurface structure (> 400 m) observed by the low-frequency lunar penetrating radar at CE-4 landing site. (a) Modified from Zhang J et al. (2021); (b) ~ (c) Modified from Lai et al. (2020); (d) ~ (e) Modified from Zhang et al. (2020)

    图  12  嫦娥三号着陆区高频测月雷达揭示了月表下约2 m处存在一个高度约为3.1 m的潜在地下空洞,背景为LROC WAC图像(修改自Ding et al., 2021a

    Figure  12.  A potential subsurface cavity was revealed by the high-frequency lunar penetrating radar onboard CE-3 mission. The cavity is below lunar surface at depth of ~ 2 m and has a height of ~ 3.1 m. The base map is from LROC WAC image (modified from Ding et al., 2021a)

    图  13  (a)阿波罗 样品实验室测量的介电常数与嫦娥三号高频雷达反演的介电常数对比分析.(b)随着深度增加嫦娥三号月表下介电常数的分布(修改自Ding et al., 2020a

    Figure  13.  Comparison between the dielectric permittivity measured for the Apollo samples and the LPR-derived RMS bulk permittivity of the continuous ejecta deposit of Ziwei crater. (b) The depth profile of the estimated RMS bulk permittivity at CE-3 landing site (modified from Ding et al., 2020a)

    图  14  嫦娥三号着陆区钛铁含量.(a)不同损耗角正切与高频通道雷达穿透深度之间的关系(修改自Xing et al., 2017);(b)月球车沿导航点 N105至 N208间的 TiO2 + FeO 含量的分布;(c)TiO2 + FeO 含量的插值图(修改自Ding et al., 2020b

    Figure  14.  The derived content of TiO2 + FeO at CE-3 landing site. (a) the relationship between the different loss tangent and the penetration depth of the high frequency channel (modified from Xing et al., 2017); (B) the estimated content of TiO2 + FeO from the navigation point N105 to N208 along Yutu rover traveling route; (c) the interpolated map for the content of TiO2 + FeO (modified from Ding et al., 2020b)

  • [1] Carrer L, Gerekos C, Bruzzone L. 2018. A multi-frequency radar sounder for lava tubes detection on the Moon: Design, performance assessment and simulations [J]. Planetary and Space Science, 152: 1-17. doi: 10.1016/j.pss.2018.01.011
    [2] Chen J, Ling Z, Qiao L, et al. 2020. Mineralogy of Chang'e-4 landing site: preliminary results of visible and near-infrared imaging spectrometer [J]. Science China Information Sciences, 63(4): 1-12.
    [3] 邸凯昌, 刘召芹, 刘斌, 等. 2019. 多源数据的嫦娥四号着陆点定位[J].遥感学报, 23(1): 177-184

    Di K, Liu Z, Liu B, et al. 2019. Chang’e-4 lander localization based on multi-source data[J]. Journal of Remote sensing, 23(1): 177-184 (in Chinese).
    [4] Di K, Zhu M H, Yue Z, et al. 2019. Topographic evolution of Von Kármán Crater revealed by the Lunar Rover Yutu‐2 [J]. Geophysical Research Letters, 46(22): 12764-12770. doi: 10.1029/2019GL085252
    [5] Ding C, Su Y, Xing S, et al. 2017. Numerical simulations of the lunar penetrating radar and investigations of the geological structures of the lunar regolith layer at the Chang'E 3 landing site [J]. International Journal of Antennas and Propagation, 1:1-11.
    [6] Ding C, Li C, Xiao Z, et al. 2020a. Layering structures in the porous material beneath the Chang'e‐3 landing site [J]. Earth and Space Science, 7(10): e2019EA000862.
    [7] Ding C, Xiao Z, Su Y, et al. 2020b. Compositional variations along the route of Chang'e-3 Yutu rover revealed by the lunar penetrating radar [J]. Progress in Earth and Planetary Science, 7(1): 1-11. doi: 10.1186/s40645-019-0311-0
    [8] Ding C, Xiao Z, Su Y.. 2021a. A potential subsurface cavity in the continuous ejecta deposits of the Ziwei crater discovered by the Chang'E-3 mission [J]. Earth, Planets and Space, 73(1): 1-12. doi: 10.1186/s40623-020-01323-x
    [9] Ding C, Xiao Z, Su Y, et al. 2021b. Hyperbolic reflectors determined from peak echoes of ground penetrating radar [J]. Icarus, 358: 114280. doi: 10.1016/j.icarus.2020.114280
    [10] Dong Z, Fang G, Zhao D, et al. 2020a. Dielectric properties of lunar subsurface materials [J]. Geophysical Research Letters, 47(22): e2020GL089264.
    [11] Dong Z, Feng X, Zhou H, et al. 2020b. Properties analysis of lunar regolith at Chang'E-4 landing site based on 3d velocity spectrum of lunar penetrating radar [J]. Remote Sens-Basel, 12(4): 629. doi: 10.3390/rs12040629
    [12] Duke M B, Nagle J. 1976. Lunar Core Catalog[M]. Lyndon B. Johnson Space Center.
    [13] Fa W, Liu T, Zhu M H, et al. 2014. Regolith thickness over Sinus Iridum: Results from morphology and size‐frequency distribution of small impact craters [J]. Journal of Geophysical Research: Planets, 119(8): 1914-1935. doi: 10.1002/2013JE004604
    [14] Fa W, Zhu M H, Liu T, et al. 2015. Regolith stratigraphy at the Chang'E‐3 landing site as seen by lunar penetrating radar [J]. Geophysical Research Letters, 42(23): 10179-110187.
    [15] Fang G, Zhou B, Ji Y, et al. 2014. Lunar penetrating radar onboard the Chang'e-3 mission [J]. Research in Astronomy and Astrophysics, 14(12): 1607-1622. doi: 10.1088/1674-4527/14/12/009
    [16] Feng J, Su Y, Ding C, et al. 2017. Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data [J]. Icarus, 284: 424-430. doi: 10.1016/j.icarus.2016.12.005
    [17] Gou S, Di K, Yue Z, et al. 2019. Lunar deep materials observed by Chang'e-4 rover [J]. Earth and Planetary Science Letters, 528: 115829. doi: 10.1016/j.jpgl.2019.115829
    [18] Gou S, Di K, Yue Z, et al. 2020a. Forsteritic olivine and magnesium-rich orthopyroxene materials measured by Chang'e-4 rover [J]. Icarus, 345: 113776. doi: 10.1016/j.icarus.2020.113776
    [19] Gou S, Yue Z, Di K, et al. 2020b. In situ spectral measurements of space weathering by Chang'e-4 rover [J]. Earth and Planetary Science Letters, 535: 116117. doi: 10.1016/j.jpgl.2020.116117
    [20] Gou S, Yue Z, Di K, et al. 2020c. Impact melt breccia and surrounding regolith measured by Chang'e-4 rover [J]. Earth and Planetary Science Letters, 544: 116378. doi: 10.1016/j.jpgl.2020.116378
    [21] Hapke B. 2001. Space weathering from Mercury to the asteroid belt [J]. Journal of Geophysical Research: Planets, 106(E5), 10039-10073. doi: 10.1029/2000JE001338
    [22] Hapke B. 2012. Bidirectional reflectance spectroscopy 7 The single particle phase function hockey stick relation [J]. Icarus, 221(2): 1079-1083. doi: 10.1016/j.icarus.2012.10.022
    [23] Hapke B, Denevi B, Sato H, et al. 2012. The wavelength dependence of the lunar phase curve as seen by the Lunar Reconnaissance Orbiter wide-angle camera [J]. Journal of Geophysical Research: Planets, 117: E00H15.
    [24] Haruyama J, Hioki K, Shirao M, et al. 2009. Possible lunar lava tube skylight observed by SELENE cameras [J]. Geophysical Research Letters, 36(21): L21206. doi: 10.1029/2009GL040635
    [25] He Z, Li C, Xu R, et al. 2019. Spectrometers based on acousto-optic tunable filters for in-situ lunar surface measurement [J]. Journal of Applied Remote Sensing, 13(2): 027502.
    [26] Heiken G, Morris R, McKay D, et al. 1976. Petrographic and ferromagnetic resonance studies of the Apollo 15 deep drill core[C]//Lunar and Planetary Science Conference Proceedings.
    [27] Heiken G H, Vaniman D T, French B M. 1991. Lunar Sourcebook, A User's Guide to the Moon[M]. Cambridge : Cambridge University Press.
    [28] Hu X, Ma P, Yang Y, et al. 2019. Mineral abundances inferred from in situ reflectance measurements of Chang'E‐4 landing site in south pole‐Aitken Basin [J]. Geophysical Research Letters, 46(16): 9439-9447. doi: 10.1029/2019GL084531
    [29] Huang J, Xiao Z Y, Flahaut J, et al. 2018. Geological characteristics of Von Karman Crater, Northwestern South pole-Aitken Basin: Chang'E-4 landing site region[J]. Journal of Geophysical Research: Planets, 123(7): 1684-1700. doi: 10.1029/2018JE005577
    [30] Huang J, Xiao Z, Xiao L, et al. 2020. Diverse rock types detected in the lunar South Pole–Aitken Basin by the Chang'E-4 lunar mission [J]. Geology, 48(7): 723-727. doi: 10.1130/G47280.1
    [31] Jia Y, Zou Y, Ping J, et al. 2018. The scientific objectives and payloads of Chang'E− 4 mission [J]. Planetary and Space Science, 162: 207-215. doi: 10.1016/j.pss.2018.02.011
    [32] Jiang T, Hu X, Zhang H, et al. 2021. In situ lunar phase curves measured by Chang'E-4 in the Von Kármán Crater, South Pole-Aitken basin [J]. Astron Astrophys, 646: A2. doi: 10.1051/0004-6361/202039252
    [33] Jin W, Zhang H, Yuan H, et al. 2015. In situ optical measurements of Chang'E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith [J]. Geophysical Research Letters, 42(20): 8312-8319. doi: 10.1002/2015GL065789
    [34] Johnson J R, Shepard M K, Grundy W M, et al. 2013. Spectrogoniometry and modeling of martian and lunar analog samples and Apollo soils [J]. Icarus, 223(1): 383-406. doi: 10.1016/j.icarus.2012.12.004
    [35] Kaku T, Haruyama J, Miyake W, et al. 2017. Detection of intact lava tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder [J]. Geophysical Research Letters, 44(20): 10155-110161. doi: 10.1002/2017GL074998
    [36] Lai J, Xu Y, Zhang X, et al. 2016, Structural analysis of lunar subsurface with Chang׳ E-3 lunar penetrating radar [J]. Planetary and Space Science, 120: 96-102. doi: 10.1016/j.pss.2015.10.014
    [37] Lai J, Xu Y, Zhang X, et al. 2019. Comparison of dielectric properties and structure of lunar regolith at Chang'e‐3 and Chang'e‐4 landing sites revealed by ground‐penetrating radar[J]. Geophysical Research Letters, 46(22): 12783-12793. doi: 10.1029/2019GL084458
    [38] Lai J, Xu Y, Bugiolacchi R, et al. 2020. First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside [J]. Nat Commun, 11(1): 1-9. doi: 10.1038/s41467-019-13993-7
    [39] Li C, Wang Z, Xu R, et al. 2019a. The scientifific information model of Chang'E‐4 visible and near‐IR imaging spectrometer (VNIS) and in‐orbit verification [J]. Sensors, 19(12): 2806. doi: 10.3390/s19122806
    [40] Li C, Liu D, Liu B, et al. 2019b. Chang'E-4 initial spectroscopic identification of lunar far-side mantle-derived materials [J]. Nature, 569(7756): 378-382. doi: 10.1038/s41586-019-1189-0
    [41] Li C, Su Y, Pettinelli E, et al. 2020. The Moon's farside shallow subsurface structure unveiled by Chang'E-4 Lunar Penetrating Radar [J]. Science advances, 6(9): eaay6898. doi: 10.1126/sciadv.aay6898
    [42] Li C, Zhang J. 2021. Velocity analysis using separated diffractions for lunar penetrating radar obtained by Yutu-2 rover [J]. Remote Sensing, 13: 1387. doi: 10.3390/rs13071387
    [43] Lin H, He Z, Yang W, et al. 2020a. Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA-impact melt pool [J]. National Science Review, 7(5): 913-920. doi: 10.1093/nsr/nwz183
    [44] Lin H, Lin Y, Yang W, et al. 2020b. New insight into lunar regolith‐forming processes by the lunar rover Yutu‐2 [J]. Geophysical Research Letters, 47(14): e2020GL087949.
    [45] Lin H, Xu R, Yang W, et al. 2020c. In situ photometric experiment of lunar regolith with visible and near‐infrared imaging spectrometer on board the Yutu‐2 lunar rover [J]. Journal of Geophysical Research: Planets, 125(2): e2019JE006076.
    [46] Lin H, Yang Y, Lin Y, et al. 2020d. Photometric properties of lunar regolith revealed by the Yutu-2 rover [J]. Astronomy & Astrophysics, 638: A35. doi: 10.1051/0004-6361/202037859
    [47] Lin H, Li S, Lin Y, et al. 2021. Thermal modeling of the lunar regolith at the Chang'E‐4 landing site [J]. Geophysical Research Letters, 48(6): e2020GL091687.
    [48] Ling Z, Jolliff B L, Wang A, et al. 2015. Correlated compositional and mineralogical investigations at the Chang'e-3 landing site [J]. Nature Communications, 6(1):1-9.
    [49] Liu Z, Di K, Peng M, et al. 2015. High precision landing site mapping and rover localization for Chang’e-3 mission [J]. Science China Physics, Mechanics & Astronomy, 58(1): 1-11.
    [50] Lv W C, Li C. Song H, et al. 2020. Comparative analysis of reflection characteristics of lunar penetrating radar data using numerical simulations [J]. Icarus, 350:113896. doi: 10.1016/j.icarus.2020.113896
    [51] Mcguire A F, Hapke B W. 1995. An experimental-study of light-scattering by large,irregular particles [J]. Icarus, 113(1): 134-155. doi: 10.1006/icar.1995.1012
    [52] Miyamoto H, Haruyama J i, Kobayashi T, et al. 2005. Mapping the structure and depth of lava tubes using ground penetrating radar [J]. Geophysical Research Letters, 32(21): L21316. doi: 10.1029/2005GL024159
    [53] Moriarty D P, Pieters C M. 2018. The character of South Pole-Aitken Basin: Patterns of surface and subsurface composition [J]. Journal of Geophysical Research: Planets, 123(3): 729-747. doi: 10.1002/2017JE005364
    [54] Noble S, Pieters C. 2003. Space weathering on Mercury: Implications for remote sensing [J]. Solar System Research, 37(1), 31-35. doi: 10.1023/A:1022395605024
    [55] Paige D, Foote M, Greenhagen B, et al. 2010. The lunar reconnaissance orbiter diviner lunar radiometer experiment [J]. Space Science Reviews, 150: 125–160. doi: 10.1007/s11214-009-9529-2
    [56] Pieters C M, Fischer E M, Rode O, et al. 1993. Optical effects of space weathering - the role of the finest fraction [J]. Journal of Geophysical Research: Planets, 98(E11): 20817-20824. doi: 10.1029/93JE02467
    [57] Pommerol A, Kofman W, Audouard J, et al. 2010. Detectability of subsurface interfaces in lunar maria by the LRS/SELENE sounding radar: Influence of mineralogical composition [J]. Geophysical Research Letters, 37(3):L03201.
    [58] Qi X, Ling Z, Zhang J, et al. 2020. Photometric normalization of Chang'e-4 visible and near-Infrared imaging spectrometer datasets: A combined study of in-situ and laboratory spectral measurements [J]. Remote Sensing, 12(19): 3211. doi: 10.3390/rs12193211
    [59] Qiao L, Xiao Z, Zhao J, et al. 2016. Subsurface structures at the Chang'e-3 landing site: Interpretations from orbital and in-situ imagery data [J]. Journal of Earth Science, 27(4): 707-715. doi: 10.1007/s12583-015-0655-3
    [60] Sato H, Robinson M S, Hapke B, et al. 2014. Resolved Hapke parameter maps of the Moon [J]. Journal of Geophysical Research: Planets, 119(8): 1775-1805. doi: 10.1002/2013JE004580
    [61] Shkuratov Y, Kaydash V, Korokhin V, et al. 2011. Optical measurements of the Moon as a tool to study its surface [J]. Planetary and Space Science, 59(13): 1326-1371. doi: 10.1016/j.pss.2011.06.011
    [62] Song H, Li C, Zhang J, et al. (2020). Rock location and property analysis of lunar regolith at Chang'E-4 landing site based on local correlation and semblance analysis [J]. Remote Sensing, 13(1): 48.
    [63] Ulaby F, Long D. 2014. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor: University of Michigan Press.
    [64] Wang Z, Wu Y, Blewett D T, et al. 2017. Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang'E‐3 mission [J]. Geophysical Research Letters, 44(8): 3485-3492. doi: 10.1002/2017GL072652
    [65] Williams J P, Paige D A, Greenhagen B T, et al. 2017. The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment [J]. Icarus, 283: 300-325. doi: 10.1016/j.icarus.2016.08.012
    [66] Wu W, Li C, Zuo W, et al. 2019. Lunar farside to be explored by Chang'e-4 [J]. Nature Geoscience, 12: 222-223. doi: 10.1038/s41561-019-0341-7
    [67] Wu Y, Hapke B. 2018. Spectroscopic observations of the Moon at the lunar surface [J]. Earth and Planetary Science Letters, 484: 145-153. doi: 10.1016/j.jpgl.2017.12.003
    [68] Wu Y, Wang Z, Cai W, et al. 2018. The absolute reflectance and new Calibration Site of the Moon [J]. The Astronomical Journal, 155(5): 213. doi: 10.3847/1538-3881/aabaf5
    [69] Wu Y, Kührt E, Grott M, et al. 2021. Chang'E‐4 rover spectra revealing micro‐scale surface thermophysical properties of the Moon [J]. Geophysical Research Letters, 48(4): e2020GL089226.
    [70] Xiao L, Zhu P, Fang G, et al. 2015. A young multilayered terrane of the northern Mare Imbrium revealed by Chang'E-3 mission [J]. Science, 347(6227): 1226-1229. doi: 10.1126/science.1259866
    [71] Xiao Y, Su Y, Dai S, et al. 2019. Ground experiments of Chang'e-5 lunar regolith penetrating radar [J]. Advances in Space Research, 63(10): 3404-3419. doi: 10.1016/j.asr.2019.02.001
    [72] Xiao Z, Ding C, Xie M, et al. 2021. Ejecta From the Orientale Basin at the Chang'E‐4 Landing Site [J]. Geophysical Research Letters, 48(3): e2020GL090935.
    [73] Xing S-G, Su Y, Feng J-Q,et al. 2017. The penetrating depth analysis of Lunar Penetrating Radar onboard Chang'e-3 rover [J]. Research in Astronomy and Astrophysics, 17(5): 046. doi: 10.1088/1674-4527/17/5/46
    [74] Xu X, Liu J, Liu D, et al. 2020. Photometric correction of Chang'E-1 interference imaging ipectrometer's (IIM) limited observing geometries data with Hapkemodel[J]. Remote Sensing, 12(22): 3676. doi: 10.3390/rs12223676
    [75] Yang Y, Lin H, Liu Y, et al. 2020. The effects of viewing geometry on the spectral analysis of lunar regolith as inferred by in situ spectrophotometric measurements of Chang'E‐4 [J]. Geophysical Research Letters, 47(8): e2020GL087080.
    [76] Zhang H-B, Zheng L, Su Y, et al. 2014. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments [J]. Research in Astronomy and Astrophysics, 14(12): 1633. doi: 10.1088/1674-4527/14/12/011
    [77] Zhang H, Yang Y, Yuan Y, et al. 2015. In situ optical measurements of Chang'E-3 landing site in Mare Imbrium: 1. Mineral abundances inferred from spectral reflectance [J]. Geophysical Research Letters, 42(17): 6945-6950. doi: 10.1002/2015GL065273
    [78] Zhang J, Yang W, Hu S, et al. 2015. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu [J]. Proceedings of the National Academy of Sciences, 112(17): 5342-5347. doi: 10.1073/pnas.1503082112
    [79] Zhang J, Zhou B, Lin Y, et al. 2021. Lunar regolith and substructure at Chang'E-4 landing site in South Pole–Aitken basin [J]. Nature Astronomy, 5(1): 25-30. doi: 10.1038/s41550-020-1197-x
    [80] Zhang L, Zeng Z, Li J, et al. 2019. A story of regolith told by Lunar Penetrating Radar [J]. Icarus, 321: 148-160. doi: 10.1016/j.icarus.2018.11.006
    [81] Zhang L, Li J, Zeng Z. 2020. Stratigraphy of the Von Kármán Crater Based on Chang'E‐4 Lunar penetrating radar data [J]. Geophysical Research Letters, 47(15): e2020GL088680.
    [82] Zhang L, Xu Y, Bugiolacchi R, et al. 2021. Rock abundance and evolution of the shallow stratum on Chang'e-4 landing site unveiled by lunar penetrating radar data [J], Earth and Planetary Science Letters, 564: 116912. doi: 10.1016/j.jpgl.2021.116912
    [83] Zhao J N, Huang J, Qiao L, et al. 2014. Geologic characteristics of the Chang'E-3 exploration region [J]. Science China Physics, Mechanics & Astronomy, 57(3): 569-576.
    [84] Zhou B, Shen S, Lu W, et al. 2020. The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission [J]. Earth and Planetary Physics, 4(4): 345-354.
  • 加载中
图(14)
计量
  • 文章访问数:  624
  • HTML全文浏览量:  242
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 录用日期:  2021-05-20
  • 网络出版日期:  2021-05-25
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回