• ISSN 2097-1893
  • CN 10-1855/P

SWARM卫星观测到的一次台风消亡产生的电离层扰动

杜晓辉 张学民

引用本文: 杜晓辉,张学民. 2021. SWARM卫星观测到的一次台风消亡产生的电离层扰动. 地球与行星物理论评,52(6):662-674
Du X H, Zhang X M. 2021. An ionospheric disturbance caused by the disintegration of a typhoon observed by the SWARM satellites. Reviews of Geophysics and Planetary Physics, 52(6): 662-674

SWARM卫星观测到的一次台风消亡产生的电离层扰动

doi: 10.19975/j.dqyxx.2021-030
基金项目: 国家重点研发计划课题(2018YFC1503506);国家自然基金资助项目(41674156);国际空间科学学会项目(ISSI-BJ,IT2019-33);Dragon-5国际合作项目(#58892,#59308)
详细信息
    作者简介:

    杜晓辉(1995-),男,硕士研究生,主要研究方向为地震电磁. E-mail:duxiaohuiwt@qq.com

    通讯作者:

    张学民,研究员,主要从事地震电磁、地震电离层、电离层物理、电磁卫星等的研究. E-mail:zhangxm96@126.com

  • 中图分类号: P352.4

An ionospheric disturbance caused by the disintegration of a typhoon observed by the SWARM satellites

Funds: Supported by the National Key R & D Program of China (Grant No. 2018YFC1503506), the NSFC project (Grant No. 41674156), the ISSI-BJ International Team (Grant No. 2019-33), the Dragon 5 Cooperation Proposal (#58892, #59308)
  • 摘要: 本文基于SWARM卫星观测数据,利用差分、傅里叶分析、小波变换等算法提取分析了两颗卫星观测记录到的磁场和等离子体的扰动信号,研究了2014年1月29日形成的1402号台风“剑鱼”消亡时产生的电离层扰动及其传播过程. 结果表明,扰动信号的产生是突发的、瞬时的,在时空上与台风的消亡有良好的对应;扰动在各个参量上均有出现,且等离子体扰动早于磁场扰动;磁场扰动的主频突出,存在频移现象;异常信号向北传播过程中,在北纬40°附近,存在突然衰减和减速的情况. 分析认为,台风消亡能够产生一定的声重力波或次声波,并在电离层对磁场、等离子体等产生一定程度的扰动.

     

  • 图  1  2014年2月1日SWARM A和B卫星轨道高度随纬度分布图. 图中红色表示升轨(卫星由南向北),绿色表示降轨(卫星由北向南);图(b)使用A星高度对应减B星高度

    Figure  1.  Orbit height of SWARM A and B satellites with latitude on February 1, 2014. In figures, red means orbit ascending (from South to North), green means descending (from North to South); in Figure B, uses A's height to subtract B's

    图  2  第1402号“剑鱼”台风路径示意图(图片来自http://typhoon.nmc.cn)

    Figure  2.  Path of the No.1402 typhoon “Kajiki” (from http://typhoon.nmc.cn)

    图  3  2014年1月25日至2月3日期间空间环境情况. (a)Ap指数;(b)Dst指数

    Figure  3.  Space environment from January 25 to February 3, 2014. (a) Ap index; (b) Dst index

    图  4  数据滤波处理及幅频图

    Figure  4.  Data filtering and Amplitude-Frequency map

    图  5  等离子体参量处理过程

    Figure  5.  Plasma parameter processing process

    图  6  2014年2月1日A、B两星在台风消亡前后的轨道示意图及幅频图.图(b)、(c)中深蓝色竖线表示台风消亡时的位置,下同

    Figure  6.  Orbit and Amplitude-Frequency map of satellites A & B during the disintegration of Typhoon on February 1, 2014. The dark blue vertical line indicates the position of the typhoon when it died in Fig. b & c, the same below

    图  7  异常信号随时间的传播过程

    Figure  7.  Propagation process of abnormal signal

    图  8  异常信号的小波变换分析

    Figure  8.  analysis of abnormal signal

    图  9  2014年2月1日SWARM卫星记录的等离子体参量扰动

    Figure  9.  Plasma parameter disturbance recorded by the SWARM satellite on February 1, 2014

    表  1  异常信号传播速度

    Table  1.   Propagation speed of abnormal signal

    轨道及时间
    B 15:40
    A 15:28 VW=450.0 VN=244.7
    B 14:05 VW=462.5 VN=112.3VW=464.4 VN=93.3
    A 13:54 VW=464.5 VN=140.8VW=466.4 VN=128.7VW=481.8 VN=404.8
    B 12:31 VW=465.0 VN=249.6VW=466.0 VN=249.9VW=467.4 VN=388.2VW=465.5 VN=388.0
    轨道及时间B 15:40 A 15:28 B 14:05 A 13:54 B 12:31
    注:表中,VW表示向西传播的速度,VN表示向北传播的速度,单位m/s;B 12:31等表示B星UT 12:31的轨道.
    Note: VW is the speed of westward propagation, VN is northward, m/s; B 12:31 means the orbits of satellite B at UT 12:31.
    下载: 导出CSV
  • [1] Aa E C, Zou S S, Liu S Q. 2020. Statistical analysis of equatorial plasma irregularities retrieved from Swarm 2013–2019 observations [J]. Journal of Geophysical Research: Space Physics, 125(4): e2019JA027022.
    [2] Chinese Central Meteorological Station. 2020. Notes on the nomenclature of tropical cyclones in the Northwest Pacific and South China Sea of the ESCAP / WMO Typhoon Committee [EB/OL]. http://www.nmc.cn/publish/typhoondocs.htm (in Chinese).
    [3] Chou M Y, Lin C C H, Yue J, et al. 2017a. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016) [J]. Geophysical Research Letters, 44(3):1219-1226. doi: 10.1002/2016GL072205
    [4] Chou M Y, Lin C C H, Yue J, et al. 2017b. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016) [J]. Geophysical Research Letters, 44(15):7569-7577.
    [5] Christensen E F, Lühr H, Hulot G. 2006a. Swarm: A constellation to study the Earth’s magnetic field [J]. Earth, Planets and Space, 58(4):351-358. doi: 10.1186/BF03351933
    [6] Christensen E F, Lühr H, Knudsen D, et al. 2006b. Swarm - An Earth Observation Mission investigating Geospace [J]. Advances in Space Research, 41(1):210-216.
    [7] Das S K, Patra A K, Niranjan K. 2021. On the assessment of day-to-day occurrence of equatorial plasma bubble [J]. Journal of Geophysical Research Space Physics, 126: e2021JA029129.
    [8] Ebenezer A Y, Paulo R F, Alexandre T, et al. 2021. Ground and satellite-based observations of ionospheric plasma bubbles and blobs at 5.65° latitude in the Brazilian sector [J]. Advances in Space Research, 67(8): 2416-2438. doi: 10.1016/j.asr.2021.01.034
    [9] Isaev N V, Sorokin V M, Chmyrev V M, et al. 2002. Disturbance of the electric field in the ionosphere by sea storms and typhoons [J]. Cosmic Research, 40(6): 547–553. doi: 10.1023/A:1021549612290
    [10] Isaev N V, Kostin V M, Belyaev G G, et al. 2010. Disturbances of the topside ionosphere caused by typhoons [J]. Geomagnetism and Aeronomy, 50(2): 243–255. doi: 10.1134/S001679321002012X
    [11] Ke F Y, Qi X M, Wang Y, et al. 2020. Statistics of ionospheric responses to Southeast Asia’s typhoons during 2006–2018 using the rate of change in the TEC index [J]. Advances in Space Research, 66(7): 1724-1742 doi: 10.1016/j.asr.2020.06.003
    [12] Knudsen D J, Burchill J K, Buchert S C, et al. 2017, Thermal ion imagers and Langmuir probes in the Swarm electric field instruments [J]. Journal of Geophysical Research: Space Physics, 122, 2655–2673. doi: 10.1002/2016JA022571
    [13] Kong J, Yao Y B, Xu Y H, et al. 2017. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan[J]. Journal of Geodesy, 91(9): 1087–1097. doi: 10.1007/s00190-017-1011-4
    [14] Lin J W. 2016. A mathematical tool to recognize ionospheric tsunami due to tropical cyclone: a case such as Typhoon Nakri on 29 May 2008[J]. Asian Journal of Natural & Applied Sciences, 5(3): 58-70.
    [15] Lomidze L, Knudsen D J, Burchill J, et al. 2018. Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements [J]. Radio Science, 53(1), 15–36. doi: 10.1002/2017RS006415
    [16] 骆遥, 熊建刚, 万卫星. 2008. 中高层大气对低层大气脉冲扰动的响应[J]. 空间科学学报, 28(4): 301-310. doi: 10.11728/cjss2008.04.301

    Luo Y, Xiong J G, Wang W X. 2008. Response of middle and upper atmosphere to pulse disturbance from lower atmosphere [J]. Chinese Journal of Space Science, 28(4):301-310 (in Chinese). doi: 10.11728/cjss2008.04.301
    [17] Mao T, Wang J S, Yang G L, et al. 2010. Effects of typhoon Matsa on ionospheric TEC [J]. Chinese Science Bulletin, 55(8):712–717.
    [18] Occhipinti G, Rolland L, Lognonne P, et al. 2013. From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes [J]. Journal of Geophysical Research: Space Physics, 118: 3626–3636. doi: 10.1002/jgra.50322
    [19] Olsen N, Christensen E F, Floberghagen R, et al. 2013. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products [J]. Earth, Planets and Space, 69:1189-1200.
    [20] Otsuka Y, Suzuki K, Nakagawa S, et al. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe[J]. Annales Geophysicae, 31(2):163-172. doi: 10.5194/angeo-31-163-2013
    [21] Park J, Lühr H, Stolle C, et al. 2009. Magnetic signatures of medium-scale traveling ionospheric disturbances as observed by CHAMP[J]. Journal of Geophysical Research Atmospheres, 114(A3): A03307.
    [22] 齐小嫚, 柯福阳. 2019. 不同地形条件下台风对电离层TEC的影响[J].测绘科学技术学报, 36(4): 353-358, 363.

    Qi X M, Ke F Y. 2019. Effects of Typhoon on Ionospheric TEC under Different Terrain Conditions [J]. Journal of Geomatics Science and Technology, 36(4):353-358, 363 (in Chinese).
    [23] Santis A D, Marchetti D, Spogli L, et al. 2019. Magnetic field and electron density data analysis from Swarm satellites searching for ionospheric effects by great earthquakes : 12 case studies from 2014 to 2016[J]. Atmosphere, 10(7) :371-397. doi: 10.3390/atmos10070371
    [24] 宋福成, 时爽爽, 史云飞, 等. 2020. 基于IGS数据分析台风“利奇马”引起的电离层TEC扰动[J].全球定位系统, 45(3): 83-88.

    Song F C, Shi S S, Shi Y F, et al. 2020. Analysis of ionosphereic TEC disturbances caused by typhoon Lekima based on IGS Data [J]. GNSS World of China, 45(3):83-88 (in Chinese).
    [25] Sori T, Shinbori A, Otsuka Y, et al. 2021. The occurrence feature of plasma bubbles in the equatorial to midlatitude ionosphere during geomagnetic storms using long-term GNSS-TEC data [J]. Journal of Geophysical Research: Space Physics, 126: e2020JA029010.
    [26] Sorokin V M, Isaev N V, Yaschenko A K, et al. 2005. Strong DC electric field formation in the low latitude ionosphere over typhoons [J]. Journal of Atmospheric and Solar:Terrestrial Physics, 67(14): 1269-1279. doi: 10.1016/j.jastp.2005.06.014
    [27] Sorokin V M, Yaschenko A K, Chmyrev V M, et al. 2006. DC electric field formation in the mid-latitude ionosphere over typhoon and earthquake regions [J]. Physics and Chemistry of the Earth, 31(4–9): 454-461.
    [28] 汤秋林, 万卫星, 宁百齐, 等. 2001. 中国中部地区大尺度电离层行扰的传播特性[J].中国科学(A辑),31(S1): 133-136.

    Tang Q L, Wang W X, Ning B Q, et al. 2001. Propagation characteristics of large scale ionospheric disturbances in Central China [J]. Science in China (Series A), 31(S1): 133-136 (in Chinese).
    [29] Wan X, Xiong C, Wang H, et al. 2020. Spatial characteristics on the occurrence of the nighttime midlatitude medium-scale traveling ionospheric disturbance at topside ionosphere revealed by the Swarm satellite [J]. Journal of Geophysical Research: Space Physics, 125(8): e2019JA027739.
    [30] 万卫星, 徐寄遥. 2014. 中国高层大气与电离层耦合研究进展[J].中国科学: 地球科学, 44(9): 1863-1883. doi: 10.1007/s11430-014-4923-3

    Wan W X, Xu J Y. 2014. Recent investigation on the coupling between the ionosphere and upper atmosphere [J]. Science China: Earth Sciences, 57:1995–2012 (in Chinese). doi: 10.1007/s11430-014-4923-3
    [31] 王劲松, 刘依谋, 索玉成, 等. 2006. 台风对电离层影响的一种新机制[C]//中国气象学会2006年年会“卫星遥感技术进展及应用”分会场论文集.中国气象学会, 8.

    Wang J S, Liu Y M, Suo Y C, et al. 2006. A new mechanism of typhoon influence on ionosphere [C]// Proceedings of 2006 annual meeting of China Meteorological Society "progress and application of satellite remote sensing technology". China Meteorological Society, 8 (in Chinese).
    [32] 汪领, 尹凡. 2020. 利用聚类算法区分小尺度电离层行扰事件与赤道等离子体泡事件[J].空间科学学报, 40(6): 1014-1023. doi: 10.11728/cjss2020.06.1014

    Wang L, Yin F. 2020. Distinguish small-scale traveling ionospheric disturbances and equatorial plasma bubbles by clustering algorithm [J]. Chinese Journal of Space Science,40(6):1014-1023 (in Chinese). doi: 10.11728/cjss2020.06.1014
    [33] Wen Y D, Jin S G. 2020. Traveling ionospheric disturbances characteristics during the 2018 Typhoon Maria from GPS observations [J]. Remote Sensing, 12(4):746. doi: 10.3390/rs12040746
    [34] Wu K, Xu J Y, Wang W B, et al. 2017. Interesting equatorial plasma bubbles observed by all-sky imagers in the equatorial region of China [J]. Journal of Geophysical Research: Space Physics, 122(10): 10596–10611.
    [35] 肖赛冠, 郝永强, 张东和, 等. 2006a. 电离层对台风响应的全过程的特例研究[J].地球物理学报, 49(3): 623-628.

    Xiao S G, Hao Y Q, Zhang D H, et al. 2006a. A case study on whole response processes of the ionosphere to typhoons [J]. Chinese Journal of Geophysics, 49(3):623-628 (in Chinese).
    [36] 肖赛冠, 张东和, 肖佐. 2006b. 台风激发的声重力波的可探测性研究[J].空间科学学报, 27(1): 35-40.

    Xiao S G, Zhang D H, Xiao Z. 2006b. Study on the detectability of Typhoon-generated acoustic-gravity waves [J]. Chinese Journal of Space Science, 27(1):35-40 (in Chinese).
    [37] Xiao S G, Xiao Z, Shi J K, et al. 2009. Observational facts in revealing a close relation between acoustic-gravity waves and midlatitude spread F [J]. Journal of Geophysical Research, 114: A01303.
    [38] Xiao Z, Xiao S G, Hao Y Q, et al. 2007. Morphological features of ionospheric response to typhoon [J]. Journal of Geophysical Research,112: A04304.
    [39] 熊年禄, 唐存琛, 李行健. 1999. 电离层物理概论[M]. 武汉: 武汉大学出版社, 1-5.

    Xiong N L, Tang C C, Li X J. 1999. Introduction to Ionospheric Physics [M]. Wuhan: Wuhan University Press, 1-5 (in Chinese).
    [40] 闫慧, 严颂华, 陈能成, 等. 2018. 利用GPS数据研究江西区域电离层对台风“潭美”的响应[J].科学技术与工程, 18(6): 14-21. doi: 10.3969/j.issn.1671-1815.2018.06.003

    Yan H, Yan S H, Chen N C, et al. 2018. Research on the response of Jiangxi ionosphere to typhoon “Trami” by GPS data[J]. Science Technology and Engineering, 18(6): 14-21 (in Chinese). doi: 10.3969/j.issn.1671-1815.2018.06.003
    [41] Yin F, Lühr H, Park J, et al. 2019. Comprehensive analysis of the magnetic signatures of small-scale traveling ionospheric disturbances, as observed by Swarm [J]. Journal of Geophysical Research: Space Physics, 124: 10794–10815. doi: 10.1029/2019JA027523
    [42] Zakharov V I, Kunitsyn V E. 2012. Regional features of atmospheric manifestations of tropical cyclones according to ground-based GPS network data[J]. Geomagnetism and Aeronomy, 52(4):533–545. doi: 10.1134/S0016793212040160
    [43] 张训械, 阮雪琴. 1992. 大气声重波的激发[J].电波科学学报, 7(4): 47-56.

    Zhang X X, Ruan X Q. 1992. Excitation of atmospheric acoustic gravity waves [J]. Chinese Journal of Radio Science. 7(4):47-56 (in Chinese).
    [44] Zhao Y X, Deng Y, Wang J S, et al. 2020. Tropical cyclone-induced gravity wave perturbations in the upper atmosphere: GITM-R simulations [J]. Journal of Geophysical Research,125(7): e2019JA027675.
    [45] 中央气象台. 2020. ESCAP/WMO台风委员会西北太平洋和南中国海热带气旋命名表注释[EB/OL]. http://www.nmc.cn/publish/typhoondocs.htm.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  183
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 录用日期:  2021-06-07
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回