• ISSN 2097-1893
  • CN 10-1855/P


刘赫奕 宋晋东 李山有

引用本文: 刘赫奕,宋晋东,李山有. 2021. 美国ShakeAlert地震预警系统2.0版本的发展. 地球与行星物理论评,52(6):634-646
Liu H Y, Song J D, Li S Y. 2021. Development of ShakeAlert 2.0 earthquake early warning system in the United States. Reviews of Geophysics and Planetary Physics, 52(6): 634-646


doi: 10.19975/j.dqyxx.2021-026
基金项目: 国家重点研发计划(2018YFC1504003)及其省级资助;国家自然科学基金资助项目(51408564)

    刘赫奕(1993-),女,博士研究生,主要从事地震预警技术研究. E-mail:616016012@qq.com


    李山有(1965-),博士,研究员,博士生导师,主要从事地震预警技术研究. E-mail:shanyou@iem.ac.cn

  • 中图分类号: P315

Development of ShakeAlert 2.0 earthquake early warning system in the United States

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2018YFC1504003) and its provincial funding, and the National Natural Science Foundation of China (Grant No. 51408564)
  • 摘要: 美国西海岸地区ShakeAlert地震预警系统能够在破坏性地震波到达前发布地震警报,从而减轻地震造成的灾害. 经过近十余年的发展,ShakeAlert系统研发已基本完成,2019年10月17日,ShakeAlert 2.0系统开始在加利福尼亚全州进行测试,正式向全州公众发布地震预警信息. 本文回顾了ShakeAlert 2.0地震预警系统的发展历程,详细介绍了台站观测系统、数据传输系统、数据处理与警报中心、测试与认证平台、信息发布系统和终端用户显示等情况,旨在分析ShakeAlert 2.0系统在防震减灾方面的巨大效用以及对中国地震预警系统发展的借鉴.


  • 图  1  美国ShakeAlert系统发展历程

    Figure  1.  History of ShakeAlert earthquake early warning system in US

    图  2  ShakeAlert地震预警系统的系统架构

    Figure  2.  System configuration of ShakeAlert earthquake early warning system in US

    图  3  截至2019年5月,美国西部ShakeAlert 2.0系统的ANSS台站(绿色三角形)分布图. 红色虚线框内表示的是警报区域,但并不是所有的台站都位于警报区域内(Kohler et al., 2020

    Figure  3.  ANSS network stations (green triangles) in the western United States as of May 2019. The alerting region is shown by the dashed red outline. Not all stations are required to be within the alerting region (Kohler et al., 2020)

    图  4  ShakeAlert系统数据处理与警报中心的架构. 它包含三个处理层,分别为数据层、生产层和警报层. 数据处理从数据层到生产层,最后到警报层结束

    Figure  4.  Schematic flowchart showing the data processing and alarm center of ShakeAlert. It contains 3 processing layers, namely the data layer, the production layer and the alarm layer. Data processing flows from the data layer, through the production layer to the alert layer

    图  5  ShakeAlert警报产品中的等值线图和网格图. (a)等值线图;(b)网格图

    Figure  5.  Two maps of the western United States showing examples of the shaking intensity contour and grid map ground-motion products distributed by ShakeAlert. (a) Contour map; (b) Grid map

    图  6  警报后消息决策流程图

    Figure  6.  Post-alert messaging decision flow chart

    图  7  1989年10月16日,LomaPrieta地区M6.9历史地震中的UserDisplay截图. 红点是震中位置,黄色和红色圆圈分别表示P波和S波,蓝色的小房子代表用户位置,数字23代表S波到达用户位置的时间为23 s,罗马数字V代表用户位置的预期烈度为MMI=V度,数字6.9表示震级估计值为6.9级

    Figure  7.  Screenshot of UserDisplay showing the M6.9 earthquake in LomaPrieta on October 16, 1989. The red dot is the epicenter of the earthquake. The yellow circle and the red circle show the P wave and the S wave, respectively. The blue house represents the user's location. The number 23 indicates that there are 23 seconds remaining until the S wave reaches the user's location. (V) and (6.9) indicate that the estimated intensity at the user's location is MMI=V, and the estimated magnitude is 6.9

    表  1  ShakeAlert系统的测试性能

    Table  1.   ShakeAlert system performance

     4.5~6级2614 831
    下载: 导出CSV
  • [1] Allen R M, Kanamori H. 2003. The potential for earthquake early warning in southern California[J]. Science, 300(5620):789-788. doi: 10.1126/science.1081311
    [2] Allen R M. 2007. The ElarmS Earthquake Early Warning Methodology and Application across California[M]. Berlin: Springer, 21-43.
    [3] Allen R M, Gasparini P, Kamigaichi O, et al. 2009. The status of earthquake early warning around the world: An introductory overview[J]. Seismological Research Letters, 80(5):65–72.
    [4] Borchrdt R D. 1970. Effects of local geology on ground motion near San Francisco Bay[J]. Bulletin of the Seismological Society of America, 60(1): 29-61.
    [5] Böse M, Heaton T H, and Hauksson E. 2012. Real-time Finite Fault Rupture Detector (FinDer) for large earthquakes[J]. Geophysical Journal International, 191(2):803-812. doi: 10.1111/j.1365-246X.2012.05657.x
    [6] Böse M, Allen R M, Brown H, et al. 2014. CISN ShakeAlert: An Earthquake Early Warning Demonstration System for California[M]. Berlin: Springer, 49-69.
    [7] Burkett E R, Given D D, Jones L M. 2014. ShakeAlert-An earthquake early warning system for the united states west coast[R]. U.S. Geological Survey Fact Sheet 2014–3083, 4 p. https://doi.org/10.3133/fs20143083.
    [8] Chung A I, Henson I, Allen R M. 2019. Optimizing earthquake early warning performance: ElarmS-3[J]. Seismological Research Letters, 90(2A):727–743. doi: 10.1785/0220180192
    [9] Cochran E S, Aagaard B T, Allen R M, et al. 2018a. Research to improve ShakeAlert earthquake early warning products and their utility[R]. U.S. Geological Survey Open-File Report 2018–1131, 17 p. https://doi.org/10.3133/ofr20181131.
    [10] Cochran E S, Kohler M D, Given D D, et al. 2018b. Earthquake early warning ShakeAlert system: Testing and certification platform[J]. Seismological Research Letters, 89(1):108–117. doi: 10.1785/0220170138
    [11] Crowell B W, Bock Y, Squibb M B. 2009. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks[J]. Seismological Research Letters, 80(5):772-782. doi: 10.1785/gssrl.80.5.772
    [12] Crowell B W, Schmidt D A, Bodin P, et al. 2018. G-FAST earthquake early warning potential for great earthquakes in Chile[J]. Seismological Research Letters, 89(2A): 542-556. doi: 10.1785/0220170180
    [13] Cua G, Heaton T H. 2009. Characterizing average properties of southern California ground motion amplitudes and envelopes[R]. California: Earthquake Engineering Research Laboratory.
    [14] Ebel J E, Chapman M C, Kim W Y, et al. 2020. Current status and future of regional seismic network monitoring in the Central and Eastern United States[J]. Seismological Research Letters, 91(2A):660-676. doi: 10.1785/0220190210
    [15] Given D D, Cochran E S, Heaton T, et al. 2014. Technical implementation plan for the ShakeAlert production system: An Earthquake Early Warning system for the West Coast of the United States[J]. Papers on Social Representations, 317(13):908-913.
    [16] Given D D, Allen R M, Baltay A S, et al. 2018. Revised technical implementation plan for the ShakeAlert system-An earthquake early warning system for the West Coast of the United States[R]. U.S. Geological Survey Open-File Report 2018–1155, 42 p. https://doi.org/10.3133/ofr20181155.
    [17] Grapenthin R, Johanson I A, Allen R M. 2014. Operational real-time GPS-enhanced earthquake early warning[J]. Journal of Geophysical Research: Solid Earth, 119(10):7944-7965. doi: 10.1002/2014JB011400
    [18] Kanamori H, Maechling P, Hauksson E. 1999. Continuous monitoring of ground-motion parameters[J]. Bulletin of the Seismological Society of America, 89(1): 311–316.
    [19] Kanamori H. 2005. Real-time seismology and earthquake damage mitigation [J]. Nature, 390(6659):461-464.
    [20] Kohler M D, Cochran E S, Given D, et al. 2018. Earthquake early warning ShakeAlert system: West coast wide production prototype[J]. Seismological Research Letters, 89(1):99-107. doi: 10.1785/0220170140
    [21] Kohler M D, Smith D E, Andrews J, et al. 2020. Earthquake early warning ShakeAlert 2.0: Public rollout[J]. Ssmological Research Letters, 91(3):1763-1775. doi: 10.1785/0220190245
    [22] Kuyuk H S, Allen R M. 2013. Optimal seismic network density for earthquake early warning: A case study from California[J]. Seismological Research Letters, 84(6):946–954. doi: 10.1785/0220130043
    [23] 刘赫奕, 王辅臣, 黎明, 等. 2019. 基于PC端MEMS的地震预警系统: 以QCN与CSN为例[J]. 自然灾害学报, 28(5): 152-159.

    Liu H Y, Wang F C, Li M, et al. 2019. Introduction to distributed earthquake early-warning system based on low-cost accelerometer: Taking QCN and CSN for example[J]. Journal of Natural Disasters, 28(5):152-159(in Chinese).
    [24] McBride S, Bostrom A, Sutton J, et al. 2020. Developing post-alert messaging for ShakeAlert, the earthquake early warning system for the west coast of the United States of America[J]. International Journal of Disaster Risk Reduction, 2020:101713.
    [25] Minson S E, Murray J R, Langbein J O, et al. 2014. Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data[J]. Journal of Geophysical Research: Solid Earth, 119(4): 3201-3231. doi: 10.1002/2013JB010622
    [26] Serdar Kuyuk H, Allen R M, Brown H, et al. 2014. Designing a network-based earthquake early warning algorithm for California: ElarmS-2[J], Bulletin of the Seismological Society of America, 104(1):162-173. doi: 10.1785/0120130146
    [27] USGS. 2019-10-17/2021-04-12. All Systems Go for First Statewide Testing of ShakeAlert in the United States [EB/OL]. https://www.usgs.gov/news/all-systems-go-first-statewide-testing-shakealert-united-states?qt-news_science_products=1#qt-news_science_products.
    [28] USGS. 2021-04-12/2021-04-12. ShakeAlert UserDisplay [EB/OL]. https://www.shakealert.org/eew-research/caltech/shakealert-user-display/.
    [29] Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002.
    [30] 王红蕾, Walter D M, 高景春, 等. 2019. 美国地震预警系统ShakeAlert测试与评估[J]. 国际地震动态, 485(5): 20-28.

    Wang H L, Walter D M, Gao J C, et al. 2019. Earthquake early warning ShakeAlert system: Testing and certification platform[J]. Recent Developments in World Seismology, 485(5):20-28(in Chinese).
    [31] 姚国章, 陈菲, 陈建明, 等. 2014. 美国公共安全无线宽带网FirstNet的建设与启示[J]. 中国应急管理, 2014(2): 50-55.

    Yao G Z, Chen F, Chen J M, et al. 2014. The Construction and enlightenment of FirstNet in the U.S. public safety wireless broadband network[J]. China Emergency Management, 2014(2):50-55(in Chinese).
  • 加载中
图(7) / 表(1)
  • 文章访问数:  457
  • HTML全文浏览量:  271
  • PDF下载量:  70
  • 被引次数: 0
  • 收稿日期:  2021-04-13
  • 录用日期:  2021-06-04
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-11-01