• ISSN 2097-1893
  • CN 10-1855/P

火星的地质演化和宜居环境研究进展

刘洋 吴兴 刘正豪 邹永廖

引用本文: 刘洋,吴兴,刘正豪,邹永廖. 2021. 火星的地质演化和宜居环境研究进展. 地球与行星物理论评,52(4):416-436
Liu Y, Wu X, Liu Z H, Zou Y L. 2021. Geological evolution and habitable environment of Mars: Progress and prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436

火星的地质演化和宜居环境研究进展

doi: 10.19975/j.dqyxx.2021-025
基金项目: 国家自然科学基金资助项目(42072337);民用航天预先研究资助项目(D020101, D020102);中国科学院战略先导项目(XDB 41000000);国家重大研发计划资助项目(2019YFE0123300)
详细信息
    通讯作者:

    刘洋,男,研究员,主要从事行星科学研究. E-mail:yangliu@nssc.ac.cn

  • 中图分类号: P691

Geological evolution and habitable environment of Mars: Progress and prospects

Funds: National Natural Science Foundation of China (Grant No. 42072337), the Pre-research Project on Civil Aerospace Technologies (Grant Nos. D020101, D020102), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000), and the State Key Research Development Program of China (Grant no. 2019YFE0123300)
  • 摘要: 作为太阳系中与地球最为相似的行星,火星因其表面丰富的古代水活动历史和可能保存的古生命迹象,从而成为太阳系深空探测的主要目标之一. 火星和地球的早期演化过程相似,但目前尚未在火星上发现生命迹象. 火星的地质特征和宜居环境演化历史等问题存在大量假说亟待检验和甄别. 本文总结了火星各个地质年代的基本特征,介绍了火星上不同的地质特征和对气候条件的响应,梳理了火星上的水活动历史所记录的火星宜居环境的变迁,也总结了火星表面水成矿物的分布、含量和形成环境,以及水成地貌特征和环境演化历史,并讨论了早期火星气候存在的争议问题. 最后,对火星未来的探测方向给出了展望.

     

  • 图  1  火星MOLA地形图与主要地貌单元,图中白色区域为火星火山主要分布区域(修改自Werner, 2009

    Figure  1.  Mars MOLA topographic map and main geomorphic units. The white circles are the main volcanic areas on Mars (modified from Werner, 2009)

    图  2  (a)位于29°S、218.8°E的单层溅射毯撞击坑;(b)位于10.4°N、287.8°E的双层溅射毯撞击坑;(c)位于23.2°N、207.8°E的多层溅射毯撞击坑. 图片来自CTX(Context Camera, Mars Reconnaissance Orbiter)

    Figure  2.  (a) the SLE crater at 29°S, 218.8°E; (b) the DLE crater at 10.4°N, 287.8°E; and (c) the MLE crater at 23.2°N, 207.8°E. These images are from CTX

    图  3  火星表面分布的水流通道(CTX,241.6E,20.6N),在最宽的通道中间分布有流线型岛屿

    Figure  3.  Fluvial channels on the surface of Mars (CTX, 241.6E, 20.6N), the streamlined island distributed in the middle area of widest channel

    图  4  坦佩高地东侧的倒转河道带生成的(a)CTX图像和(b)HiRISE的DTM图像(5倍垂直放大)(修改自Liu Z et al., 2021

    Figure  4.  (a) CTX and DTM of (b) HiRISE (5x vertical exaggeration), which two images are generated from the inverted channel belts on the eastern Tempe Terra (modified from Liu Z et al., 2021)

    图  5  位于伊希斯平原的冰川地貌,图像为HiRISE的ESP_019358_2225_RED

    Figure  5.  The Glacier in the Isidis Planitia, image from HiRISE ESP_019358_2225_RED

    图  6  López撞击坑内的沙丘,图像为HiRISE的ESP_026609_1655_RED

    Figure  6.  The sand dune in the López impact crater, image from HiRISE ESP_026609_1655_RED at HiRISE

    图  7  火星表面主要含水矿物全球分布(修改自Ehlmann and Edwards, 2014

    Figure  7.  Global distribution of the major classes of aqueous minerals on Mars (modified from Ehlmann and Edwards, 2014)

    图  8  第30火星年,位于牛顿盆地中Palikir撞击坑中的RSL(黑色箭头指向区域)随时间演化假彩色图(McEwen et al., 2011). (a)取自HiRISE数据ESP_021911_1380,拍摄于第30个火星年春季(Ls=265°);(b)取自HiRISE数据ESP_022689_1380,拍摄于第30个火星的夏季(Ls=302°). 在春夏季之间,RSL开始大量出现

    Figure  8.  Enhanced color views demonstrating RSL development (black arrows) over time at Palikir crater (inside Newton Basin)in MY30 (McEwen et al., 2011). (a) is the full HiRISE ESP_021911_1380 acquired in the spring (Ls=265°) of MY 30. (b) is the full HiRISE ESP_022689_1380 acquired in the summer (Ls=302°)of MY 30.RSL appear in large numbers between spring (a) and summer (b).

    图  9  Mars Color Imager(MARCI)拍摄的2018年火星全球沙尘暴前(a)5月28日后(b)7月1日的彩色影像

    Figure  9.  Mars before and after global dust storm. Images captured by Mars Color Imager (MARCI). (a) May 28th; (b) July 1st

    图  10  火星地质历史主要事件时间线(修改自Ehlmann et al., 2011

    Figure  10.  Timeline of major processes in Mars history (modified from Ehlmann et al., 2011)

    图  11  诺亚纪和早期西方纪时期火星上主要气候过程示意图. 这幅漫画假设了早期气候的一种偶发温暖的情景,雪被偶发的融化事件打断,长期运输到南部高地

    Figure  11.  Schematic of the major climate processes on Mars in the Noachian and early Hesperian periods. This cartoon assumes an episodically warm scenario for the early climate with long-term transport of snow to the southern highlands interrupted by episodic melting events

    图  12  五种可能具有宜居性的火星古环境(修改自Hoehler, 2007

    Figure  12.  Five possible habitable ancient martian environments (modified from Hoehler, 2007)

  • [1] Abotalib A Z, Heggy E. 2019. A deep groundwater origin for recurring slope lineae on Mars[J]. Nature Geoscience, 12(4): 235-241. doi: 10.1038/s41561-019-0327-5
    [2] Balme M, Greeley R. 2006. Dust devils on earth and mars[J]. Reviews of Geophysics, 44(3): RG3003.
    [3] Barlow N G, Perez C B. 2003. Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles[J]. Journal of Geophysical Research, 108(E8): 5085. doi: 10.1029/2002JE002036
    [4] Barlow N G. 2005. A review of Martian impact crater ejecta structures and their implications for target properties[J]. Special Paper of the Geological Society of America, 384: 433-442.
    [5] Barnhart C J, Howard A D, Moore J M. 2009. Long-term precipitation and late-stage valley network formation: Landform simulations of Parana Basin, Mars[J]. Journal of Geophysical Research-Planets, 114: 21.
    [6] Bibring J P, Langevin Y, Mustard J F, et al. 2006. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data[J]. Science, 312(5772): 400-404. doi: 10.1126/science.1122659
    [7] Bishop J L, Tirsch D, Tornabene L L, et al. 2013. Mineralogy and morphology of geologic units at Libya Montes, Mars: Ancient aqueously derived outcrops, mafic flows, fluvial features, and impacts[J]. Journal of Geophysical Research-Planets, 118(3): 487-513. doi: 10.1029/2012JE004151
    [8] Broz P, Hauber E, Wray J J, et al. 2017. Amazonian volcanism inside Valles Marineris on Mars[J]. Earth and Planetary Science Letters, 473: 122-130. doi: 10.1016/j.jpgl.2017.06.003
    [9] Byrne S, Dundas C M, Kennedy M R, et al. 2009. Distribution of mid-latitude ground ice on Mars from new impact craters[J]. Science, 325(5948): 1674-1676. doi: 10.1126/science.1175307
    [10] Carr M, Head J. 2019. Mars: Formation and fate of a frozen Hesperian ocean[J]. Icarus, 319: 433-443. doi: 10.1016/j.icarus.2018.08.021
    [11] Carr M H, Head J W. 2003. Basal melting of snow on early Mars: A possible origin of some valley networks[J]. Geophysical Research Letters, 30(24): 2245.
    [12] Carr M H. 2007. The surface of Mars[M]// Cambridge: Cambridge University Press, 23-208.
    [13] Carter J, Loizeau D, Mangold N, et al. 2015. Widespread surface weathering on early Mars: A case for a warmer and wetter climate[J]. Icarus, 248: 373-382. doi: 10.1016/j.icarus.2014.11.011
    [14] Chassefiere E, Langlais B, Quesnel Y, et al. 2013. The fate of early Mars' lost water: The role of serpentinization[J]. Journal of Geophysical Research-Planets, 118(5): 1123-1134. doi: 10.1002/jgre.20089
    [15] Chastain B K, Chevrier V. 2007. Methane clathrate hydrates as a potential source for martian atmospheric methane[J]. Planetary and Space Science, 55(10): 1246-1256. doi: 10.1016/j.pss.2007.02.003
    [16] Chevrier V F, Rivera-Valentin E G. 2012. Formation of recurring slope lineae by liquid brines on present-day Mars[J]. Geophysical Research Letters, 39: L21202.
    [17] Chojnacki M, McEwen A, Dundas C, et al. 2016. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars[J]. Journal of Geophysical Research-Planets, 121(7): 1204-1231. doi: 10.1002/2015JE004991
    [18] Cockell C S. 1998. Biological effects of high ultraviolet radiation on early Earth - a theoretical evaluation[J]. Journal of Theoretical Biology, 193(4): 717-729. doi: 10.1006/jtbi.1998.0738
    [19] Craddock R A, Howard A D. 2002. The case for rainfall on a warm, wet early Mars[J]. Journal of Geophysical Research-Planets, 107(E11): 5111.
    [20] Cutts J A, Blasius K R. 1981. Origin of Martian outflow channels: The Eolian hypothesis[J]. Journal of Geophysical Research, 86(NB6): 5075-5102. doi: 10.1029/JB086iB06p05075
    [21] Day M, Rebolledo L. 2019. Intermittency in wind-driven surface alteration on Mars interpreted from wind streaks and measurements by InSight[J]. Geophysical Research Letters, 46(22): 12747-12755. doi: 10.1029/2019GL085178
    [22] Di Achille G, Hynek B M. 2010. Ancient ocean on Mars supported by global distribution of deltas and valleys[J]. Nature Geoscience, 3(7): 459-463. doi: 10.1038/ngeo891
    [23] Dickson J L, Lamb M P, Williams R M E, et al. 2021. The global distribution of depositional rivers on early Mars[J]. Geology, 49(5): 504-509. doi: 10.1130/G48457.1
    [24] Diniega S, Bramson A M, Buratti B, et al. 2021. Modern Mars' geomorphological activity, driven by wind, frost, and gravity[J]. Geomorphology, 380(1): 107627.
    [25] Dundas C M, McEwen A S, Chojnacki M, et al. 2017. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water[J]. Nature Geoscience, 10(12): 903-907. doi: 10.1038/s41561-017-0012-5
    [26] Dundas C M. 2020. An aeolian grainflow model for Martian Recurring Slope Lineae[J]. Icarus, 343: 113681. doi: 10.1016/j.icarus.2020.113681
    [27] Edgar L A, Frey H V. 2008. Buried impact basin distribution on Mars: Contributions from crustal thickness data[J]. Geophysical Research Letters, 35(2): L02201.
    [28] Ehlmann B L, Mustard J F, Swayze G A, et al. 2009. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration[J]. Journal of Geophysical Research-Planets, 114: 33.
    [29] Ehlmann B L, Mustard J F, Murchie S L, et al. 2011. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 479(7371): 53-60. doi: 10.1038/nature10582
    [30] Ehlmann B L, Berger G, Mangold N, et al. 2013. Geochemical consequences of widespread clay mineral formation in Mars' Aancient crust[J]. Space Science Reviews, 174(1-4): 329-364. doi: 10.1007/s11214-012-9930-0
    [31] Ehlmann B L, Edwards C S. 2014. Mineralogy of the Martian Surface[M]// Jeanloz R. Annual Review of Earth and Planetary Sciences. Palo Alto: Annual Reviews, 42: 291-315.
    [32] Etiope G, Lollar B S. 2013. Abiotic methane on Earth[J]. Reviews of Geophysics, 51(2): 276-299. doi: 10.1002/rog.20011
    [33] Fassett C I, Head J W. 2008a. The timing of martian valley network activity: Constraints from buffered crater counting[J]. Icarus, 195(1): 61-89.
    [34] Fassett C I, Head J W. 2008b. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology[J]. Icarus, 198(1): 37-56. doi: 10.1016/j.icarus.2008.06.016
    [35] Fassett C I, Dickson J L, Head J W, et al. 2010. Supraglacial and proglacial valleys on Amazonian Mars[J]. Icarus, 208(1): 86-100. doi: 10.1016/j.icarus.2010.02.021
    [36] Fiebig J, Woodland A B, Spangenberg J, et al. 2007. Natural evidence for rapid abiogenic hydrothermal generation of CH4[J]. Geochimica Et Cosmochimica Acta, 71(12): 3028-3039. doi: 10.1016/j.gca.2007.04.010
    [37] Frey H V, Roark J H, Shockey K M, et al. 2002. Ancient lowlands on Mars[J]. Geophysical Research Letters, 29(10): 1384.
    [38] Gaillard F, Michalski J, Berger G, et al. 2012. Geochemical reservoirs and timing of sulfur cycling on Mars[J]. Space Science Reviews, 174(1-4): 251-300.
    [39] Galofre A G, Bahia R S, Jellinek A M, et al. 2020. Did Martian valley networks substantially modify the landscape?[J]. Earth and Planetary Science Letters, 547: 12.
    [40] Gough R, Nuding D, Toigo A, et al. 2019a. An examination of atmospheric water vapor as a source for recurring slope lineae on Mars[C]// Ninth International Conference on Mars. abstract no. 6327.
    [41] Gough R V, Primm K M, Rivera-Valentin E G, et al. 2019b. Solid-solid hydration and dehydration of Mars-relevant chlorine salts: Implications for Gale Crater and RSL locations[J]. Icarus, 321: 1-13. doi: 10.1016/j.icarus.2018.10.034
    [42] Grant J A, Golombek M P, Wilson S A, et al. 2018. The science process for selecting the landing site for the 2020 Mars rover[J]. Planetary and Space Science, 164: 106-126. doi: 10.1016/j.pss.2018.07.001
    [43] Grimm R E, Harrison K P, Stillman D E. 2014. Water budgets of martian recurring slope lineae[J]. Icarus, 233: 316-327. doi: 10.1016/j.icarus.2013.11.013
    [44] Grotzinger J P, Sumner D Y, Kah L C, et al. 2014. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars[J]. Science, 343(6169): 14.
    [45] Hartmann W K, Neukum G. 2001. Cratering chronology and the evolution of Mars[J]. Space Science Reviews, 96(1-4): 165-194.
    [46] Head J W, Kreslavsky M A. 2002. Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period[J]. Journal of Geophysical Research: Planets, 107(E1): 5003. doi: 10.1029/2000JE001445
    [47] Heinz J, Schulze-Makuch D, Kounaves S P. 2016. Deliquescence-induced wetting and RSL-like darkening of a Mars analogue soil containing various perchlorate and chloride salts[J]. Geophysical Research Letters, 43(10): 4880-4884. doi: 10.1002/2016GL068919
    [48] Hoehler T M. 2007. An energy balance concept for habitability[J]. Astrobiology, 7(6): 824-838. doi: 10.1089/ast.2006.0095
    [49] Howard A D, Moore J M, Irwin R P. 2005. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits[J]. Journal of Geophysical Research-Planets, 110(E12): 20.
    [50] Huber C, Ojha L, Lark L, et al. 2020. Physical models and predictions for recurring slope lineae formed by wet and dry processes[J]. Icarus, 335: 113385. doi: 10.1016/j.icarus.2019.07.019
    [51] Irwin R P, I II, Craddock R A, Howard A D, et al. 2011. Topographic influences on development of Martian valley networks[J]. Journal of Geophysical Research-Planets, 116: E02005.
    [52] Jones K L. 1974. Evidence for an episode of crater obliteration intermediate in Martian history[J]. Journal of Geophysical Research, 79(26): 3917-3931. doi: 10.1029/JB079i026p03917
    [53] Kamada A, Kuroda T, Kasaba Y, et al. 2020. A coupled atmosphere-hydrosphere global climate model of early Mars: A 'cool and wet' scenario for the formation of water channels[J]. Icarus, 338: 19.
    [54] Keppler F, Vigano I, McLeod A, et al. 2012. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere[J]. Nature, 486(7401): 93-96. doi: 10.1038/nature11203
    [55] Kleinbohl A, Spiga A, Kass D M, et al. 2020. Diurnal variations of dust during the 2018 global dust storm observed by the Mars climate sounder[J]. Journal of Geophysical Research-Planets, 125(1): e2019JE006115.
    [56] Kminek G, Conley C, Hipkin V, et al. 2017. COSPAR's planetary protection policy[J]. 200: 12-25.
    [57] Le Deit L, Flahaut J, Quantin C, et al. 2012. Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris[J]. Journal of Geophysical Research-Planets, 117: 25.
    [58] Leask E K, Ehlmann B L, Dundar M M, et al. 2018. Challenges in the search for perchlorate and other hydrated minerals with 2.1-μm absorptions on Mars[J]. Geophysical Research Letters, 45(22): 12180-12189.
    [59] Lefevre F, Forget F. 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics[J]. Nature, 460(7256): 720-723. doi: 10.1038/nature08228
    [60] Levy J, Head J W, Marchant D R. 2010. Concentric crater fill in the northern mid-latitudes of Mars: Formation processes and relationships to similar landforms of glacial origin[J]. Icarus, 209(2): 390-404. doi: 10.1016/j.icarus.2010.03.036
    [61] Levy J. 2012. Hydrological characteristics of recurrent slope lineae on Mars: Evidence for liquid flow through regolith and comparisons with Antarctic terrestrial analogs[J]. Icarus, 219(1): 1-4. doi: 10.1016/j.icarus.2012.02.016
    [62] Liu J, Di K C, Gou S, et al. 2020. Mapping and spatial statistical analysis of Mars Yardangs[J]. Planetary and Space Science, 192: 9.
    [63] Liu J, Michalski J R, Tan W, et al. 2021. Anoxic chemical weathering under a reducing greenhouse on early Mars[J]. Nature Astronomy, 11: 1-7.
    [64] Liu Y, Glotch T D, Scudder N A, et al. 2016. End-member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars[J]. Journal of Geophysical Research-Planets, 121(10): 2004-2036.
    [65] Liu Z, Liu Y, Pan L, et al. 2021. Inverted channel belts and floodplain clays to the East of Tempe Terra, Mars: Implications for persistent fluvial activity on early Mars[J]. Earth and Planetary Science Letters, 562: 116854. doi: 10.1016/j.jpgl.2021.116854
    [66] Loizeau D, Carter J, Bouley S, et al. 2012. Characterization of hydrated silicate-bearing outcrops in Tyrrhena Terra, Mars: Implications to the alteration history of Mars[J]. Icarus, 219(1): 476-497. doi: 10.1016/j.icarus.2012.03.017
    [67] Luo W, Cang X Z, Howard A D. 2017. New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate[J]. Nature Communications, 8: 7. doi: 10.1038/s41467-016-0008-7
    [68] Malin M C, Edgett K S. 2003. Evidence for persistent flow and aqueous sedimentation on early Mars[J]. Science, 302(5652): 1931-1934. doi: 10.1126/science.1090544
    [69] Matsubara Y, Howard A D, Gochenour J P. 2013. Hydrology of early Mars: Valley network incision[J]. Journal of Geophysical Research: Planets, 118(6): 1365-1387. doi: 10.1002/jgre.20081
    [70] McEwen A S, Ojha L, Dundas C M, et al. 2011. Seasonal flows on warm Martian slopes[J]. Science, 333(6043): 740-743. doi: 10.1126/science.1204816
    [71] McEwen A S, Dundas C M, Mattson S S, et al. 2014. Recurring slope lineae in equatorial regions of Mars[J]. Nature Geoscience, 7(1): 53-58. doi: 10.1038/ngeo2014
    [72] McEwen A S. 2018. Are Recurring Slope Lineae Habitable?[M]// From Habitability to Life on Mars, 249-274.
    [73] McEwen A S, Schaefer E, Sutton S, et al. 2019. Remarkably Widespread RSL Activity Following the Great Martian Dust Storm of 2018[C]//EPSC-DPS Joint Meeting 2019. abstract no. EPSC-DPS2019-2557.
    [74] McEwen A S, Schaefer E I, Dundas C M, et al. 2021. Mars: Abundant Recurring Slope Lineae (RSL) Following the Planet-Encircling Dust Event (PEDE) of 2018[J]. Journal of Geophysical Research: Planets, 126: e2020JE006575.
    [75] Michalski J R, Bleacher J E. 2013. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars[J]. Nature, 502(7469): 47-52. doi: 10.1038/nature12482
    [76] Nimmo F, Tanaka K. 2005. Early crustal evolution of mars[J]. Annual Review of Earth and Planetary Sciences, 33: 133-161. doi: 10.1146/annurev.earth.33.092203.122637
    [77] Noffke N, Gerdes G, Klenke T, et al. 2001. Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within recent and pleistocene coastal facies zones (Southern Tunisia)[J]. Facies, 44: 23-30. doi: 10.1007/BF02668164
    [78] Oehler D Z, Etiope G. 2017. Methane seepage on Mars: Where to Llook and why[J]. Astrobiology, 17(12): 1233-1264. doi: 10.1089/ast.2017.1657
    [79] Ojha L, McEwen A, Dundas C, et al. 2014. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars[J]. Icarus, 231: 365-376. doi: 10.1016/j.icarus.2013.12.021
    [80] Ojha L, Wilhelm M B, Murchie S L, et al. 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars[J]. Nature Geoscience, 8(11): 829-832. doi: 10.1038/ngeo2546
    [81] Olson J M, Pierson B K. 1986. Photosynthesis 3.5 thousand million years ago[J]. Photosynthesis Research, 9(1-2): 251-259. doi: 10.1007/BF00029748
    [82] Pan L, Ehlmann B L, Carter J, et al. 2017. The stratigraphy and history of Mars' northern lowlands through mineralogy of impact craters: A comprehensive survey[J]. Journal of Geophysical Research-Planets, 122(9): 1824-1854. doi: 10.1002/2017JE005276
    [83] Parker T J, Gorsline D S, Saunders R S, et al. 1993. Coastal geomorphology of the Martian northern plains[J]. Journal of Geophysical Research-Planets, 98(E6): 11061-11078. doi: 10.1029/93JE00618
    [84] Pasquon K, Gargani J, Masse M, et al. 2016. Present-day formation and seasonal evolution of linear dune gullies on Mars[J]. Icarus, 274: 195-210. doi: 10.1016/j.icarus.2016.03.024
    [85] Peary J A, Castenholz R W. 1964. Temperature strains of a thermophilic blue-green alga[J]. Nature, 202(493): 720-721.
    [86] Pedersen G B M, Head J W. 2010. Evidence of widespread degraded Amazonian-aged ice-rich deposits in the transition between Elysium Rise and Utopia Planitia, Mars: Guidelines for the recognition of degraded ice-rich materials[J]. Planetary and Space Science, 58(14-15): 1953-1970. doi: 10.1016/j.pss.2010.09.019
    [87] Pierson B K, Mitchell H K, Ruffroberts A L. 1993. Chloroflexus aurantiacus and ultraviolet radiation: Implications for archean shallow-water stromatolites[J]. Origins of Life and Evolution of the Biosphere, 23(4): 243-260. doi: 10.1007/BF01581902
    [88] Posamentier H W, Kolla V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 73(3): 367-388. doi: 10.1306/111302730367
    [89] Ramirez R M, Kopparapu R, Zugger M E, et al. 2014. Warming early Mars with CO2 and H-2[J]. Nature Geoscience, 7(1): 59-63. doi: 10.1038/ngeo2000
    [90] Ramirez R M, Craddock R A. 2018. The geological and climatological case for a warmer and wetter early Mars[J]. Nature Geoscience, 11(4): 230-237. doi: 10.1038/s41561-018-0093-9
    [91] Ramirez R M, Craddock R A, Usui T. 2020. Climate simulations of early Mars with estimated precipitation, runoff, and erosion rates[J]. Journal of Geophysical Research-Planets, 125(3): 29.
    [92] Rapin W, Ehlmann B L, Dromart G, et al. 2019. An interval of high salinity in ancient Gale crater lake on Mars[J]. Nature Geoscience, 12(11): 889-895. doi: 10.1038/s41561-019-0458-8
    [93] Robbins S J, Di Achille G, Hynek B M. 2011. The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes[J]. Icarus, 211(2): 1179-1203. doi: 10.1016/j.icarus.2010.11.012
    [94] Rodríguez A, van Bergen M J. 2015. Volcanic hydrothermal systems as potential analogues of Martian sulphate-rich terrains[J]. Netherlands Journal of Geosciences - Geologie en Mijnbouw, 95(2): 153-169.
    [95] Rummel J D, Beaty D W, Jones M A, et al. 2014. A new analysis of Mars "special regions": Findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2)[J]. Astrobiology, 14(11): 887-968. doi: 10.1089/ast.2014.1227
    [96] Schmidt F, Andrieu F, Costard F, et al. 2017. Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows[J]. Nature Geoscience, 10(4): 270-273. doi: 10.1038/ngeo2917
    [97] Schorghofer N, Levy J S, Goudge T A. 2019. High-resolution thermal environment of recurring slope lineae in Palikir Crater, Mars, and its implications for volatiles[J]. Journal of Geophysical Research-Planets, 124(11): 2852-2862. doi: 10.1029/2019JE006083
    [98] Seybold H J, Kite E, Kirchner J W. 2018. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate[J]. Science Advances, 4(6): 5.
    [99] Singh P, Sarkar R, Porwal A. 2019. Orbital remote sensing of impact-induced hydrothermal systems on Mars[J]. Ore Geology Reviews, 108: 101-111.
    [100] Smith M D. 2008. Spacecraft observations of the Martian atmosphere[J]. Annual Review of Earth and Planetary Sciences, 36: 191-219. doi: 10.1146/annurev.earth.36.031207.124334
    [101] Squyres S W, Kasting J F. 1994. Early Mars: how warm and how wet?[J]. Science, 265(5173): 744-749. doi: 10.1126/science.265.5173.744
    [102] Stamenkovic V, Beegle L W, Zacny K, et al. 2019. The next frontier for planetary and human exploration[J]. Nature Astronomy, 3(2): 116-120. doi: 10.1038/s41550-018-0676-9
    [103] Stillman D E, Michaels T I, Grimm R E, et al. 2016. Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day martian briny aquifer[J]. Icarus, 265: 125-138. doi: 10.1016/j.icarus.2015.10.007
    [104] Stillman D E. 2018. Unraveling the Mysteries of Recurring Slope Lineae[M]// Dynamic Mars, 51-85
    [105] Stillman D E, Grimm R E. 2018. Two pulses of seasonal activity in martian southern mid-latitude recurring slope lineae (RSL)[J]. Icarus, 302: 126-133. doi: 10.1016/j.icarus.2017.10.026
    [106] Stillman D E, Bue B D, Wagstaff K L, et al. 2020. Evaluation of wet and dry recurring slope lineae (RSL) formation mechanisms based on quantitative mapping of RSL in Garni Crater, Valles Marineris, Mars[J]. Icarus, 335: 113420. doi: 10.1016/j.icarus.2019.113420
    [107] Strausberg M J, Wang H Q, Richardson M I, et al. 2005. Observations of the initiation and evolution of the 2001 Mars global dust storm[J]. Journal of Geophysical Research-Planets, 110(E2): E02006.
    [108] Taylor Redd N. 2020. Inner workings: Early Mars may have boasted a large ocean and cool climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(50): 31558-31560. doi: 10.1073/pnas.2022986117
    [109] Tebolt M, Levy J, Goudge T, et al. 2020. Slope, elevation, and thermal inertia trends of martian recurring slope lineae initiation and termination points: Multiple possible processes occurring on coarse, sandy slopes[J]. Icarus, 338: 113536. doi: 10.1016/j.icarus.2019.113536
    [110] Tosca N J, Knoll A H. 2009. Juvenile chemical sediments and the long term persistence of water at the surface of Mars[J]. Earth and Planetary Science Letters, 286(3-4): 379-386. doi: 10.1016/j.jpgl.2009.07.004
    [111] Villanueva G L, Mumma M J, Novak R E, et al. 2015. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs[J]. Science, 348(6231): 218-221. doi: 10.1126/science.aaa3630
    [112] Vincendon M, Pilorget C, Carter J, et al. 2019. Observational evidence for a dry dust-wind origin of Mars seasonal dark flows[J]. Icarus, 325: 115-127. doi: 10.1016/j.icarus.2019.02.024
    [113] Viudez-Moreiras D, Newman C E, Forget F, et al. 2020. Effects of a large dust storm in the near-surface atmosphere as measured by InSight in Elysium Planitia, Mars. Comparison with contemporaneous measurements by Mars science laboratory[J]. Journal of Geophysical Research-Planets, 125(9): e2020JE006493.
    [114] Wang A, Ling Z, Yan Y, et al. 2019. Subsurface Cl-bearing salts as potential contributors to recurring slope lineae (RSL) on Mars[J]. Icarus, 333: 464-480. doi: 10.1016/j.icarus.2019.06.024
    [115] Watters W A, Geiger L M, Fendrock M, et al. 2015. Morphometry of small recent impact craters on Mars: Size and terrain dependence, short-term modification[J]. Journal of Geophysical Research: Planets, 120(2): 226-254. doi: 10.1002/2014JE004630
    [116] Webster C R, Mahaffy P R, Atreya S K, et al. 2015. Mars methane detection and variability at Gale crater[J]. Science, 347(6220): 415-417. doi: 10.1126/science.1261713
    [117] Werner S C. 2009. The global martian volcanic evolutionary history[J]. Icarus, 201(1): 44-68.
    [118] Whelley P L, Greeley R. 2008. The distribution of dust devil activity on Mars[J]. Journal of Geophysical Research-Planets, 113(E7): E07002.
    [119] Wordsworth R, Knoll A H, Hurowitz J, et al. 2021. A coupled model of episodic warming, oxidation and geochemical transitions on early Mars[J]. Nature Geoscience, 14(3): 127-132. doi: 10.1038/s41561-021-00701-8
    [120] Wordsworth R D. 2016. The Climate of Early Mars[M]//Jeanloz R, Freeman K H. Annual Review of Earth and Planetary Sciences, Palo Alto: Annual Reviews, 44: 381-408.
    [121] Xiao L, Huang J, Christensen P R, et al. 2012. Ancient volcanism and its implication for thermal evolution of Mars[J]. Earth and Planetary Science Letters, 323: 9-18.
    [122] Yin A. 2012. Structural analysis of the Valles Marineris fault zone: Possible evidence for large-scale strike-slip faulting on Mars[J]. Lithosphere, 4(4): 286-330. doi: 10.1130/L192.1
    [123] Yung Y L, Chen P, Nealson K, et al. 2018. Methane on Mars and habitability: Challenges and responses[J]. Astrobiology, 18(10): 1221-1242. doi: 10.1089/ast.2018.1917
    [124] Zhao J, Xiao L. 2016. Achievements, issues and prospects in study of Martian paleolakes[J]. Earth Science, 41(9): 1572-1582.
  • 加载中
图(12)
计量
  • 文章访问数:  704
  • HTML全文浏览量:  299
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-10
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回