• ISSN 2097-1893
  • CN 10-1855/P

冷湖行星光学遥感发展与展望

何飞 尧中华 魏勇

引用本文: 何飞,尧中华,魏勇. 2021. 冷湖行星光学遥感发展与展望. 地球与行星物理论评,52(4):361-372
He F, Yao Z H, Wei Y. 2021. Development and prospect of planetary optical remote sensing at Lenghu. Reviews of Geophysics and Planetary Physics, 52(4): 361-372

冷湖行星光学遥感发展与展望

doi: 10.19975/j.dqyxx.2021-023
基金项目: 中国科学院战略性先导科技专项(A类)(XDA17010201);中国科学院地质与地球物理研究所重点部署项目(IGGCAS-201904)
详细信息
    通讯作者:

    何飞(1984-),男,博士,研究员,主要从事地球与行星空间环境光学遥感的研究. E-mail:hefei@mail.iggcas.ac.cn

  • 中图分类号: P691

Development and prospect of planetary optical remote sensing at Lenghu

Funds: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010201) and the Key Research Program of the Institute of Geology & Geophysics, CAS (Grant No. IGGCAS-201904)
  • 摘要: 行星科学是当今科学前沿领域,是我国科技战略的重要组成部分,是国家自然科学发展水平和综合国力的集中体现. 行星科学是研究太阳系内与系外行星、卫星、彗星等天体和行星系的基本特征,以及它们形成和演化过程的科学,以深空探测为主要研究手段,由地球科学、空间科学、天文学等学科交叉产生. 行星空间环境是行星多圈层耦合系统的重要部分,是行星与星际空间进行物质和能量交换的关键区域,对行星环境演化具有重要影响. 行星空间分布着不同成分的中性大气,不同密度和能量的空间等离子体,具有不同强度和位形的磁场,在太阳风变化或行星内部驱动力的驱动下发生不同时间/空间尺度的物质输运、能量沉积/耗散等过程. 从全局角度理解行星空间的物质和能量输运是研究行星物质逃逸和环境演化的关键. 光学遥感手段可以弥补传统就位探测方法无法捕捉全貌、无法区分时空变化的不足,特别是地基光学遥感,成本低、可维护、可长期观测、可快速响应等,能产出重要的研究成果. 本文介绍光学遥感的原理,光学遥感的行星科学应用. 在此基础上,介绍中国科学院地质与地球物理研究所建立的中国首个地基行星遥感中心——冷湖行星地质观测中心,并对未来发展进行展望.

     

  • 图  1  典型辐射机制(修改自McClintock et al., 2015

    Figure  1.  Typical radiation mechanisms (modified from McClintock et al., 2015)

    图  2  典型行星大气光谱(修改自Sánchez-Lavega, 2011

    Figure  2.  Typical spectrum of a planet (modified from Sánchez-Lavega, 2011)

    图  3  冷湖行星地质观测中心基本地理情况(修改自Deng et al., 2021

    Figure  3.  Basic geographic information for the Lenghu Observatory of Planetary Science (modified from Deng et al., 2021)

    图  4  PAST望远镜示意图

    Figure  4.  Illustration of PAST

    图  5  TINTIN望远镜示意图

    Figure  5.  Illustration of TINTIN

    表  1  太阳系行星磁层参数(Kivelson and Bagenal, 2007

    Table  1.   Parameters of planetary magnetosphere in solar system (Kivelson and Bagenal, 2007)

    参数水星金星地球火星木星土星天王星海王星
    日心距离 (AU)1)0.31~0.470.72311.5245.29.51930
    半径, RP /km243960516373339071398603302555924764
    表面气压/atm2)<10−149010.006>>1000>>1000>>1000>>1000
    磁矩(MEarth3)4×10−41200006005025
    表面磁场,B0 /nT3×102<23.1×104<104.28×1050.22×1050.23×1050.14×105
    太阳风密度,ρ/cm−335~801683.50.30.10.020.008
    磁层顶鼻点距离(RP4)1.4~1.61042192524
    等离子体密度/cm−3~11~4000>3000~10032
    主要成分H+O+/H+On+/Sn+O+/H2O+/H+H+N+/H+
    主要来源太阳风电离层5)木卫一Io环/卫星6)大气卫星7)
    时间尺度分钟天/小时5)10~100天30天~年1~30天
    等离子体运动太阳风驱动转动/对流5)转动转动对流/转动转动/对流
    1)1 AU=1.5×108 km.
    2)参考美国宇航局行星情况说明书:https://nssdc.gsfc.nasa.gov/planetary/planetfact.html.
    3)以地球磁矩归一化, MEarth=7.906×1015 T m3.
    4)磁层顶鼻点距离RMP=(B02/2μ0ρu2)1/6/RP, 采用表中典型太阳风密度和太阳风速度u~400 km s−1计算, 对于外行星, 该计算值偏低.
    5)等离子体层顶内主要来自电离层(He et al., 2013), 主要受地球共转电场控制, 时间尺度为天量级,等离子体顶外主要来自太阳风, 主要受太阳风对流电场控制, 时间尺度为小时量级.
    6)土卫二——Enceladus, 土卫三——Tethys, 土卫四——Dione.
    7)海卫一——Triton.
    下载: 导出CSV
  • [1] Adel A, Slipher V M. 1934. Concerning the carbon dioxide content of the atmosphere of the planet Venus[J]. Physics Review, 46: 240.
    [2] Baumgardner J, Wilson J, Mendillo M. 2008. Imaging the sources and full extent of the sodium tail of the planet Mercury[J]. Geophysical Research Letters, 35: L03201.
    [3] Bida T A, Killen R M, Morgan T H. 2000. Discovery of calcium in Mercury’s atmosphere[J]. Nature, 404: 159–161. doi: 10.1038/35004521
    [4] Bottema M, Plummer W, Strong J. 1964. Water vapor in the atmosphere of Venus[J]. The Astrophysical Journal, 139: 1021–1022.
    [5] Brown M E, Bouchez A H. 1997. The response of Jupiter’s magnetosphere to an outburst on Io[J]. Science, 278: 268–271. doi: 10.1126/science.278.5336.268
    [6] Connes P, Connes J, Benedict W S, et al. 1967. Traces of HCl and HF in the atmosphere of Venus[J]. The Astrophysical Journal, 147: 1230–1237. doi: 10.1086/149124
    [7] Deeg H J, Belmonte J A. 2018. Handbook of Exoplanets[M]. Switzerland: Springer.
    [8] Deighan J I, Jain S K, Chaffin M S, et al. 2018. Discovery of a proton aurora at Mars[J]. Nature Astronomy, 2: 802–807. doi: 10.1038/s41550-018-0538-5
    [9] Deng L, Yang F, Chen X, et al. 2021. Lenghu on the Tibetan Plateau as an astronomical observing site[J]. Nature (accepted).
    [10] Dollfus A. 1975. Venus: Evolution of the upper atmosphere clouds[J]. Journal of Atmospheric Sciences, 32: 1060–1070. doi: 10.1175/1520-0469(1975)032<1060:VEOTUA>2.0.CO;2
    [11] Fink U, Larson H P, Kuiper G P, et al. 1972. Water vapor in the atmosphere of Venus[J]. Icarus, 17: 617–631. doi: 10.1016/0019-1035(72)90028-0
    [12] Fink U, Larson H P, Poppen R F. 1974. A new upper limit for an atmosphere of CO2, CO on Mercury[J]. The Astrophysical Journal, 187: 407–415. doi: 10.1086/152647
    [13] Formisano V, Atreya S, Encreanaz T, et al. 2004. Detection of methane in the atmosphere of Mars[J]. Science, 306: 1758–1761. doi: 10.1126/science.1101732
    [14] Gladstone G R, Waite Jr J H, Grodent D, et al. 2002. A pulsating auroral X-ray hot spot on Jupiter[J]. Nature, 415: 1000–1003. doi: 10.1038/4151000a
    [15] Goldstein B E, Suess S T, Walker R J. 1981. Mercury: Magnetospheric processes and the atmospheric supply and loss rates[J]. Journal of Geophysical Research, 86: 5485–5499. doi: 10.1029/JA086iA07p05485
    [16] Grodent D, Bonfond B, Yao Z, et al. 2018. Jupiter’s aurora observed with HST during Juno orbits 3 to 7[J]. Journal of Geophysical Research: Space Physics, 123(5): 3299–3319. doi: 10.1002/2017JA025046
    [17] He F, Zhang X X, Chen B, et al. 2013. Moon-based EUV imaging of the Earth’s plasmasphere: Model simulations[J]. Journal of Geophysical Research: Space Physics, 118: 7085–7103. doi: 10.1002/2013JA018962
    [18] He F, Zhang X X, Wang X-Y, et al. 2015. EUV emissions from solar wind charge exchange in the Earth’s magnetosheath: Three-dimensional global hybrid simulation[J]. Journal of Geophysical Research: Space Physics, 120: 138–156. doi: 10.1002/2014JA020521
    [19] 何飞. 2020. 行星空间环境光学遥感[J]. 科学通报, 65(14): 1305-1319.

    He F. 2020. Remote sensing of planetary space environment[J]. Chinese Science Bulletin, 64(14): 1305-1319 (in Chinese).
    [20] Killen R M, Potter A E, Morgan T H. 1990. Spatial distribution of sodium vapor in the atmosphere of Mercury[J]. Icarus, 85: 145–167. doi: 10.1016/0019-1035(90)90108-L
    [21] Killen R M, Potter A E, Fitzsimmons A, et al. 1999. Sodium D2 line profile: clues to the temperature structure of Mercury’s exosphere[J]. Planetary and Space Science, 47: 1449–1458. doi: 10.1016/S0032-0633(99)00071-9
    [22] Kivelson M G, Bagenal F. 2007. Planetary magnetosphere[C]//McFadden L-A, Weissman P R, Johnson T V. Encyclopedia of the Solar System. New York: Academic Press, 519-540.
    [23] Krasnopolsky V A, Maillard J P, Owen T C. 2004. Detection of methane in the Martian atmosphere: evidence of life?[J]. Icarus, 172: 537–547. doi: 10.1016/j.icarus.2004.07.004
    [24] Kuiper G P. 1952. The Atmospheres of the Earth and Planets[M]. Chicago: University of Chicago Press.
    [25] Leblanc F, Chaufray J Y, Lilensten J, et al. 2006. Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express[J]. Journal of Geophysical Research, 111: E09S11.
    [26] 李雄耀, 林巍, 肖智勇, 等. 2019. 行星地质学: 地质学的“地外”模式[J]. 中国科学院院刊, 34(7): 776-784.

    Li X, Lin W, Xiao Z, et al. 2019. Planetary geology: “Extraterrestrial” mode of geology[J]. Bulletin of Chinese Academy of Sciences, 34(7): 776-784 (in Chinese).
    [27] 林巍. 2020. 临近空间生物研究及其天体生物学意义[J]. 科学通报, 65(14): 1297-1304.

    Lin W. 2020. Life in the near space and implications for astrobiology[J]. Chinese Science Bulletin, 64(14): 1297-1304 (in Chinese).
    [28] 林巍, 李一良, 王高鸿, 等. 2020. 天体生物学研究进展和发展趋势[J]. 科学通报, 65(5): 1305-1319.

    Lin W, Li Y, Wang G, et al. 2020. Remote sensing of planetary space environment[J]. Chinese Science Bulletin, 64(5): 380-391 (in Chinese).
    [29] McClintock W E, Schneider N M, Holsclaw G M, et al. 2015. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission[J]. Space Science Reviews, 195: 75-124. doi: 10.1007/s11214-014-0098-7
    [30] Meier R R. 1991. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews, 58: 1–158. doi: 10.1007/BF01206000
    [31] Mendillo M, Flynn B, Baumgardner J. 1992. Imaging observations of Jupiter’s sodium magneto-nebula during the Ulysses encounter[J]. Science, 257: 1510–1512. doi: 10.1126/science.257.5076.1510
    [32] Nara Y, Yoshikawa I, Yoshioka K, et al. 2018. Extreme ultraviolet spectra of Venusian airglow observed by EXCEED[J]. Icarus, 307: 207–215. doi: 10.1016/j.icarus.2017.10.028
    [33] Potter A E, Morgan T H. 1985. Discovery of sodium in the atmosphere of Mercury[J]. Science, 229: 651–653. doi: 10.1126/science.229.4714.651
    [34] Potter A E, Morgan T H. 1986. Potassium in the atmosphere of Mercury[J]. Icarus, 67: 336–340. doi: 10.1016/0019-1035(86)90113-2
    [35] 戎昭金, 崔峻, 何飞, 等. 2019. 我国行星物理学的发展现状与展望[J]. 中国科学院院刊, 34(7): 760–768.

    Rong Z J, Cui J, He F, et al. 2019. Status and prospect for Chinese planetary physics[J]. Bulletin of Chinese Academy of Sciences, 34(7): 760–768 (in Chinese).
    [36] Sánchez-Lavega A. 2011. An Introduction to Planetary Atmospheres[M]. Boca Raton: Taylor & Francis Group.
    [37] Schneider N M, Trauger J T, Wilson J K, et al. 1991. Molecular origin of Io’s fast sodium[J]. Science, 253: 1394–1397 doi: 10.1126/science.253.5026.1394
    [38] Spinrad H, Münch G, Kaplan L D. 1963. The detection of water vapor on Mars[J]. The Astrophysical Journal, 137: 1319–1321. doi: 10.1086/147613
    [39] 万卫星, 魏勇, 郭正堂, 等. 2019. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊, 34(7): 748–755.

    Wan W, Wei Y, Guo Z, et al. 2019. Toward a power of planetary science from a giant of deep space exploration[J]. Bulletin of Chinese Academy of Sciences, 34(7): 748–755 (in Chinese).
    [40] Wei Y, Yue X A, Rong Z J, et al. 2017. A planetary perspective on Earth’s space environment evolution[J]. Earth and Planetary Physics, 1: 63–67. doi: 10.26464/epp2017009
    [41] Wei Y, Yao Z, Wan W. 2018. China’s roadmap for planetary exploration[J]. Nature Astronomy, 2: 346–348. doi: 10.1038/s41550-018-0456-6
    [42] 魏勇, 朱日祥. 2019. 行星科学: 科学前沿与国家战略[J]. 中国科学院院刊, 34(7): 756–759.

    Wei Y, Zhu R. 2019. Planetary science: Frontier of science and national strategy[J]. Bulletin of Chinese Academy of Sciences, 34(7): 756–759 (in Chinese).
    [43] 吴福元, 魏勇, 宋玉环, 等. 2019. 从科教融合到科学引领——中国特色的行星科学建设思路[J]. 中国科学院院刊, 34(7): 741–747.

    Wu F Y, Wei Y, Song Y H, et al. 2019. From fusion of research and teaching to leading of science: Strategy to build planetary science program with Chinese characteristics[J]. Bulletin of Chinese Academy of Sciences, 34(7): 741–747 (in Chinese).
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  259
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-10
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回