• ISSN 2097-1893
  • CN 10-1855/P

火星沙尘暴及其与大气波动的相互作用

吴兆朋 李静 李陶 崔峻

引用本文: 吴兆朋,李静,李陶,崔峻. 2021. 火星沙尘暴及其与大气波动的相互作用. 地球与行星物理论评,52(4):402-415
Wu Z P, Li J, Li T, Cui J. 2021. The dust storm and its interaction with atmospheric waves on Mars. Reviews of Geophysics and Planetary Physics, 52(4): 402-415

火星沙尘暴及其与大气波动的相互作用

doi: 10.19975/j.dqyxx.2021-022
基金项目: 中国科学院战略性先导科技专项(XDB41000000);国家自然科学基金资助项目(42004147、42004133、41674149);广东省基础与应用基础研究基金区域联合基金青年基金资助项目(2019A1515110815)
详细信息
    通讯作者:

    吴兆朋,男,特聘副研究员,主要从事火星沙尘暴和行星大气动力学的研究. E-mail:wuzhp9@mail.sysu.edu.cn

    李陶,男,教授,主要从事激光雷达、大气遥感和行星大气动力学的研究. E-mail:litao@ustc.edu.cn

  • 中图分类号: P691

The dust storm and its interaction with atmospheric waves on Mars

Funds: B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000), the National Natural Science Foundation of China (Grant Nos. 42004147, 42004133, 41674149), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110815)
  • 摘要: 火星上的气候跟地球有着重要的相似之处,两者的比较研究对于我们更好地了解地球大气历史和未来的演化具有重要意义. 火星地表和大气中的沙尘及沙循环是火星气候系统中极为重要的一环,而沙尘暴是火星沙循环中最重要的动力学过程. 基于已有的火星沙尘暴和大气波动的研究结果,我们对火星沙尘暴的发生时间和空间尺度以及季节演化进行了归纳;并对火星大气潮汐和行星波的研究进行了总结,分析其对沙尘暴的响应特征,以及大气波动的动力学效应对沙尘暴传播和沙尘空间分布的调制作用;最后,结合其耦合作用对两者未来的发展进行了展望.

     

  • 图  1  火星大气分层,廓线由Viking 1(黑线)、Viking 2(绿线)、Pathfinder(红线)等测量的温度数据组成(修改自Haberle, 2000

    Figure  1.  Mars atmosphere thermal structure, defining the "Troposphere", "Mesosphere" and "Thermosphere". The temperature profiles shown are inferred from observations by orbiters or landed spacecrafts, black: Viking 1; green: Viking 2; red: Pathfinder (modified from Haberle, 2000)

    图  2  火星不同尺度沙尘活动:(a)平静大气下的火星;(b)全球沙尘暴下的火星;(c)Mars Orbiter Camera 观测的沙尘暴锋面;(d)Mars Color Imager观测的沙尘暴照片;(e)High Resolution Imaging Science Experiment观测的尘卷风(修改自Spiga and Lewis, 2010

    Figure  2.  Martian dust cycles in different spatial scales: (a) Martian surface under clear atmospheric condition; (b) the Martian global dust storm; (c) the dust front observed by MOC; (d) the dust storm image observed with Mars Color Imager; (e) the dust devil image observed by HiRISE (modified from Spiga and Lewis, 2010)

    图  3  火星季节划分Ls=0°~360°. 虚线给出了火星的远日点(Ls=71°)和近日点(Ls=251°)位置(修改自http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html)

    Figure  3.  Martian Seasons and Solar Longitude (modified from http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html)

    图  4  多火星年(Martian Year, MY)沙尘暴事件分布演化图(修改自Battalio and Wang, 2021

    Figure  4.  Distribution of dust storm instances for each Martian year (modified from Battalio and Wang, 2021)

    4  (续)

    4.  Continued

    图  5  火星气候探测仪(Mars Climate Sounder, MCS)观测的第31火星年整个沙尘暴季节的50 Pa(约25 km)处纬向平均温度结构:(a)白天温度,(b)晚上温度(修改自Kass et al., 2016

    Figure  5.  Zonal mean temperature structure in MY 31 at 50 Pa (~25 km) based on MCS retrieved temperature profiles (modified from Kass et al., 2016)

    图  6  MCS观测的第31火星年整个沙尘暴季节50 Pa(约25 km)处的白天纬向平均沙尘不透明度结构(修改自Kass et al., 2016

    Figure  6.  Zonal mean daytime dust opacity in MY 31 at 50 Pa (~25 km) based on MCS observations (modified from Kass et al., 2016)

    图  7  TES观测的第25火星年全球沙尘暴时期的大气15 μm纬向平均的亮温结构:(a)昼夜平均;(b)昼夜之差(近似周日潮汐振幅的2倍)(修改自Guzewich et al., 2014

    Figure  7.  (a) Zonally averaged TES T15 T-average temperatures and (b) T-difference temperatures during MY25 (modified from Guzewich et al., 2014)

    图  8  火星沙尘暴季节北纬58°N、高度34 km处、周期在8~60火星天的温度扰动随经度和太阳经度Ls的变化图,黑线标出了西向传播的行星波,此时对应区域沙尘暴发生时期(修改自Wang, 2017

    Figure  8.  Ls versus (east) longitude distribution of temperature perturbation (K) associated with 8<P≤60 Martian days planetary waves at about 58°N and z = 34 km for (top) MYs 26 and (bottom) 32. Black lines indicate westward traveling waves (modified from Wang, 2017)

    图  9  MGS MOC观测到的向南传播的沙尘暴锋面,其结果引发了MGS任务初期观测到的大型沙尘暴(修改自Wang et al., 2003

    Figure  9.  MGS MOC images of southward moving storms. They lead to the largest dust storm of MGS mapping year 1 (Ls 220~226) (modified from Wang et al., 2003)

    图  10  沙尘暴峰值期间日变化的全球二维水平风场及主导的沙尘分布(修改自Wu et al., 2020

    Figure  10.  The diurnal variation of global two-dimensional horizontal wind field and dominant dust distribution during the peak of dust storm (modified from Wu et al., 2020)

  • [1] 陈泽宇, 吕达仁.2009. 面向大气热力潮汐结构分析的 Hough 函数计算[J]. 地球物理学报, 52(6): 1444-1450. doi: 10.3969/j.issn.0001-5733.2009.06.004

    Chen Z Y, Lv D R.2009. Hough function calculation for thermodynamic analysis of atmospheric tidal structure[J]. Chinese Journal of Geophysics, 52(6): 1444-1450(in Chinese). doi: 10.3969/j.issn.0001-5733.2009.06.004
    [2] Banfield D, Conrath B, Pearl J C, et al. 2000.Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor thermal emission spectrometer[J]. Journal of Geophysical Research, 105(E4): 9521, doi: 10.1029/1999je001161.
    [3] Battalio M, Wang H. 2019. The Aonia–Solis–Valles dust storm track in the southern hemisphere of Mars[J]. Icarus, 321: 367–378. http://dx.doi.org/10.1016/j.icarus.2018.
    [4] Battalio M, Wang H. 2021. The Mars Dust Activity Database (MDAD): A comprehensive statistical study of dust storm sequences[J]. Icarus, 354: 114059, doi:https://doi.org/ 10.1016/j.icarus.2020.114059.
    [5] Cantor B A, James P B, Caplinger M, Wolff M J. 2001. Martian dust storms: 1999 Mars Orbiter Camera observations[J]. Journal of Geophysical Research, 106: 23,653 – 23,687, doi: 10.1002/2000JE001310.
    [6] Cantor B A. 2007. MOC observations of the 2001 Mars planet-encircling dust storm[J]. Icarus, 186: 60-96. doi: 10.1016/j.icarus.2006.08.019
    [7] Forbes J M.1995. Tidal and Planetary Waves[M]//Killeen T L. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory. Washington D C: Geophysical Monograph Series, 67-87.
    [8] Forbes J M, Hagan M E, Bougher S W, Hollingsworth J L. 2001. Kelvin wave propagation in the upper atmospheres of Mars and Earth[J]. Advances in Space Research, 27(11): 1791-1800, doi:http://dx.doi.org/ 10.1016/S0273-1177(01)00286-1.
    [9] Forbes J M, Bridger A F C, Bougher S W, et al. 2002. Nonmigrating tides in the thermosphere of Mars[J]. Journal of Geophysical Research, 107(E11): 5113, doi: 10.1029/2001je001582.
    [10] Forbes J M, Zhang X, Talaat E R, Ward W. 2003. Nonmigrating diurnal tides in the thermosphere[J]. Journal of Geophysical Research, 108(A1): 1033, doi: 10.1029/2002JA009262.
    [11] Forget F, Montabone L. 2017. Atmospheric dust on Mars: A review[C)//South Carolina: 47th International Conference on Environmental Systems.
    [12] Gierasch P J, Goody R M. 1972. The effect of dust on the temperature of the Martian atmosphere[J]. Journal of the Atmospheric Sciences, 29(2): 400-402. doi: 10.1175/1520-0469(1972)029<0400:TEODOT>2.0.CO;2
    [13] Guzewich S D, Talaat E R, Toigo A D, et al. 2013. High-altitude dust layers on Mars: Observations with the thermal emission spectrometer[J]. Journal of Geophysical Research: Planets, 118(6): 1177-1194, doi: 10.1002/jgre.20076.
    [14] Guzewich S D, Wilson R J, McConnochie T H, et al. 2014. Thermal tides during the 2001 Martian global-scale dust storm[J]. Journal of Geophysical Research: Planets, 119(3): 506-519, doi: 10.1002/2013je004502.
    [15] Guzewich S D, Toigo A D, Waugh D W. 2016. The effect of dust on the Martian polar vortices[J]. Icarus, 278: 100-118. doi: 10.1016/j.icarus.2016.06.009
    [16] Haberle R M, Joshi M M, Murphy J R, et al. 1999. General circulation model simulations of the Mars Pathfnder atmospheric structure investigation/meteorology data[J]. Journal of Geophysical Research, 104: 8957–8974. doi: 10.1029/1998JE900040
    [17] Haberle R M.2000. Mars: Atmosphere[M]//Shirley J H, Fairbridge R W. Encyclopedia of Planetary Sciences, 432-440.
    [18] Haberle R M, Clancy R, Forget F, et al. 2017. The Atmosphere and Climate of Mars (Cambridge Planetary Science)[M]. Cambridge: Cambridge University Press. doi: 10.1017/9781139060172
    [19] Heavens N G, Richardson M I, Kleinböhl A, et al. 2011a. Vertical distribution of dust in the Martian atmosphere during northern spring and summer: High altitude tropical dust maximum at northern summer solstice[J]. Journal of Geophysical Research, 116: E01007, doi: 10.1029/2010JE003692
    [20] Heavens N G, McCleese D J, Richardson M I, et al. 2011b. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation[J]. Journal of Geophysical Research, 116: E01010, doi: 10.1029/2010JE003713.
    [21] Heavens N G, Johnson M S, Abdou W A, et al. 2014. Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere[J]. Journal of Geophysical Research: Planets, 119(8): 1748-1774. doi: 10.1002/2014JE004619
    [22] Heavens N G, Kleinböhl A, Chaffin M S, et al. 2018.Hydrogen escape from Mars enhanced by deep convection in dust storms[J]. Nature Astronomy, 2: 126. doi: 10.1038/s41550-017-0353-4
    [23] Heavens N G, Kass D M, Shirley J H, et al. 2019. An observational overview of dusty deep convection in Martian dust storms,[J].Journal of the Atmospheric Sciences, 76(11): 3299-3326, doi: 10.1175/Jas-D-19-0042.1.
    [24] Heavens N G, Kass D M, Kleinböhl A, Schofield J T. 2020. A multiannual record of gravity wave activity in Mars’s lower atmosphere from on-planet observations by the Mars Climate Sounder[J]. Icarus, 341: 113630, doi:https://doi.org/ 10.1016/j.icarus.2020.113630.
    [25] Hinson D P, Wilson R J. 2004. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics[J]. Journal of Geophysical Research: Planets, 109(E1): E01002, doi:ArtnE01002 10.1029/2003je002129.
    [26] Kass D M, Kleinböhl A, McCleese D J, et al. 2016. Interannual similarity in the Martian atmosphere during the dust storm season[J]. Geophysical Research Letters, 43: 6111–6118, doi: 10.1002/2016GL068978.
    [27] Kleinböhl A, Wilson R J, Kass D, et al. 2013. The semidiurnal tide in the middle atmosphere of Mars[J]. Geophysical Research Letters, 40(10): 1952-1959, doi: 10.1002/grl.50497.
    [28] Kuroda T, Medvedev A S, Yiğit E. 2020. Gravity wave activity in the atmosphere of Mars during the 2018 global dust storm: Simulations with a high‐resolution model[J]. Journal of Geophysical Research: Planets, 125: e2020JE006556. https://doi.org/10.1029/2020JE006556
    [29] Lee C, Lawson W G, Richardson M I, et al. 2009. Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder[J]. Journal of Geophysical Research, 114(E3): E03005, doi: 10.1029/2008je003285.
    [30] Li J, Wu Z, Li T, et al. 2020. The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3[J]. Earth and Planetary Physics, 4(6): 550-564, doi:https://doi.org/ 10.26464/epp2020062.
    [31] Lindzen R S, Chapman S. 1969. Atmospheric tides[J]. Space Science Reviews, 10(1): 3-188.
    [32] Liu G, England S L, Lillis R J, et al. 2018. Thermospheric expansion associated with dust increase in the lower atmosphere on Mars observed by MAVEN/NGIMS[J]. Geophysical Research Letters, 45(7): 2901-2910. doi: 10.1002/2018GL077525
    [33] Martin L J, Zurek R W. 1993. An analysis of the history of dust activity on Mars[J]. Journal of Geophysical Research, 98 (E2) :3221–3246. doi: 10.1029/92JE02937
    [34] McCleese D J, Heavens N G, Schofield J T, Abdou W A.2010. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols[J]. Journal of Geophysical Research, 115: E12016.doi:10.1029/2010je003677 (2010).
    [35] Medvedev A S, Yigit E, Kuroda T, Hartogh P. 2013. General circulation modeling of the Martian upper atmosphere during global dust storms[J]. Journal of Geophysical Research: Planets, 118(10): 2234-2246, https://doi.org/10.1002/2013JE004429.
    [36] Montabone L, Forget F, Millour E, et al. 2015. Eight-year climatology of dust optical depth on Mars[J]. Icarus, 251: 65-95. doi: 10.1016/j.icarus.2014.12.034
    [37] Moudden Y, Forbes J M. 2008a. Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars' lower thermosphere[J], Geophysical Research Letters, 35: L23805, doi: 10.1029/2008gl036086.
    [38] Moudden Y, Forbes J M. 2008b. Topographic connections with density waves in Mars' aerobraking regime[J]. Journal of Geophysical Research 113: E11009, doi: 10.1029/2008je003107.
    [39] Moudden Y, Forbes J M. 2014. Insight into the seasonal asymmetry of nonmigrating tides on Mars[J]. Geophysical Research Letters, 41(7): 2631-2636, doi: 10.1002/2014gl059535.
    [40] Pirraglia J A, Conrath B J. 1974. Martian tidal pressure and wind fields obtained from Mariner-9 infrared spectroscopy experiment[J]. Journal of the Atmospheric Sciences, 31(2): 318-329, doi:10.1175/1520-0469(1974)031<0318:Mtpawf>2.0.Co;2.
    [41] Qin J F, Zou H, Ye Y G, et al. 2019. Effects of local dust storms on the upper atmosphere of Mars: Observations and simulations[J]. Journal of Geophysical Research: Planets,124:602-616. doi: 10.1029/2018JE005864
    [42] Smith M D.2008. Spacecraft observations of the Martian atmosphere[J]. Annual Review of Earth and Planetary Sciences, 36: 191-219, doi:10.1146/annurev.earth.36.031207.124335 (2008).
    [43] Spiga A, Lewis S R.2010. Martian mesoscale and microscale wind variability of relevance for dust lifting[J]. Mars the International Journal of Mars Science & Exploration, 5: 146–158. doi: 10.1555/mars.2010.0006
    [44] Wang H, Richardson M I, Wilson R J, et al. 2003, Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars[J]. Geophysical Research Letters, 30(9):1488. doi: 10.1029/2002GL016828
    [45] Wang H, Zurek R W, Richardson M I. 2005. Relationship between frontal dust storms and transient eddy activity in the northern hemisphere of Mars as observed by Mars Global Surveyor[J]. Journal of Geophysical Research: Planets, 110: E07005.
    [46] Wang H, Richardson M I. 2015. The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011)[J]. Icarus, 251: 112-127. doi: 10.1016/j.icarus.2013.10.033
    [47] Wang H. 2017. Major dust storms and westward traveling waves on Mars[J]. Geophysical Research Letters, 44(8), 3493-3501. doi: 10.1002/2017GL072894
    [48] Wilson R J, Hamilton K.1996. Comprehensive model simulation of thermal tides in the Martian atmosphere[J]. Journal of the Atmospheric Sciences, 53(9): 1290-1326. doi: 10.1175/1520-0469(1996)053<1290:CMSOTT>2.0.CO;2
    [49] Wilson R J. 2000. Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data[J]. Geophysical Research Letters, 27(23): 3889-3892, doi: 10.1029/2000gl012028.
    [50] Wilson R J, Richardson M I. 2000. The Martian atmosphere during the Viking mission, I: Infrared measurements of atmospheric temperatures revisited[J]. Icarus, 145(2): 555-579, doi:https://doi.org/ 10.1006/icar.2000.6378.
    [51] Wu Z, Li T, Dou X. 2015. Seasonal variation of Martian middle atmosphere tides observed by the Mars Climate Sounder[J]. Journal of Geophysical Research: Planets, 120(12): 2206-2223, doi: 10.1002/2015JE004922.
    [52] Wu Z, Li T, Dou X. 2017. What causes seasonal variation of migrating diurnal tide observed by the Mars Climate Sounder?[J]. Journal of Geophysical Research: Planets, 122(6): 1227-1242, doi: 10.1002/2017JE005277.
    [53] Wu Z, Li T, Zhang X, et al. 2020. Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms[J]. Nature Communications, 11(1): 614, doi: 10.1038/s41467-020-14510-x.
    [54] Xiao J, Chow K C, Chan K L. 2019. Dynamical processes of dust lifting in the northern mid-latitude region of Mars during the dust storm season[J]. Icarus, 317: 94-103. doi: 10.1016/j.icarus.2018.07.020
    [55] Xu J, Smith A K, Jiang G, Yuan W. 2010. Seasonal variation of the Hough modes of the diurnal component of ozone heating evaluated from Aura Microwave Limb Sounder observations[J]. Journal of Geophysical Research: Atmospheres, 115(D10): D10110. doi: 10.1029/2009JD013179.
    [56] Yiğit E, Medvedev A S, Benna M, Jakosky B M. 2021. Dust storm-enhanced gravity wave activity in the Martian thermosphere observed by MAVEN and implication for atmospheric escape[J]. Geophysical Research Letters, 48(5): e2020GL092095, doi:https://doi.org/ 10.1029/2020GL092095.
    [57] Zurek R W. 1976. Diurnal Tide in the Martian atmosphere[J]. Journal of the Atmospheric Sciences, 33(2): 321-337, doi:10.1175/1520-0469(1976)033<0321:DTITMA>2.0.CO;2.
    [58] Zurek R W, Leovy C B. 1981. Thermal tides in the dusty martian atmosphere: a verification of theory[J]. Science, 213(4506): 437-439, doi: 10.1126/science.213.4506.437.
    [59] Zurek R W. 1986. Atmospheric tidal forcing of the zonal-mean rirculation: The Martian dusty atmosphere[J]. Journal of the Atmospheric Sciences, 43(7): 652-670, doi:10.1175/1520-0469(1986)043<0652:ATFOTZ>2.0.CO;2.
    [60] Zhou Y H, Salstein D A, Xu X Q, Liao X H. 2013. Global dust storm signal in the meteorological excitation of Mars' rotation[J]. Journal of Geophysical Research: Planets, 118(5): 952-962. doi: 10.1002/jgre.20087
  • 加载中
图(11)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  299
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-10
  • 录用日期:  2021-05-05
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回