• ISSN 2097-1893
  • CN 10-1855/P

水星磁层观测研究

钟俊

引用本文: 钟俊. 2021. 水星磁层观测研究. 地球与行星物理论评,52(5):483-494
Zhong J. 2021. Observational research on Mercury's magnetosphere. Reviews of Geophysics and Planetary Physics, 52(5): 483-494

水星磁层观测研究

doi: 10.19975/j.dqyxx.2021-021
基金项目: 国家自然科学基金资助项目(41874198);中国科学院地质与地球物理研究所重点部署项目(IGGCAS-201904)
详细信息
    通讯作者:

    钟俊,男,副研究员,主要从事行星空间环境研究. E-mail:j.zhong@mail.iggcas.ac.cn

  • 中图分类号: P352

Observational research on Mercury's magnetosphere

Funds: National Natural Science Foundation of China (Grant No. 41874198) and the Key Research Program of the Institute of Geology & Geophysics, CAS (Grant No. IGGCAS-201904)
  • 摘要: 水星磁层无辐射带、电离层、等离子层,大气层明显消失,只有微弱的外逸层. 由于磁层尺度小,行星内核感应效应较为明显. 行星空间环境显著区别于地球. “信使”号卫星对水星磁层的观测研究丰富了对水星空间环境的认识和理解. 本文主要从磁层尺度及变化性、磁场重联及磁通量绳的形成、典型磁层动力学活动过程、磁层行星重离子时空变化、极端太阳事件下磁层响应特征等方面对水星磁层“信使”号观测研究进展进行简要总结. 并对BepiColombo卫星探测进行相关问题研究展望.

     

  • 图  1  太阳风与水星相互作用示意图

    Figure  1.  The primary features of solar wind-Mercury interaction

    图  2  水星磁尾磁重联区观测.(a)~(c)为穿越磁尾电流片的概况;(d)~(i)为穿越电流片中心重联扩散区的详细数据.(a)、(b)为磁场强度及在MSM坐标系下三分量;(c)离子能谱数据;(d)~(g)磁场强度及在局地电流片LMN坐标系下三分量;(h)NS仪器探测高能电子(>20~40 keV)计数率. 根据BN磁场结构及变化特征,离子扩散区可以划分为5个不同特征的时间段:T1~T5,分别对应于右示意图(修改自Zhong et al., 2018

    Figure  2.  MESSENGER observations of an active reconnection site in Mercury's magnetotail. Panels (a)~(c) show an overview of the current sheet crossing. Panels (d)~(i) show a subset of the data near the diffusion region. (a),(b) The magnetic field magnitude and its three components in the LMN coordinates. (c) Spectrogram of the ion differential energy flux. (d)~(g) The magnetic field magnitude and its three components. (h) Count rate of energetic electrons detected from the NS instrument with 1 s resolution in its burst mode. The diffusion region crossing is divided into five short subintervals, T1~T5. Right: Schematic of the rapidly evolving reconnection process in Mercury's magnetotail (modified from Zhong et al., 2018)

    图  3  水星空间大尺度磁通量绳结构形成过程示意图.(a)众多离子尺度磁通量绳相互作用、多步骤合并形成FTEs;(b)近磁尾和远磁尾重联形成等离子体团结构;(c)极端太阳风条件下磁尾电流片撕裂模不稳定性形成多重联线及离子尺度磁岛链,众多磁岛合并形成大尺度磁通量绳,并周期性释放典型的水星磁层能量输入、输出过程(修改自Zhong et al., 2019, 2020a, 2020c

    Figure  3.  Schematic of macroscale flux rope structures formation in Mercury's space. (a) Macroscale FTEs at Mercury's dayside magnetopause; (b) Giant plasmoid formed and trapped between two widely separated reconnection sites in Mercury's magnetotail; (c) Multiple X-line reconnection in Mercury's magnetotail. (top) Formation of ion-scale flux ropes and the occurrence of multiple X-line reconnection in the elongated tail current sheet. (bottom) Formation of a large-scale flux rope through the interaction and coalescence of many of ion-scale flux ropes and their tailward ejection(modified from Zhong et al., 2019, 2020a, 2020c

    图  4  (a)水星磁层亚暴膨胀相期间阿尔芬波及压缩波的形成示意图(修改自Sun et al., 2015a). (b)水星磁尾亚暴电流楔形成的直接观测结果示意图(修改自Poh et al., 2017a)

    Figure  4.  (a) A schematic to illustrate the Alfvénic and compressional waves generated during the substorm expansion phase in Mercury's magnetotail (modified from Sun et al., 2015a). (b) Schematic illustrations of asymmetries in Mercury's current sheet. Left: the formation of a substorm current wedge in the near-Mercury region. Right: current sheet structure in the postmidnight and premidnight views (modified from Poh et al., 2017a)

    图  5  不同磁场大小下水星磁层顶K-H波多尺度特征. 夜侧磁层顶K-H波的频率和局地Na+回旋频率接近,由于磁场大小的不同,频率可以小于(a)、等于(b)或大于(c)日测K-H波频率(修改自Gershman et al., 2015

    Figure  5.  Illustration of K-H wave growth along Mercury's magnetopause for increasing magnetic field given a constant vortex speed. Toward the tail, where the Na+ is expected to dominate the plasma mass density, the observed frequency of K-H waves (blue spacecraft) matches that of the Na+ gyrofrequency, which can be (a) less than, (b) equal to, or (c) greater than that observed on the dayside (red spacecraft) (modified from Gershman et al., 2015)

    图  6  (a)极尖区观测到的Na+形成机制.(左)太阳风离子溅射和光电离;(右)磁层顶附近或太阳风区域外逸层中性原子电离,被太阳风“拾起”进入极尖区和磁层(修改自Raines et al., 2014).(b)THEMIS遥感探测外逸层典型Na分布模式.(上)日侧低纬单峰模式;(下)中纬地区双峰模式(修改自Mangano et al., 2015

    Figure  6.  (a) Two possible sources for Na+ ions in the cusp: (left) Na+ ions are generated in the cusp, both by solar wind impact and photoionization, and are accelerated by processes there. (right) Neutral Na atoms are ionized near the magnetopause and swept into the cusp (modified from Raines et al., 2014). (b) Examples of the 8 recurrent Na emission patterns identified in the Mercury's exosphere. Top: equatorial Peak. Bottom: two peaks in middle latitude (modified from Mangano et al., 2015)

    图  7  左:少数极端情况下卫星轨道未穿越向阳侧磁层事例.(a)~(d)磁场强度及其三分量;(e)磁场天顶角(红)和方位角(蓝);(f)质子能谱,磁场在(g)X-Z 平面和(h)X-Y平面的投影,以及弓激波(BS)和磁层顶(MP)观测位置与平均磁层顶模型(虚曲线)的比较(修改自Zhong et al., 2015a). 右:向阳侧磁层消失事件观测结果示意图(修改自Slavin et al., 2019

    Figure  7.  Left: Example of MESSENGER missed the dayside magnetosphere. (a)~(d) Magnetic field intensity and its three components; (e) magnetic field zenith and azimuthal angles; (f) spectrogram of proton flux, and the MESSENGER orbit and the vector plots of the magnetic field in the (g) noon-midnight and (h) equatorial planes relative to Mercury's surface (circle) and the average magnetopause from the model (dashed linesh) (modified from Zhong et al., 2015a) . Right: Illustration of the primary features of the disappearing dayside magnetosphere events (modified from Slavin et al., 2019)

  • [1] Anderson B J, Johnson C L, Korth H, et al. 2011. The global magnetic field of Mercury from MESSENGER orbital observations[J]. Science, 333(6051): 1859-62. doi: 10.1126/science.1211001
    [2] Anderson B J, Johnson C L, Korth H, et al. 2014. Steady-state field-aligned currents at Mercury[J]. Geophysical Research Letters, 41(21): 7444-52. doi: 10.1002/2014GL061677
    [3] Delcourt D C, Grimald S, Leblanc F, et al. 2003. A quantitative model of the planetary Na+ contribution to Mercury's magnetosphere[J]. Annales Geophysicae, 21(8): 1723-36. doi: 10.5194/angeo-21-1723-2003
    [4] Delcourt D C. 2013. On the supply of heavy planetary material to the magnetotail of Mercury[J]. Annales Geophysicae, 31(10): 1673-1679. doi: 10.5194/angeo-31-1673-2013
    [5] Dewey R M, Slavin J A, Raines J M, et al. 2017. Energetic electron acceleration and injection during dipolarization events in Mercury's magnetotail[J]. Journal of Geophysical Research: Space Physics, 122(12): 12170-12188. doi: 10.1002/2017JA024617
    [6] Dewey R M, Slavin J A, Raines J M, et al. 2020. MESSENGER observations of flow braking and flux pileup of dipolarizations in Mercury's magnetotail: Evidence for current wedge formation[J]. Journal of Geophysical Research: Space Physics, 125(9): e2020JA028112.
    [7] DiBraccio G A, Slavin J A, Boardsen S A, et al. 2013. MESSENGER observations of magnetopause structure and dynamics at Mercury[J]. Journal of Geophysical Research: Space Physics, 118: 997-1008. doi: 10.1002/jgra.50123
    [8] DiBraccio G A, Slavin J A, Imber S M, et al. 2015. MESSENGER observations of flux ropes in Mercury's magnetotail[J]. Planetary and Space Science, 115: 77-89. doi: 10.1016/j.pss.2014.12.016
    [9] Exner W, Simon S, Heyner D, et al. 2020. Influence of Mercury's exosphere on the structure of the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 125(7): e2019JA027691.
    [10] Fear R C, Coxon J C, Jackman C M. 2019. The contribution of flux transfer events to Mercury's dungey cycle[J]. Geophysical Research Letters, 46(24): 14239-46. doi: 10.1029/2019GL085399
    [11] Fu Z F, Lee L C. 1986. Multiple X line reconnection: 2. The dynamics[J]. Journal of Geophysical Research: Space Physics, 91(A12): 13373-83. doi: 10.1029/JA091iA12p13373
    [12] Gao J W, Rong Z J, Cai Y H, et al. 2018. The distribution of two flapping types of magnetotail current sheet: Implication for the flapping mechanism[J]. Journal of Geophysical Research: Space Physics, 123(9): 7413-23. doi: 10.1029/2018JA025695
    [13] Gershman D J, Slavin J A, Raines J M, et al. 2014. Ion kinetic properties in Mercury's pre-midnight plasma sheet[J]. Geophysical Research Letters, 41(16): 2014GL060468.
    [14] Gershman D J, Raines J M, Slavin J A, et al. 2015. MESSENGER observations of multiscale Kelvin-Helmholtz vortices at Mercury[J]. Journal of Geophysical Research: Space Physics, 120(6): 4354-68. doi: 10.1002/2014JA020903
    [15] Glassmeier K -H, Grosser J, Auster U, et al. 2007. Electromagnetic induction effects and dynamo action in the Hermean system[J]. Space Science Reviews, 132(2–4): 511-527.
    [16] Imber S M, Slavin J A, Boardsen S A, et al. 2014. MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?[J]. Journal of Geophysical Research: Space Physics, 119: 2014JA019884.
    [17] Imber S M, Slavin J A. 2017. MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury[J]. Journal of Geophysical Research: Space Physics, 122(11): 11402-11412. doi: 10.1002/2017JA024332
    [18] Ip W-H. 1993. On the surface sputtering effects of magnetospheric charged particles at Mercury[J]. The Astrophysical Journal, 418(1): 451.
    [19] James M K, Imber S M, Yeoman T K, et al. 2019. Field line resonance in the hermean magnetosphere: Structure and implications for plasma distribution[J]. Journal of Geophysical Research: Space Physics, 124(1): 211-28. doi: 10.1029/2018JA025920
    [20] Jasinski J M, Cassidy T A, Raines J M, et al. 2021. Photoionization loss of Mercury's sodium exosphere: Seasonal observations by MESSENGER and the THEMIS telescope[J]. Geophysical Research Letters, 48(8): e2021GL092980.
    [21] Jia X, Slavin J A, Gombosi T I, et al. 2015. Global MHD simulations of Mercury's magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction[J]. Journal of Geophysical Research: Space Physics, 120(6): 2015JA021143.
    [22] Jia X, Slavin J A, Poh G, et al. 2019. MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury[J]. Journal of Geophysical Research: Space Physics, 124(1): 229-47. doi: 10.1029/2018JA026166
    [23] Johnson C L, Philpott L C, Anderson B J, et al. 2016. MESSENGER observations of induced magnetic fields in Mercury's core[J]. Geophysical Research Letters, 43(6): 2436-44. doi: 10.1002/2015GL067370
    [24] Korth H, Johnson C L, Philpott L, et al. 2017. A dynamic model of Mercury's magnetospheric magnetic field[J]. Geophysical Research Letters, 44(20): 10147-10154. doi: 10.1002/2017GL074699
    [25] Lee L C, Fu Z F. 1985. A theory of magnetic-flux transfer at the Earths magnetopause[J]. Geophysical Research Letters, 12(2): 105-108. doi: 10.1029/GL012i002p00105
    [26] Leyser R P, Imber S M, Milan S E, et al. 2017. The influence of IMF clock angle on dayside flux transfer events at Mercury[J]. Geophysical Research Letters, 44(21): 10829-10837.
    [27] Liljeblad E, Karlsson T, Sundberg T, et al. 2016. Observations of magnetospheric ULF waves in connection with the Kelvin-Helmholtz instability at Mercury[J]. Journal of Geophysical Research: Space Physics, 121(9): 8576-8588. doi: 10.1002/2016JA023015
    [28] Liljeblad E, Karlsson T. 2017. Investigation of ~ 20–40 mHz ULF waves and their driving mechanisms in Mercury's dayside magnetosphere[J]. Annals of Geophysics, 35(4): 879-884. doi: 10.5194/angeo-35-879-2017
    [29] Luhmann J G, Russell C T, Tsyganenko N A. 1998. Disturbances in Mercury's magnetosphere: Are the Mariner 10 "substorms" simply driven?[J]. Journal of Geophysical Research: Space Physics, 103(A5): 9113-9119. doi: 10.1029/97JA03667
    [30] Mangano V, Massetti S, Milillo A, et al. 2013. Dynamical evolution of sodium anisotropies in the exosphere of Mercury[J]. Planetary and Space Science, 82: 1-10.
    [31] Mangano V, Massetti S, Milillo A, et al. 2015. THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER[J]. Planetary and Space Science, 115: 102-109. doi: 10.1016/j.pss.2015.04.001
    [32] Mangano V, Dósa M, Fränz M, et al. 2021. BepiColombo science investigations during cruise and flybys at the Earth, Venus and Mercury[J]. Space Science Reviews, 217(1): 23. doi: 10.1007/s11214-021-00797-9
    [33] Massetti S, Mangano V, Milillo A, et al. 2017. Short-term observations of double-peaked Na emission from Mercury's exosphere[J]. Geophysical Research Letters, 44(7): 2970-2977. doi: 10.1002/2017GL073090
    [34] Milillo A, Wurz P, Orsini S, et al. 2005. Surface-exosphere-magnetosphere system of Mercury[J]. Space Science Reviews, 117(3-4): 397-443. doi: 10.1007/s11214-005-3593-z
    [35] Milillo A, Fujimoto M, Murakami G, et al. 2020. Investigating Mercury's environment with the two-spacecraft BepiColombo mission[J]. Space Science Reviews, 216(5): 93. doi: 10.1007/s11214-020-00712-8
    [36] Milillo A, Mangano V, Massetti S, et al. 2021. Exospheric Na distributions along the Mercury orbit with the THEMIS telescope[J]. Icarus, 335: 114179.
    [37] Ness N F, Behannon K W, Lepping R P, et al. 1974. Magnetic field observations near Mercury: Preliminary results from Mariner 10[J]. Science, 185(4146): 151-160. doi: 10.1126/science.185.4146.151
    [38] Orsini S, Mangano V, Milillo A, et al. 2018. Mercury sodium exospheric emission as a proxy for solar perturbations transit[J]. Scientific Reports, 8(1): 928. doi: 10.1038/s41598-018-19163-x
    [39] Paral J, Rankin R. 2013. Dawn-dusk asymmetry in the Kelvin-Helmholtz instability at Mercury[J]. Nature Communications, 4: 1645. doi: 10.1038/ncomms2676
    [40] Poh G, Slavin J A, Jia X, et al. 2016. MESSENGER observations of cusp plasma filaments at Mercury[J]. Journal of Geophysical Research: Space Physics, 121(9): 8260-8285. doi: 10.1002/2016JA022552
    [41] Poh G, Slavin J A, Jia X, et al. 2017a. Coupling between Mercury and its nightside magnetosphere: Cross-tail current sheet asymmetry and substorm current wedge formation[J]. Journal of Geophysical Research: Space Physics, 122(8): 8419-8433. doi: 10.1002/2017JA024266
    [42] Poh G, Slavin J A, Jia X, et al. 2017b. Mercury's cross-tail current sheet: Structure, X-line location and stress balance[J]. Geophysical Research Letters, 44(2): 678-686. doi: 10.1002/2016GL071612
    [43] Poh G, Sun W, Clink K M, et al. 2020. Large-amplitude oscillatory motion of Mercury's cross-tail current sheet[J]. Journal of Geophysical Research: Space Physics, 125(7): e2020JA027783.
    [44] Raines J M, Gershman D J, Zurbuchen T H, et al. 2013. Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations[J]. Journal of Geophysical Research-Space Physics, 118(4): 1604-1619. doi: 10.1029/2012JA018073
    [45] Raines J M, Gershman D J, Slavin J A, et al. 2014. Structure and dynamics of Mercury's magnetospheric cusp: MESSENGER measurements of protons and planetary ions[J]. Journal of Geophysical Research: Space Physics, 119: 6587-6602. doi: 10.1002/2014JA020120
    [46] Rong Z J, Barabash S, Stenberg G, et al. 2015a. Technique for diagnosing the flapping motion of magnetotail current sheets based on single-point magnetic field analysis[J]. Journal of Geophysical Research: Space Physics, 120(5): 3462-3474. doi: 10.1002/2014JA020973
    [47] Rong Z J, Barabash S, Stenberg G, et al. 2015b. The flapping motion of the Venusian magnetotail: Venus Express observations[J]. Journal of Geophysical Research: Space Physics, 120(7): 5593-5602. doi: 10.1002/2015JA021317
    [48] Rong Z J, Ding Y, Slavin J A, et al. 2018. The magnetic field structure of Mercury's magnetotail[J]. Journal of Geophysical Research: Space Physics, 123(1): 548-566. doi: 10.1002/2017JA024923
    [49] Siscoe G L, Ness N F, Yeates C M. 1975. Substorms on Mercury?[J]. Journal of Geophysical Research, 80(31): 4359-4363. doi: 10.1029/JA080i031p04359
    [50] Slavin J A, Acuña M H, Anderson B J, et al. 2008. Mercury's magnetosphere after MESSENGER's first flyby[J]. Science, 321(5885): 85-89. doi: 10.1126/science.1159040
    [51] Slavin J A, Acuña M H, Anderson B J, et al. 2009. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere[J]. Science, 324(5927): 606-610. doi: 10.1126/science.1172011
    [52] Slavin J A, Anderson B J, Baker D N, et al. 2010a. MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail[J]. Science, 329(5992): 665-668. doi: 10.1126/science.1188067
    [53] Slavin J A, Lepping R P, Wu C-C, et al. 2010b. MESSENGER observations of large flux transfer events at Mercury[J]. Geophysical Research Letters, 37(2): L02105.
    [54] Slavin J A, Imber S M, Boardsen S A, et al. 2012. MESSENGER observations of a flux-transfer-event shower at Mercury[J]. Journal of Geophysical Research: Space Physics, 117(A12): A00M06.
    [55] Slavin J A, DiBraccio G A, Gershman D J, et al. 2014. MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions[J]. Journal of Geophysical Research: Space Physics, 119(10): 8087-8116. doi: 10.1002/2014JA020319
    [56] Slavin J A, Middleton H R, Raines J M, et al. 2019. MESSENGER observations of disappearing dayside magnetosphere events at Mercury[J]. Journal of Geophysical Research: Space Physics, 124(8): 6613-635. doi: 10.1029/2019JA026892
    [57] Smith A W, Slavin J A, Jackman C M, et al. 2017. Flux ropes in the Hermean magnetotail: Distribution, properties, and formation[J]. Journal of Geophysical Research: Space Physics, 122(8): 8136-8153. doi: 10.1002/2017JA024295
    [58] Sun W-J, Slavin J A, Fu S, et al. 2015a. MESSENGER observations of Alfvénic and compressional waves during Mercury's substorms[J]. Geophysical Research Letters, 42(15): 6189-6198. doi: 10.1002/2015GL065452
    [59] Sun W-J, Slavin J A, Fu S, et al. 2015b. MESSENGER observations of magnetospheric substorm activity in Mercury's near magnetotail[J]. Geophysical Research Letters, 42(10): 3692-3699. doi: 10.1002/2015GL064052
    [60] Sun W J, Fu S Y, Slavin J A, et al. 2016. Spatial distribution of Mercury's flux ropes and reconnection fronts: MESSENGER observations[J]. Journal of Geophysical Research: Space Physics, 121(8): 7590-7607. doi: 10.1002/2016JA022787
    [61] Sun W J, Raines J M, Fu S Y, et al. 2017. MESSENGER observations of the energization and heating of protons in the near-Mercury magnetotail[J]. Geophysical Research Letters, 44(16): 8149-8158. doi: 10.1002/2017GL074276
    [62] Sun W J, Slavin J A, Dewey R M, et al. 2018. A comparative study of the proton properties of pagnetospheric substorms at Earth and Mercury in the near magnetotail[J]. Geophysical Research Letters, 45(16): 7933-7941. doi: 10.1029/2018GL079181
    [63] Sun W J, Slavin J A, Dewey R M, et al. 2020a. MESSENGER observations of Mercury's nightside magnetosphere under extreme solar wind conditions: Reconnection-generated structures and steady convection[J]. Journal of Geophysical Research: Space Physics, 125(3): e2019JA027490.
    [64] Sun W J, Slavin J A, Smith A W, et al. 2020b. Flux transfer event showers at Mercury: Dependence on plasma β and magnetic shear and their contribution to the dungey cycle[J]. Geophysical Research Letters, 47(21): e2020GL089784.
    [65] Sundberg T, Boardsen S A, Slavin J A, et al. 2012. MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury's magnetopause[J]. Journal of Geophysical Research: Space Physics, 117(A4): A04216.
    [66] Winslow R M, Anderson B J, Johnson C L, et al. 2013. Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations[J]. Journal of Geophysical Research: Space Physics, 118: 2213-2227. doi: 10.1002/jgra.50237
    [67] Winslow R M, Philpott L, Paty C S, et al. 2017. Statistical study of ICME effects on Mercury's magnetospheric boundaries and northern cusp region from MESSENGER[J]. Journal of Geophysical Research: Space Physics, 122(5): 4960-4975. doi: 10.1002/2016JA023548
    [68] Winslow R M, Lugaz N, Philpott L, et al. 2020. Observations of extreme ICME ram pressure compressing Mercury's dayside magnetosphere to the surface[J]. The Astrophysical Journal, 889(2): 184. doi: 10.3847/1538-4357/ab6170
    [69] Wurz P, Gamborino D, Vorburger A, et al. 2019. Heavy ion composition of Mercury's magnetosphere[J]. Journal of Geophysical Research: Space Physics, 124(4): 2603-2612.
    [70] Zhang C, Rong Z J, Gao J W, et al. 2020. The flapping motion of Mercury's magnetotail current sheet: MESSENGER observations[J]. Geophysical Research Letters, 47(4): e2019GL086011.
    [71] Zhao J T, Sun W-J, Zong Q G, et al. 2019. A statistical study of the force balance and structure in the flux ropes in Mercury's magnetotail[J]. Journal of Geophysical Research: Space Physics, 124(7): 5143-5157. doi: 10.1029/2018JA026329
    [72] Zhao J T, Zong Q-G, Slavin J A, et al. 2020. Proton properties in Mercury's magnetotail: A statistical study[J]. Geophysical Research Letters, 47(19): e2020GL088075.
    [73] Zhong J, Pu Z Y, Dunlop M W, et al. 2013. Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause[J]. Journal of Geophysical Research: Space Physics, 118: 1904-1911. doi: 10.1002/jgra.50281
    [74] Zhong J, Wan W X, Slavin J A, et al. 2015a. Mercury's three-dimensional asymmetric magnetopause[J]. Journal of Geophysical Research: Space Physics, 120: 7658-7671. doi: 10.1002/2015JA021425
    [75] Zhong J, Wan W X, Wei Y, et al. 2015b. Compressibility of Mercury's dayside magnetosphere[J]. Geophysical Research Letters, 42(23): 10135-10139.
    [76] Zhong J, Wei Y, Pu Z Y, et al. 2018. MESSENGER observations of rapid and impulsive magnetic reconnection in Mercury's magnetotail[J]. The Astrophysical Journal Letters, 860(2): L20. doi: 10.3847/2041-8213/aaca92
    [77] Zhong J, Zong Q G, Wei Y, et al. 2019. MESSENGER observations of giant plasmoids in Mercury's magnetotail[J]. The Astrophysical Journal Letters, 886(2): L32. doi: 10.3847/2041-8213/ab5650
    [78] Zhong J, Lee L C, Wang X G, et al. 2020a. Multiple X-line reconnection observed in Mercury's magnetotail driven by an interplanetary coronal mass ejection[J]. The Astrophysical Journal Letters, 893(1): L11. doi: 10.3847/2041-8213/ab8380
    [79] Zhong J, Shue J H, Wei Y, et al. 2020b. Effects of orbital eccentricity and IMF cone angle on the dimensions of Mercury's magnetosphere[J]. The Astrophysical Journal, 892(1): 2. doi: 10.3847/1538-4357/ab7819
    [80] Zhong J, Wei Y, Lee L C, et al. 2020c. Formation of macroscale flux transfer events at Mercury[J]. The Astrophysical Journal Letters, 893(1): L18. doi: 10.3847/2041-8213/ab8566
    [81] Zurbuchen T H, Raines J M, Slavin J A, et al. 2011. MESSENGER observations of the spatial distribution of planetary ions near Mercury[J]. Science, 333(6051): 1862-1865. doi: 10.1126/science.1211302
  • 加载中
图(7)
计量
  • 文章访问数:  1521
  • HTML全文浏览量:  213
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 录用日期:  2021-04-28
  • 网络出版日期:  2021-05-07
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回