• ISSN 2097-1893
  • CN 10-1855/P

火星地震学与内部结构研究

孙伟家 王一博 魏勇 赵亮

引用本文: 孙伟家,王一博,魏勇,赵亮. 2021. 火星地震学与内部结构研究. 地球与行星物理论评,52(4):437-449
Sun W J, Wang Y B, Wei Y, Zhao L. 2021. Martian seismology and review of Martian interior structure. Reviews of Geophysics and Planetary Physics, 52(4): 437-449

火星地震学与内部结构研究

doi: 10.19975/j.dqyxx.2021-016
基金项目: 国家自然科学基金资助项目(41774060, 41720104006, 42022026);中国科学院青年创新促进会资助项目(2017094)
详细信息
    通讯作者:

    孙伟家(1984-),男,研究员,主要从事地震学、地球与行星内部结构及演化的研究. E-mail:swj@mail.iggcas.ac.cn

  • 关于火星地震简称的说明:地震、月震的英文分别为earthquake、moonquake,火星地震的英文为marsquake. 英文可以明确区分不同星体,中文中“地”和“月”无明显歧义,在此情况下可以特指地球或大地、月亮或月球;而中文火星简称为“火”时存在歧义,“火”很容易被误解为“火焰”,若简称火星地震为“火震”会存在较为明显的歧义,因此建议使用“火星地震”全称或将其简称为“火星震”. 相应地,火星地壳、火星地幔和火星地核可简称为火星壳、火星幔和火星核,但不应简称为火壳、火幔和火核. 考虑到今后可能会探测更多行星及行星的卫星,建议使用全称. 本文中使用火星地震、火星地壳、火星地幔和火星地核等全称.
  • 中图分类号: P691

Martian seismology and review of Martian interior structure

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41774060, 41720104006, 42022026) and the Youth Innovation Promotion Association CAS (Grant No. 2017094)
  • 摘要: 目前世界多国掀起了第二次深空探测热潮. 火星是人类重点关注甚至有移民愿望的行星. 美国2018年发射了“洞察”号前往火星探测其内部结构,其科学目标是理解火星形成和演化过程. 洞察号搭载了三套科学设备,其中火星地震仪是最为成功的,并取得了若干的研究进展. 本文首先阐述火星地震学与内部结构研究进展,包括火星地震事件的识别过程、火星内部结构认识等. 然后介绍美国Insight计划实施过程中地震学相关的科学家团队、科学装备以及科学软件平台建设及相应的组织形式,并讨论其对我国开展火星内部结构探测的启示及发展建议.

     

    1)  关于火星地震简称的说明:地震、月震的英文分别为earthquake、moonquake,火星地震的英文为marsquake. 英文可以明确区分不同星体,中文中“地”和“月”无明显歧义,在此情况下可以特指地球或大地、月亮或月球;而中文火星简称为“火”时存在歧义,“火”很容易被误解为“火焰”,若简称火星地震为“火震”会存在较为明显的歧义,因此建议使用“火星地震”全称或将其简称为“火星震”. 相应地,火星地壳、火星地幔和火星地核可简称为火星壳、火星幔和火星核,但不应简称为火壳、火幔和火核. 考虑到今后可能会探测更多行星及行星的卫星,建议使用全称. 本文中使用火星地震、火星地壳、火星地幔和火星地核等全称.
  • 图  1  1960~2021年以火星地震(蓝色)和月震(棕色)为主题发表的论文数量(图中仅有两种颜色,为便于比较,将月震和火星地震同一年叠合在一起,即同一年有两种颜色)

    Figure  1.  Number of publications on the topic of moonquake and marsquake (Only two colors displayed in the Figure. For convenience, the bars of moonquake and marsquake are overlaid, i.e., two colors for one year)

    图  2  三个高质量的火星地震事件的垂向分量波形(a, d, g)及P波震相的质点运动图(b, e, h)和S波震相的质点运动图(c, f). 三个事件分别是S0173a(a, b, c)、S0235b(d, e, f)和S0183a(g, h)(修改自Clinton et al., 2021

    Figure  2.  The vertical component waveforms (a, d, g) and partical motion of P waves (b, e, h) and S waves (c, f) for three high-quality marsquakes, i.e., S0173a (a, b, c),S0235b (d, e, f) and S0183a (g, h) (modified from Clinton et al., 2021)

    图  3  火星地震事件的日期和时间分布与火星地震事件质量. 纵轴为Insight号登陆火星开始计算的火星日,横轴是火星时间(修改自Clinton et al., 2021

    Figure  3.  The temporal distributions of marquakes and the marsquake quality. The vertical axis denotes Martian date after the Insight landed while the horizontal axis presents Martian time (modified from Clinton et al., 2021)

    图  4  (a)10个低频火星地震事件和(b)6个高频火星地震事件的时频谱及振幅谱的包络(修改自Giardini et al., 2020

    Figure  4.  (a) spectrogram of ten low-frequency marsquakes and (b) 6 high-frequency marsquakesand their spectral amplitude envelops (modified from Giardini et al., 2020)

    图  5  火星内部圈层结构示意图(修改自Van Hoolst and Rivoldini, 2014

    Figure  5.  The Martian interiors (modified from Van Hoolst and Rivoldini, 2014)

    图  6  不同震中距火星地震事件的谱包络,从左至右分别是垂直分量、南北分量和东西分量(修改自Clinton et al., 2021

    Figure  6.  The three-component spectral envelopes of marsquakes with various epicentral distance, from left to right: vertical component, north-south component, and east-west component (modified from Clinton et al., 2021)

    图  7  火星地震事件振幅谱变化所揭示的火星上地幔存在低速层(LVL)的示意图(修改自Giardini et al., 2020

    Figure  7.  The schematic illustrations of low-velocity layer in upper mantle revealed from the variations of amplitude spectrum (modified from Giardini et al., 2020)

    图  8  潮汐勒夫数k2和火星地核半径rcmb的关系图,ra为火星半径(修改自Rivoldini et al., 2011

    Figure  8.  The relationship between tidal Love number k2 and Martian core size rcmb (modified from Rivoldini et al., 2011)

    图  9  Insight任务火星地震仪分解图及各部件研制单位(修改自Lognonne et al., 2019

    Figure  9.  The composition of SEIS subsystems, and their leading institutions (modified from Lognonne et al., 2019)

    图  10  我国过去、现在和未来开展深空探测的路线图(修改自Wei et al., 2018

    Figure  10.  China’s past, current and the future space mission (modified from Wei et al., 2018)

  • [1] Anderson D L, Miller W F, Latham G V, et al. 1977. Seismology on Mars[J]. Transactions-American Geophysical Union, 58(8): 828-828.
    [2] Becker G, Knapmeyer-Endrun B. 2018. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations[J]. Geophysical Journal International, 212(2): 1237-1254. doi: 10.1093/gji/ggx485
    [3] Boyd C D, Horrell E E, Lally E M, Dickerson B D. 2012. Verifying cryogenic cooling of superconducting cables using optical fiber[C]//Future of Instrumentation International Workshop (FIIW).
    [4] 陈瑛, 宋俊磊. 2013. 地震仪的发展历史及现状综述[J]. 地球物理学进展, 28(3), 1311-1319. doi: 10.6038/pg20130324

    Chen Y, Song J L. 2013. Review of the development history and present situation on seismographs[J]. Progress in Geophysics, 28(3): 1311-1319 (in Chinese). doi: 10.6038/pg20130324
    [5] Clinton J, Giardini D, Böse M, et al. 2018. The Marsquake service: Securing daily analysis of SEIS data and building the Martian seismicity catalogue for InSight[J]. Space Science Reviews, 214(8): 133. doi: 10.1007/s11214-018-0567-5
    [6] Clinton J F, Ceylan S, van Driel M, et al. 2021. The Marsquake catalogue from InSight, sols 0–478[J]. Physics of the Earth and Planetary Interiors, 310: 106595. doi: 10.1016/j.pepi.2020.106595
    [7] Crampin S, Gao Y. 2015. The physics underlying Gutenberg-Richter in the earth and in the moon[J]. Journal of Earth Science, 26(1): 134-139. doi: 10.1007/s12583-015-0513-3
    [8] Dahmen N L, Clinton J F, Ceylan S, et al. 2020. Super high frequency events: A new class of events recorded by the InSight seismometers on Mars[J]. Journal of Geophysical Research: Planets, 126(2): e2020JE006599.
    [9] Delph J R, Levander A, Niu F. 2019. Constraining crustal properties using receiver functions and the autocorrelation of earthquake-generated body waves[J]. Journal of Geophysical Research: Solid Earth, 124(8): 8981-8997. doi: 10.1029/2019JB017929
    [10] Deng S, Levander A. 2020. Autocorrelation reflectivity of Mars[J]. Geophysical Research Letters, 47(16): e2020GL089630.
    [11] Earle P S, Shearer P M. 1994. Characterization of global seismograms using an automatic-picking algorithm[J]. Bulletin of the Seismological Society of America, 84(2): 366-376.
    [12] Folkner W M, Dehant V, Le Maistre S, et al. 2018. The rotation and interior structure experiment on the InSight mission to Mars[J]. Space Science Reviews, 214(5): 100. doi: 10.1007/s11214-018-0530-5
    [13] Giardini D, Lognonné P, Banerdt W B, et al. 2020. The seismicity of Mars[J]. Nature Geoscience, 13(3): 205-212. doi: 10.1038/s41561-020-0539-8
    [14] Gorbatov A, Saygin E, Kennett B L N. 2013. Crustal properties from seismic station autocorrelograms[J]. Geophysical Journal International, 192(2): 861-870. doi: 10.1093/gji/ggs064
    [15] 郝卫峰, 李斐, 肖驰, 等. 2018. 月震和遥感探测技术的发展对月球内部结构认识的深化[J]. 中国科学: 地球科学, 48(8): 967-979. doi: 10.1007/s11430-017-9197-4

    Hao W F, Li F, Xiao C, et al. 2018. Understanding the Moon’s internal structure through moonquake observations and remote sensing technologies[J]. Science China Earth Sciences, 61: 995–1006(in Chinese). doi: 10.1007/s11430-017-9197-4
    [16] 姜明明, 艾印双. 2010. 月震与月球内部结构[J]. 地球化学, 39(1): 15-24.

    Jiang M, Ai Y.2010. Moonquakes and lunar interio[J]. Geochimica, 39(1): 15-24(in Chinese).
    [17] Langston C A. 1977. Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves[J]. Bulletin of the Seismological Society of America, 67(3): 713-724.
    [18] Lindsey N J, Martin E R, Dreger D S, et al. 2017. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 44(23): 11792-711799. doi: 10.1002/2017GL075722
    [19] Lognonne P, Banerdt W B, Giardini D, et al. 2019. SEIS: Insight's seismic experiment for internal structure of Mars[J]. Space Science Reviews, 215(1): 12. doi: 10.1007/s11214-018-0574-6
    [20] Lorenz R D, Nakamura Y, Murphy J R. 2017. Viking-2 seismometer measurements on Mars: PDS data archive and meteorological applications[J]. Earth and Space Science, 4(11): 681-688. doi: 10.1002/2017EA000306
    [21] Nafe J E. 1962. An esimate of seismic velocity distribution in Mars and Venus[J]. Journal of Geophysical Research, 67(4): 1650.
    [22] Panning M P, Lognonné P, Bruce Banerdt W, et al. 2017. Planned products of the Mars structure service for the InSight mission to Mars[J]. Space Science Reviews, 211(1): 611-650.
    [23] Press F, Buwalda P, Neugebauer M. 1960. A lunar seismic experiment[J]. Journal of Geophysical Research, 65(10): 3097-3105. doi: 10.1029/JZ065i010p03097
    [24] Rivoldini A, Van Hoolst T, Verhoeven O, et al. 2011. Geodesy constraints on the interior structure and composition of Mars[J]. Icarus, 213(2): 451-472. doi: 10.1016/j.icarus.2011.03.024
    [25] Spohn T, Grott M, Smrekar S E, et al. 2018. The heat flow and Physical Properties Package (HP3) for the InSight mission[J]. Space Science Reviews, 214(5): 96. doi: 10.1007/s11214-018-0531-4
    [26] Sun W, Kennett B L N. 2016. Receiver structure from teleseisms: Autocorrelation and cross correlation[J]. Geophysical Research Letters, 43(12): 6234-6242. doi: 10.1002/2016GL069564
    [27] Sun W, Kennett B L N. 2017. Mid-lithosphere discontinuities beneath the western and central North China Craton[J]. Geophysical Research Letters, 44(3): 1302-1310. doi: 10.1002/2016GL071840
    [28] Sun W, Fu L Y, Saygin E, Zhao L. 2018. Insights into layering in the cratonic lithosphere beneath western Australia[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1405-1418. doi: 10.1002/2017JB014904
    [29] Sun W, Kennett B. 2020. Common-reflection-point-based prestack depth migration for imaging lithosphere in Python: Application to the dense Warramunga Array in Northern Australia[J]. Seismological Research Letters, 91(5): 2890-2899. doi: 10.1785/0220200078
    [30] 滕吉文. 2009. 关于设立“张衡计划”的建议——为中国地球物理仪器研发和产业化[J]. 地球物理学进展, 24(4): 1155-1166. doi: 10.3969/j.issn.1004-2903.2009.04.001

    Teng J W. 2009. Specific proposals with regard to set up a “Zhang Heng Project”: for research development and industrialization of Geophysical instruments of China[J]. Progress in Geophysics, 24(4): 1155-1166(in Chinese). doi: 10.3969/j.issn.1004-2903.2009.04.001
    [31] van Driel M, Ceylan S, Clinton J F, et al. 2021. High‐frequency seismic events on Mars observed by InSight[J]. Journal of Geophysical Research: Planets, 126(2): e2020JE006670.
    [32] Van Hoolst T, Rivoldini A. 2014. Chapter 18 - Interior Structure and Evolution of Mars[M]// Spohn T, Breuer D, Johnson T V. Encyclopedia of the Solar System (Third Edition). Boston: Elsevier, 379-396.
    [33] Walter F, Gräff D, Lindner F, et al. 2020. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 11(1): 1-10. doi: 10.1038/s41467-019-13993-7
    [34] 万卫星, 魏勇, 郭正堂, 等. 2019. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊, 34(7): 748-755.

    Wan W X, Wei Y, Guo Z T, et al. 2019. Toward a power of Planetary Science from a gaint of deep space exploration[J]. Bulletin of Chinese Academy of Sciences, 34(7): 748-755(in Chinese).
    [35] Watters T R, McGovern P J, Irwin R P III. 2007. Hemispheres apart: The crustal dichotomy on Mars[J]. Annual Review of Earth and Planetary Sciences, 35: 621-652. doi: 10.1146/annurev.earth.35.031306.140220
    [36] 魏勇. 2021. 国家需求在行星科学一级学科建设中的导向作用[J]. 地球与行星物理论评, 52(4): 1-3. doi: 10.16738/j.dqyxx.2021-034

    Wei Y. 2021. The guiding role of national demand in the first level discipline construction of Planetary Science[J]. Reviews of Geophysics and Planetary Physics, 52(4): 1-3(in Chinese). doi: 10.16738/j.dqyxx.2021-034
    [37] Wei Y, Yao Z, Wan W. 2018. China’s roadmap for planetary exploration[J]. Nature Astronomy, 2(5): 346-348. doi: 10.1038/s41550-018-0456-6
    [38] 吴福元, 魏勇, 宋玉环, 等. 2019. 从科教融合到科学引领――中国特色的行星科学建设思路[J]. 中国科学院院刊, 34(7): 741-747.

    Wu F Y, Wei Y, Song Y H, et al. 2019. From fusion of research and teaching to leading of science—Strategy to build Planetary Science program with Chinese characteristics[J]. Bulletin of Chinese Academy of Sciences, 34(7): 741-747(in Chinese).
    [39] 肖万博, 王彦宾. 2021. “洞察”号火星表面地震探测中的发现[J]. 地球与行星物理论评, 52(2), 211-226.

    Xiao W B, Wang Y B. 2021. Discoveries of the InSight seismic investigation on Mars' surface[J]. Reviews of Geophysics and Planetary Physics, 52(2): 211-226(in Chinese).
    [40] 姚振静, 潘杰. 2020. 光纤地震计研制进展[J]. 山西地震, (3): 47-50. doi: 10.3969/j.issn.1000-6265.2020.03.011

    Yao Z, Pan J. 2020. Development of fiber-optic seismometers[J]. Earthquake Research in Shanxi, (3): 47-50(in Chinese). doi: 10.3969/j.issn.1000-6265.2020.03.011
    [41] 占伟, 李斐. 2007. 月球内部构造研究综述[J]. 地球物理学进展, 22(3): 737-742. doi: 10.3969/j.issn.1004-2903.2007.03.012

    Zhan W, Li F. 2007. The inner structure of the moon[J]. Progress in Geophysics, 22(3): 737-742(in Chinese). doi: 10.3969/j.issn.1004-2903.2007.03.012
    [42] 张翔, 张金海. 2021. 月震研究进展与展望[J]. 地球与行星物理论评, 52(4): 391-401.

    Zhang X, Zhang J H. 2021. Research progress and prospect of moonquakes[J]. Reviews of Geophysics and Planetary Physics, 52(4): 391-401(in Chinese)
    [43] Zumberge M, Berger J, Otero J, Wielandt E. 2010. An optical seismometer without force feedback[J]. Bulletin of the Seismological Society of America, 100(2): 598-605. doi: 10.1785/0120090136
  • 加载中
图(10)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  228
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 录用日期:  2021-04-22
  • 网络出版日期:  2021-05-06
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回