• ISSN 2097-1893
  • CN 10-1855/P

远震波场正演模拟方法及应用

桑莹泉 刘有山 徐涛 白志明 解桐桐

引用本文: 桑莹泉,刘有山,徐涛,白志明,解桐桐. 2021. 远震波场正演模拟方法及应用. 地球与行星物理论评,52(6):569-586
Sang Y Q, Liu Y S, Xu T, Bai Z M, Xie T T. 2021. Forward modeling method and application of teleseismic wavefield. Reviews of Geophysics and Planetary Physics, 52(6): 569-586

远震波场正演模拟方法及应用

doi: 10.19975/j.dqyxx.2021-011
基金项目: 国家自然科学基金资助项目(41774100,41874065,41804060)
详细信息
    作者简介:

    桑莹泉(1998-),男,硕士生,主要从事地震学研究. E-mail:sangyq@mail.iggcas.ac.cn

  • 中图分类号: P315

Forward modeling method and application of teleseismic wavefield

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41774100, 41874065, 41804060)
  • 摘要: 地震波场数值模拟是壳幔结构成像和深部探测的重要基础. 经典的远震波场数值模拟主要基于一维地球模型,包括解析法、半解析法和数值法等. 这些算法能够高效地计算理论地震图,但由于将地球假设为一维层状介质,难以考虑介质的横向非均匀性对地震波场的影响. 近年来随着计算机性能的不断提高,三维地震波场数值模拟方法得到快速发展,并被广泛用于局部/区域地震波场模拟及壳幔结构成像. 然而由于计算成本较高,实现全球尺度模型的高频地震波场数值模拟仍存在较大挑战,因而基于远震波场的混合数值模拟方法逐渐得到关注和应用. 远震波场混合数值模拟法将全球模型分解为全球区域和局部区域,在全球区域中采用一维地球模型近似,应用快速算法计算一维模型中的全球高频理论地震图;在局部目标区域内采用三维数值方法(谱元法、有限差分法等)和注入技术,模拟地震波在三维非均匀介质中的传播,从而在波场计算的效率和精度之间达到平衡. 随着密集台阵观测的普及,对地下结构成像的分辨率提出了更高的要求,准确高效的远震波场混合模拟方法在高分辨率地震成像领域将发挥日益重要的作用. 本文系统地总结了远震波场数值模拟的一维模拟方法,并在此基础上重点介绍远震波场混合数值模拟方法的原理及应用.

     

  • 图  1  p平面上的Cagniard路径

    Figure  1.  Cagniard-de Hoop contour

    图  2  DWN方法的物理解释. 将单个源替换为以相等间隔L水平分布的无限多个源阵列. 对于与特定激励频率相对应的给定辐射波长λ,弹性能量仅在离散方向θ上辐射(修改自Bouchon, 2003).

    Figure  2.  Physical interpretation of the DWN method. The single source is replaced by an infinite array of sources distributed horizontally at equal interval L. For a given radiation wavelength k corresponding to a specific frequency of excitation, the elastic energy is radiated in discrete directions $ \theta $ only(modified from Bouchon, 2003

    图  3  层析成像获得的从南美到南非的二维速度剖面(修改自Ritsema et al., 1999; Ni et al., 2003

    Figure  3.  2D velocity section from South America to South Africa obtained from tomography (modified from Ritsema et al., 1999; Ni et al., 2003)

    图  4  WKM法(左)和伪谱法(右)生成的SV波合成地震图对比(修改自Ni et al., 2003

    Figure  4.  Comparison of SV synthetics generated by the WKM method against the pseudo-spectral method (on the right)(modified from Ni et al., 2003)

    图  5  底部半空间上的N层组成的分层半空间

    Figure  5.  A layered half-space consists of N layers over a half-space at the bottom.

    图  6  震源分解图样(从左到右为单极源、偶极源、四极源)(修改自Nissen-Meyer et al., 2014

    Figure  6.  Radiation patterns for monopole, dipole, and quadrupole from left to right (modified from Nissen-Meyer et al., 2014)

    图  7  GRT-FD混合方法原理示意图(修改自Zhao et al., 2008

    Figure  7.  Schematic diagram of the principle of hybrid method (modified from Zhao et al., 2008)

    图  8  用于全波形反演的P(上)和S(下)波速度模型(修改自Monteiller et al., 2015

    Figure  8.  Synthetic model of P (top) and S (bottom) velocities for full waveform inversion (modified from Monteiller et al., 2015)

    图  9  由垂直分量直达P波的(a)全波形反演和(b)伴随层析成像得到的模型,在伴随层析成像情况下L-BFG迭代15次,在全波形反演情况下迭代5次(修改自Monteiller et al., 2015

    Figure  9.  Models obtained by (a) full waveform inversion and (b) adjoint tomography from vertical-component direct P waves, after 15 iterations of the L-BFGS in the case of adjoint tomography and 5 iterations in the case of full waveform inversion (modified from Monteiller et al., 2015)

    图  10  (a)在西藏中部部署的Hi-CLIMB台站(三角形)的地理分布. 红色三角形表示用于观测和合成RF剖面的台站. $ \mathrm{B}{\mathrm{B}}^{'} $Tseng等(2009)估算地壳厚度的剖面. (b)Hung等(2011)绘制的沿剖面$ \mathrm{B}{\mathrm{B}}^{'} $$ {V}_{\mathrm{P}} $和(c)$ {V}_{\mathrm{S}} $扰动. (d)Tseng等(2009)根据$ {T}_{\mathrm{SsPmp}}-{T}_{\mathrm{Ss}} $估计的地壳厚度(蓝点). (e)2005年发生在北纬5.32°、东经123.34°、深度522 km的地震的SV波地震反射剖面(垂直分量速度). 各种散射/转换的相位,用紫色箭头表示. (f)基于局部地壳模型的三维SEM-FK混合方法计算相应的SV波合成地震剖面,该模型综合了CRUST1.0、估计的莫霍剖面、三维$ {V}_{\mathrm{P}} $$ {V}_{\mathrm{S}} $变化. 图4e图4f中的所有地震记录都在Ss震相上对齐(修改自Tong et al., 2014b

    Figure  10.  (a) Geographic distributions of Hi-CLIMB stations (triangles) previously deployed in central Tibet. Red triangles indicate stations used to generate the observed and synthetic RF profiles. $ \mathrm{B}{\mathrm{B}}^{'} $ is the profile along which the crust thickness was estimated by Tseng et al. (2009). (b)VP and (c) VS perturbations along Profile $ \mathrm{B}{\mathrm{B}}^{'} $ mapped by Hung et al. (2011) superimposed onto the estimated Moho. (d) Estimated crust thickness (blue dots) based on $ {T}_{\mathrm{SsPmp}}-{T}_{\mathrm{Ss}} $ by Tseng et al. (2009). (e) Observed SV wave seismic reflection profile (vertical-component velocity) for a 2005 earthquake occurred at $ 5.3{2}^{\circ } $ N, $ 123.3{4}^{\circ } $ E, and a depth of 522 km. Various scattered/converted phases, including SsPmp, are indicated by purple arrows. (f) Corresponding synthetic SV wave seismic profile computed by the 3-D SEM-FK hybrid method based on a local crustal model that incorporates CRUST1.0, the estimated Moho profile, and the 3-D VP and VS variations. All seismograms in Figures 4e and 4f are aligned on the Ss phase (modified from Tong et al., 2014b)

  • [1] Aki K, Larner K L. 1970. Surface motion of a layered medium having an irregular interface due to incident plane SH waves[J]. Journal of Geophysical Research, 75(5): 933-954. doi: 10.1029/JB075i005p00933
    [2] Al-Attar D, Woodhouse J. 2008. Calculation of seismic displacement fields in self-gravitating earth models—applications of minors vectors and symplectic structure[J]. Geophysical Journal International, 175: 1176-1208. doi: 10.1111/j.1365-246X.2008.03961.x
    [3] Alterman Z, Karal Jr F. 1968. Propagation of elastic waves in layered media by finite difference methods[J]. Bulletin of the Seismological Society of America, 58(1): 367-398.
    [4] Baker B, Roecker S. 2014. A full waveform tomography algorithm for teleseismic body and surface waves in 2.5 dimensions[J]. Geophysical Journal International, 198(3): 1775-1794. doi: 10.1093/gji/ggu236
    [5] Beller S, Monteiller V, Combe L, et al. 2018a. On the sensitivity of teleseismic full-waveform inversion to earth parametrization, initial model and acquisition design[J]. Geophysical Journal International, 212(2): 1344-1368. doi: 10.1093/gji/ggx480
    [6] Beller S, Monteiller V, Operto S, et al. 2018b. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion[J]. Geophysical Journal International, 212(2): 1369-1388. doi: 10.1093/gji/ggx216
    [7] Bielak J, Christiano P. 1984. On the effective seismic input for non-linear soil-structure interaction systems[J]. Earthquake Engineering & Structural Dynamics, 12(1): 107-119.
    [8] Bielak J, MacCamy R C, McGhee D S, et al. 1991. Unified symmetric BEM-FEM for site effects on ground motion—SH waves[J]. Journal of Engineering Mechanics, 117(10): 2265-2285. doi: 10.1061/(ASCE)0733-9399(1991)117:10(2265)
    [9] Bielak J, Loukakis K, Hisada Y, et al. 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions, Part I: Theory[J]. Bulletin of the Seismological Society of America, 93(2): 817-824. doi: 10.1785/0120010251
    [10] Bouchon M, Aki K. 1977. Discrete wave-number representation of seismic-source wave fields[J]. Bulletin of the Seismological Society of America, 67(2): 259-277.
    [11] Bouchon M. 1979. Discrete Wave number representation of elastic wave fields in 3-space dimensions[J]. Journal of Geophysical Research, 84(Nb7): 3609-3614. doi: 10.1029/JB084iB07p03609
    [12] Bouchon M. 1981. A simple method to calculate Green's functions for elastic layered media[J]. Bulletin of the Seismological Society of America, 71(4): 959-971.
    [13] Bouchon M. 2003. A review of the discrete wavenumber method[J]. Pure and Applied Geophysics, 160(3-4): 445-465.
    [14] Capdeville Y, Chaljub E, Vilotte J P, et al. 2003a. Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models[J]. Geophysical Journal International, 152(1): 34-67. doi: 10.1046/j.1365-246X.2003.01808.x
    [15] Capdeville Y, To A, Romanowicz B. 2003b. Coupling spectral elements and modes in a spherical Earth: an extension to the 'sandwich' case[J]. Geophysical Journal International, 154(1): 44-57. doi: 10.1046/j.1365-246X.2003.01959.x
    [16] Carcione J M, Kosloff D, Kosloff R. 1988. Wave-Propagation Simulation in a Linear Viscoacoustic Medium[J]. Geophysical Journal, 93(2): 393-407. doi: 10.1111/j.1365-246X.1988.tb02010.x
    [17] Chapman C H. 1976. Exact and approximate generalized ray theory in vertically inhomogeneous-media[J]. Geophysical Journal of the Royal Astronomical Society, 46(2): 201-233. doi: 10.1111/j.1365-246X.1976.tb04154.x
    [18] Chapman C H. 1978. A new method for computing synthetic seismograms[J]. Geophysical Journal International, 54(3): 481-518. doi: 10.1111/j.1365-246X.1978.tb05491.x
    [19] Chapman C H, Drummond R. 1982. Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory[J]. Bulletin of the Seismological Society of America, 72(6B): S277-S317.
    [20] Chapman C H, Orcutt J A. 1985. The computation of body wave synthetic Seismograms in laterally homogeneous media[J]. Reviews of Geophysics, 23(2): 105-163. doi: 10.1029/RG023i002p00105
    [21] Chen L, Wen L X, Zheng T Y. 2005. A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11309.
    [22] Chen X F. 1990. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. I. Theory of two-dimensional SH case[J]. Bulletin of the Seismological Society of America, 80(6A): 1696-1724.
    [23] Chen X F, Zhang H M. 2001. An efficient method for computing Green's functions for a layered half-space at large epicentral distances[J]. Bulletin of the Seismological Society of America, 91(4): 858-869.
    [24] Chevrot S, Zhao L. 2007. Multiscale finite-frequency Rayleigh wave tomography of the Kaapvaal craton[J]. Geophysical Journal International, 169(1): 201-215. doi: 10.1111/j.1365-246X.2006.03289.x
    [25] Clouzet P, Masson Y, Romanowicz B. 2018. Box tomography: First application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent[J]. Geophysical Journal International, 213(3): 1849-1875. doi: 10.1093/gji/ggy078
    [26] Cummins P R, Geller R J, Takeuchi N. 1994. Dsm complete synthetic seismograms-P-Sv, spherically symmetrical, case[J]. Geophysical Research Letters, 21(15): 1663-1666. doi: 10.1029/94GL01281
    [27] Dahlen F, Tromp J. 1998. Theoretical Global Seismology[M]. New Jersey: Princeton University Press.
    [28] Dey-Sarkar S, Chapman C. 1978. A simple method for computation of body-wave seismograms[J]. Bulletin of the Seismological Society of America, 68(6): 1577-1593.
    [29] Dmitry B, Singh S C, Nobuaki F. 2015. An efficient method of 3-D elastic full waveform inversion using a finite-difference injection method for time-lapse imaging[J]. Geophysical Journal International, 202(3), 1908-1922. doi: 10.1093/gji/ggv268
    [30] Fäh D, Suhadolc P, Panza G F. 1993. Variability of seismic ground motion in complex media: the case of a sedimentary basin in the Friuli (Italy) area[J]. Journal of Applied Geophysics, 30(1-2): 131-148. doi: 10.1016/0926-9851(93)90022-Q
    [31] Fäh D, Suhadolc P, Mueller S, et al. 1994. A hybrid method for the estimation of ground motion in sedimentary basins: quantitative modeling for Mexico City[J]. Bulletin of the Seismological Society of America, 84(2): 383-399.
    [32] Florsch N, Fäh D, Suhadolc P, et al. 1991. Complete synthetic seismograms for high-frequency multimode SH-waves[J]. Pure and Applied Geophysics, 136(4): 529-560. doi: 10.1007/BF00878586
    [33] Fu L-Y, Bouchon M. 2004. Discrete wavenumber solutions to numerical wave propagation in piecewise heterogeneous media-I. Theory of two-dimensional SH case[J]. Geophysical Journal International, 157(2): 481-498. doi: 10.1111/j.1365-246X.2004.02135.x
    [34] Geller R J, Ohminato T. 1994. Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary-conditions using the direct solution method[J]. Geophysical Journal International, 116(2): 421-446. doi: 10.1111/j.1365-246X.1994.tb01807.x
    [35] Geller R J, Takeuchi N. 1995. A new method for computing highly accurate Dsm synthetic seismograms[J]. Geophysical Journal International, 123(2): 449-470. doi: 10.1111/j.1365-246X.1995.tb06865.x
    [36] Gilbert F. 1971. Excitation of the normal modes of the earth by earthquake sources[J]. Geophysical Journal of the Royal Astronomical Society, 22: 223-226. doi: 10.1111/j.1365-246X.1971.tb03593.x
    [37] Grand S P. 1994. Mantle shear structure beneath the Americas and surrounding oceans[J]. Journal of Geophysical Research Solid Earth, 99: 11591-11622. doi: 10.1029/94JB00042
    [38] Graves R W, Helmberger D V. 1988. Upper mantle cross section from Tonga to Newfoundland[J]. Journal of Geophysical Research Atmospheres, 93(B5): 4701-4711. doi: 10.1029/JB093iB05p04701
    [39] Gualtieri L, Stutzmann E, Capdeville Y, et al. 2013. Modelling secondary microseismic noise by normal mode summation[J]. Geophysical Journal International, 193(3): 1732-1745. doi: 10.1093/gji/ggt090
    [40] Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 43(1): 17-34.
    [41] Haskell N A. 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults[J]. Bulletin of the Seismological Society of America, 54(6A): 1811-1841.
    [42] Helmberger D V. 1968. The crust-mantle transition in Bering Sea[J]. Bulletin of the Seismological Society of America, 58(1): 179-214.
    [43] Helmberger D V. 1974. Generalized ray theory for shear dislocations[J]. Bulletin of the Seismological Society of America, 64(1): 45-64.
    [44] Helmberger D V, Harkrider D G. 1978. Modeling earthquakes with generalized ray theory[J]. Air Force Office of Scientific Research, Bolling AFB, DC, 21:174-222.
    [45] Helmberger D V. 1983. Theory and application of synthetic seismograms[J]. Earthquakes: Observation, Theory and Interpretation, 85: 174-222.
    [46] Hung S H, Chen W P, Chiao L Y. 2011. A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to P and S wave data from central Tibet[J]. Journal of Geophysical Research: Solid Earth, 116(B6): B06307.
    [47] Ivo O, Johana B, Donat F, et al. 2002. 3D hybrid Ray-FD and DWN-FD seismic modeling for simple models containing complex local structures[J]. Studia Geophysica et Geodaetica, 46(4): 711-730. doi: 10.1023/A:1021181422709
    [48] Kawai K, Takeuchi N, Geller R J. 2006. Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media[J]. Geophysical Journal International, 164(2): 411-424. doi: 10.1111/j.1365-246X.2005.02829.x
    [49] Komatitsch D, Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 139(3): 806-822. doi: 10.1046/j.1365-246x.1999.00967.x
    [50] Komatitsch D, Liu Q Y, Tromp J, et al. 2004. Simulation of ground motion in the Los Angeles Basin base upon the Spectral-Element Method[J]. Bulletin of Seismological Society of America, 94(1): 187-206 doi: 10.1785/0120030077
    [51] Kummer B, Behle A, Dorau F. 1987. Hybrid modeling of elastic-wave propagation in two-dimensional laterally inhomogeneous media[J]. Geophysics, 52(6), 765-771. doi: 10.1190/1.1442343
    [52] Li D Z, Helmberger D, Clayton R W, et al. 2014. Global synthetic seismograms using a 2-D finite-difference method[J]. Geophysical Journal International, 197(2): 1166-1183.
    [53] 李旭, 陈运泰. 1996. 合成地震图的广义反射透射系数矩阵方法[J]. 地震地磁观测与研究, 17(3): 1-20.

    Li X, Chen Y T. 1996. The generalized reflection-transmission coefficient matrix method for synthetic seismograms[J]. Seismological and Geomagnetic Observation and Research, 17(3): 1-20(in Chinese).
    [54] 李幼铭, 孙永智, 姚振兴. 1980. 关于“反射法”计算综合地震图的实施方案[J]. 地球物理学报, 23(4): 389-395. doi: 10.3321/j.issn:0001-5733.1980.04.005

    Li Y M, Sun Y Z, Yao Z X. 1980. A practical scheme on the computation of synthetic seismograms using “reflectivity method” [J]. Chinese Journal of Geophysics, 23(4): 389-395(in Chinese). doi: 10.3321/j.issn:0001-5733.1980.04.005
    [55] Lin C X, Monteiller V, Wang K, et al. 2019. High-frequency seismic wave modelling of the deep Earth based on hybrid methods and spectral-element simulations: a conceptual study[J]. Geophysical Journal International, 219(3): 1948-1969. doi: 10.1093/gji/ggz413
    [56] Liu Q, Gu Y J. 2012. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 566-567: 31-66. doi: 10.1016/j.tecto.2012.07.006
    [57] Liu S L, Yang D H, Dong X P, et al. 2017a. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling[J]. Solid Earth, 8(5): 969-986. doi: 10.5194/se-8-969-2017
    [58] Liu S L, Yang D H, Ma J. 2017b. A modified symplectic PRK scheme for seismic wave modeling[J]. Computers & Geosciences, 99: 28-36.
    [59] Liu T, Zhang H. 2017. Synthetic seismograms for finite sources in spherically symmetric Earth using normal-mode summation[J]. Earthquake Science, 30(3): 125-133. doi: 10.1007/s11589-017-0188-1
    [60] 刘有山, 滕吉文, 刘少林, 徐涛. 2013. 稀疏存储的显式有限元三角网格地震波数值模拟及其PML吸收边界条件. 地球物理学报, 56(9): 3085-3099. doi: 10.6038/cjg20130921

    Liu Y S, Teng J W, Liu S L, Xu T. 2013. Explicit finite element method with triangle meshes stored by sparse format and its perfectly matched layers absorbing boundary condition[J]. Chinese Journal of Geophysics, 56(9): 3085-3099(in Chinese). doi: 10.6038/cjg20130921
    [61] 刘有山, 滕吉文, 徐涛, 等. 2014. 三角网格谱元法地震波场数值模拟[J]. 地球物理学进展, 29(4): 1715-1726. doi: 10.6038/pg20140430

    Liu Y S, Teng J W, Xu T, et al. 2014. Numerical modeling of seismic wavefield with the SEM based on Triangles[J]. Progress in Geophysics, 29(4): 1715-1726(in Chinese). doi: 10.6038/pg20140430
    [62] Liu Y S, Teng J W, Xu T, Badal J. 2017c. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling[J]. Journal of Computational Physics, 336: 458-480. doi: 10.1016/j.jcp.2017.01.069
    [63] Lysmer J, Drake L A. 1972. A Finite Element Method for Seismology[M]//Bolt B A. Methods in Computational Physics: Advances in Research and Applications, 11: 181-216.
    [64] 栾威, 申文斌, 丁浩. 2021. 地球自由振荡弹性简正模研究进展与展望[J]. 地球与行星物理论评, 52(3): 308-325.

    Luan W, Shen W B, Ding H. 2021. Progress and prospect of studies on elastic normal modes of Earth's free oscillation[J]. Reviews of Geophysics and Planetary Physics, 52(3): 308-325(in Chinese).
    [65] Masson Y, Cupillard P, Capdeville Y, et al. 2014. On the numerical implementation of time-reversal mirrors for tomographic imaging[J]. Geophysical Journal International, 196(3): 1580-1599.
    [66] Masson Y, Romanowicz B. 2017a. Box tomography: localized imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth[J]. Geophysical Journal International, 211(1): 141-163. doi: 10.1093/gji/ggx141
    [67] Masson Y, Romanowicz B. 2017b. Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem[J]. Geophysical Journal International, 208(2): 674-692. doi: 10.1093/gji/ggw412
    [68] Mita A, Luco J E. 1987. Dynamic-response of embedded foundations-a hybrid approach[J]. Computer Methods in Applied Mechanics and Engineering, 63(3): 233-259. doi: 10.1016/0045-7825(87)90071-5
    [69] Moczo P, Bystrický E, Kristek J, et al. 1997. Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures[J]. Bulletin of the Seismological Society of America, 87(5): 1305-1323.
    [70] Monteiller V, Chevrot S, Komatitsch D, et al. 2013. A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model[J]. Geophysical Journal International, 192(1): 230-247. doi: 10.1093/gji/ggs006
    [71] Monteiller V, Chevrot S, Komatitsch D, et al. 2015. Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM–DSM hybrid method[J]. Geophysical Journal International, 202(2): 811-827. doi: 10.1093/gji/ggv189
    [72] Monteiller V, Beller S, Plazolles B, et al. 2020. On the validity of the planar wave approximation to compute synthetic seismograms of teleseismic body waves in a 3-D regional model[J]. Geophysical Journal International, 224(3): 2060-2076.
    [73] Ni S D, Ding X M, Helmberger D V. 2000. Constructing synthetics from deep earth tomographic models[J]. Geophysical Journal International, 140(1): 71-82. doi: 10.1046/j.1365-246x.2000.00982.x
    [74] Ni S D, Cormier V F, Helmberger D V. 2003. A comparison of synthetic seismograms for 2D structures: Semianalytical versus numerical[J]. Bulletin of the Seismological Society of America, 93(6): 2752-2757. doi: 10.1785/0120030011
    [75] Nissen-Meyer T, Dahlen F A, Fournier A. 2007a. Spherical-earth frechet sensitivity kernels[J]. Geophysical Journal International, 168(3): 1051-1066. doi: 10.1111/j.1365-246X.2006.03123.x
    [76] Nissen-Meyer T, Fournier A, Dahlen F A. 2007b. A two-dimensional spectral-element method for computing spherical-earth seismograms - I. Moment-tensor source[J]. Geophysical Journal International, 168(3): 1067-1092. doi: 10.1111/j.1365-246X.2006.03121.x
    [77] Nissen-Meyer T, Fournier A, Dahlen F A. 2008. A 2-D spectral-element method for computing spherical-earth seismograms-II. Waves in solid-fluid media[J]. Geophysical Journal International, 174(3): 873-888. doi: 10.1111/j.1365-246X.2008.03813.x
    [78] Nissen-Meyer T, van Driel M, Stahler S C, et al. 2014. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media[J]. Solid Earth, 5(1): 425-445. doi: 10.5194/se-5-425-2014
    [79] Nolet G. 2008, A Breviary of Seismic Tomography[M]. Cambridge: Cambridge University Press.
    [80] Opršal I, Matyska C, Irikura K. 2010. The source-box wave propagation hybrid methods: general formulation and implementation[J]. Geophysical Journal of the Royal Astronomical Society, 176(2): 555-564.
    [81] Paulssen H. 1988. Evidence For Small Scale Structure of The Upper Mantle[M]. Instituut voor Aardwetenschappen der Rijksunversiteit te Utrecht: Geologica Ultraiectina.
    [82] Rayleigh Baron J W S. 1896. The Theory of Sound (Vol. 2) [M]. Macmillan.
    [83] Rayleigh L. 1907. On the dynamical theory of gratings[J]. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 79(532): 399-416.
    [84] Ritsema J, Van H H J, Woodhouse J. 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland[J]. Science 286: 1925–1928. doi: 10.1126/science.286.5446.1925
    [85] Ritsema J, Deuss A, Van H H J, et al. 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophysical Journal International, 184(3): 1223-1236. doi: 10.1111/j.1365-246X.2010.04884.x
    [86] Robertsson J O A, Chapman C H. 2000. An efficient method for calculating finite-difference seismograms after model alterations[J]. Geophysics, 65(3): 907-918. doi: 10.1190/1.1444787
    [87] Roecker S, Baker B, McLaughlin J. 2010. A finite-difference algorithm for full waveform teleseismic tomography[J]. Geophysical Journal International, 181(2): 1017-1040.
    [88] Schmidt H, Tango G. 1986. Efficient global matrix approach to the computation of synthetic seismograms[J]. Geophysical Journal of the Royal Astronomical Society, 84(2): 331-359. doi: 10.1111/j.1365-246X.1986.tb04359.x
    [89] Shtivelman V. 1984. A hybrid method for wave field computation[J]. Geophysical prospecting, 32(2): 236-257. doi: 10.1111/j.1365-2478.1984.tb00730.x
    [90] Shtivelman V. 1985. Two-dimensional acoustic modeling by a hybrid method[J]. Geophysics, 50(8): 1273-1284. doi: 10.1190/1.1441998
    [91] Singh S J, Ben-Menahem A. 1969a. Eigenvibrations of the earth excited by finite dislocations-II Spheroidal oscillations[J]. Geophysical Journal of the Royal Astronomical Society, 17(3): 333-350. doi: 10.1111/j.1365-246X.1969.tb00243.x
    [92] Singh S J, Ben-Menahem A. 1969b. Eigenvibrations of the earth excited by finite dislocations—I Toroidal oscillations[J]. Geophysical Journal International,17(2): 151-177. doi: 10.1111/j.1365-246X.1969.tb02317.x
    [93] Stead R J, Helmberger D V. 1988. Numerical-analytical Interfacing in Two Dimensions with Applications to Modeling NTS Seismograms[M]//Aki K, Wu R-S. Scattering and Attenuations of Seismic Waves, Part I. Basel: Birkhäuser Basel, 157-193.
    [94] Taflove A, Hagness S. 2005. Computational electrodynamics: The finite-difference time-domain method[J]. Artech house, 5(15): 629–670.
    [95] Takeuchi H, Saito M. 1972. Seismic Surface Waves[M]//Bolt B A. Methods in Computational Physics: Advances in Research and Applications. Elsevier, 11: 217-295.
    [96] Takeuchi N, Geller R J, Cummins P R. 1996. Highly accurate P-SV complete synthetic seismograms using modified DSM operators[J]. Geophysical Research Letters, 23(10): 1175-1178. doi: 10.1029/96GL00973
    [97] Takeuchi N, Geller R. 2003. Accurate numerical methods for solving the elastic equation of motion for arbitrary source locations[J]. Geophysical Journal International, 154: 852-866. doi: 10.1046/j.1365-246X.2003.02009.x
    [98] Tanimoto T. 1984. A simple derivation of the formula to calculate synthetic long-period seismograms in a heterogeneous earth by normal mode summation[J]. Geophysical Journal of the Royal Astronomical Society, 77(1): 275-278. doi: 10.1111/j.1365-246X.1984.tb01934.x
    [99] Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 21(2): 89-93. doi: 10.1063/1.1699629
    [100] Tong P, Chen C-W, Komatitsch D, et al. 2014a. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophysical Journal International, 197(1): 369-395. doi: 10.1093/gji/ggt508
    [101] Tong P, Komatitsch D, Tseng T-L, et al. 2014b. A 3-D spectral-element and frequency-wave number hybrid method for high-resolution seismic array imaging[J]. Geophysical Research Letters, 41(20): 7025-7034. doi: 10.1002/2014GL061644
    [102] Tseng T L, Chen W P, Nowack R L. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles[J]. Geophysical Research Letters, 36: L24304. doi: 10.1029/2009GL040457
    [103] Turcotte D L, Schubert G. 2002. Geodynamics[M]. Cambridge: Cambridge University Press.
    [104] Van Manen D J, Robertsson J O A, Curtis A. 2007. Exact wave field simulation for finite-volume scattering problems[J]. The Journal of the Acoustical Society of America, 122(4): EL115-EL121. doi: 10.1121/1.2771371
    [105] 王椿镛. 1982. 层状不均匀介质中合成地震图的反射率法[J]. 地球物理学报, 25(5): 424-433. doi: 10.3321/j.issn:0001-5733.1982.05.005

    Wang C Y. 1982. The reflectivity method of synthetic seismogram calculation for layered inhomogeneous media[J]. Chinese Journal of Geophysics, 25(5): 424-433(in Chinese). doi: 10.3321/j.issn:0001-5733.1982.05.005
    [106] Wang Y, Chevrot S, Monteiller V, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves[J]. Geology, 44(6): 475-478. doi: 10.1130/G37812.1
    [107] 温联星, 姚振兴. 1994. 用广义射线和有限差分计算近场理论地震图的混合方法[J]. 地球物理学报, 37(2): 211-219. doi: 10.3321/j.issn:0001-5733.1994.02.009

    Wen L X, Yao Z X. 1994. Theory and application of hybrid method seismograms[J]. Chinese Journal of Geophysics, 37(2): 211-219(in Chinese). doi: 10.3321/j.issn:0001-5733.1994.02.009
    [108] Wen L X, Helmberger D V. 1998a. A two-dimensional P-SV hybrid method and its application to modeling localized structures near the core-mantle boundary[J]. Journal of Geophysical Research: Solid Earth, 103(B8): 17901-17918. doi: 10.1029/98JB01276
    [109] Wen L X, Helmberger D V. 1998b. Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors[J]. Science, 279(5357): 1701-1703. doi: 10.1126/science.279.5357.1701
    [110] Wen L X. 2002. An SH hybrid method and shear velocity structures in the lowermost mantle beneath the central Pacific and South Atlantic Oceans[J]. Journal of Geophysical Research-Solid Earth, 107(B3): 2055. doi: 10.1029/2001JB000499
    [111] Wen L X, Niu F L. 2002. Seismic velocity and attenuation structures in the top of the Earth's inner core[J]. Journal of Geophysical Research, 107(B11): ESE 2-1-ESE 2-13. doi: 10.1029/2001JB000170
    [112] Wiggins R A. 1976. A fast, new computational algorithm for free oscillations and surface waves[J]. Geophysical Journal International, 47(1): 135-150. doi: 10.1111/j.1365-246X.1976.tb01266.x
    [113] Woodhouse J H. 1988. The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun[J]. Seismological Algorithms, 230: 321-370.
    [114] Wu S L, Nozu A, Nagasaka Y. 2020. Accuracy of near-fault fling-step displacements estimated using the discrete wavenumber method[J]. Bulletin of the Seismological Society of America, doi: 10.1785/0120190257.
    [115] Wu W, Ni S, Zhan Z, et al. 2018. An SEM-DSM three-dimensional hybrid method for modelling teleseismic waves with complicated source-side structures[J]. Geophysical Journal International, 215(1): 133-154. doi: 10.1093/gji/ggy273
    [116] 谢小碧, 郑天愉, 姚振兴. 1992. 理论地震图计算方法[J].地球物理学报, 35(6): 790-801. doi: 10.3321/j.issn:0001-5733.1992.06.014

    Xie X B, Zheng T Y, Yao Z X. 1992. Methods of synthetic seismograms——a review[J]. Chinese Journal of Geophysics, 35(6): 790-801(in Chinese). doi: 10.3321/j.issn:0001-5733.1992.06.014
    [117] Yang H-Y, Zhao L, Hung S-H. 2010. Synthetic seismograms by normal-mode summation: a new derivation and numerical examples[J]. Geophysical Journal International, 183(3): 1613-1632. doi: 10.1111/j.1365-246X.2010.04820.x
    [118] 姚振兴. 1979. 层状介质、非轴对称震源情况下的反射法[J]. 地球物理学报, 22(2): 181-194. doi: 10.3321/j.issn:0001-5733.1979.02.006

    Yao Z X. 1979. Generalized reflection coefficients for a layered medium and asymmetrical source[J]. Chinese Journal of Geophysics, 22(2): 181-194(in Chinese). doi: 10.3321/j.issn:0001-5733.1979.02.006
    [119] 姚振兴. 1980. 剪切位错内源的反射法[J]. 地球物理学报, 23(3): 306-311, 343-344. doi: 10.3321/j.issn:0001-5733.1980.03.008

    Yao Z X. 1980. The reflectivity method for a buried shear dislocation source[J]. Chinese Journal of Geophysics, 23(3): 306-311, 343-344(in Chinese). doi: 10.3321/j.issn:0001-5733.1980.03.008
    [120] 姚振兴, 郑天愉. 1994. 地震波传播理论和应用研究[J]. 地球物理学报, 37(A01): 160-171.

    Yao Z X, Zheng T Y. 1994. Theory of seismic wave propagation and its application[J]. Chinese Journal of Geophysics, 37(A01): 160-171(in Chinese).
    [121] Yoshimura C, Bielak J, Hisada Y, et al. 2003. Domain reduction method for three-dimensional earthquake modeling in localized regions, part II: Verification and applications[J]. Bulletin of the Seismological Society of America, 93(2): 825-841. doi: 10.1785/0120010252
    [122] Zahradnik J, Moczo P. 1996. Hybrid seismic modeling based on discrete-wave number and finite-difference methods[J]. Pure and Applied Geophysics, 148(1-2): 21-38. doi: 10.1007/BF00882053
    [123] Zhang H M, Chen X F, Chang S. 2003. An efficient numerical method for computing synthetic seismograms for a layered half-space with sources and receivers at close or same depths[J]. Pure Applied Geophysics, 160(3): 467-486.
    [124] 张明辉, 刘有山, 侯爵, 等. 2019. 近地表地震层析成像方法综述[J]. 地球物理学进展, 34(1): 48-63. doi: 10.6038/pg2019CC0534

    Zhang M H, Liu Y S, Hou J, et al. 2019. Review of seismic tomography methods in near surface structures reconstruction[J]. Progress in Geophysics, 34(1): 48-63(in Chinese). doi: 10.6038/pg2019CC0534
    [125] Zhao L, Wen L X, Chen L, et al. 2008. A two-dimensional hybrid method for modeling seismic wave propagation in anisotropic media[J]. Journal of Geophysical Research, 113(B12): B12307. doi: 10.1029/2008JB005733
    [126] Zhou H, Chen X F. 2006. A new approach to simulate scattering of SH waves by an irregular topography[J]. Geophysical Journal International, 164(2): 449-459. doi: 10.1111/j.1365-246X.2005.02670.x
    [127] Zhou H, Chen X F. 2008. The localized boundary integral equation discrete wavenumber method for simulating P-SV wave scattering by an irregular topography[J]. Bulletin of the Seismological Society of America, 98(1): 265-279. doi: 10.1785/0120060249
    [128] 朱良保. 1989. 计算横向非均匀介质体波理论地震图的Maslov渐近法[J]. 地球物理学报, 32(2): 163-172. doi: 10.3321/j.issn:0001-5733.1989.02.005

    Zhu L B. 1989. Maslov's asymptotic method of calculating the theoretical seismogram of body waves in the lateral inhomogeneous medium[J]. Chinese Journal of Geophysics, 32(02): 163-172(in Chinese). doi: 10.3321/j.issn:0001-5733.1989.02.005
    [129] Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 148(3): 619-627. doi: 10.1046/j.1365-246X.2002.01610.x
    [130] 朱仁益. 1990. 用 WKBJ 法计算衰减介质中的理论地震图[J]. 地球物理学报, (增刊): 212-224.

    Zhu R Y. 1990. WKBJ method of theoretical seismogram calculation for attenuation media[J]. Chinese Journal of Geophysics, (Sup.): 212-224 (in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  815
  • HTML全文浏览量:  408
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 录用日期:  2021-04-06
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回