• ISSN 2097-1893
  • CN 10-1855/P

岩石热弹性理论及其在地球物理中的应用

王志伟 符力耘 韩同城 巴晶

引用本文: 王志伟,符力耘,韩同城,巴晶. 2021. 岩石热弹性理论及其在地球物理中的应用. 地球与行星物理论评,52(6):623-633
Wang Z W, Fu L Y, Han T C, Ba J. 2021. Review of thermoelasticity theory in rocks and its applications in geophysics. Reviews of Geophysics and Planetary Physics, 52(6): 623-633

岩石热弹性理论及其在地球物理中的应用

doi: 10.19975/j.dqyxx.2021-009
基金项目: 中央高校基本科研业务费专项资金资助;中国科学院战略性先导专项(XDA14010303)
详细信息
    作者简介:

    王志伟(1991-),男,博士后,主要从事热弹性理论及岩石物理实验研究. E-mail:20200078@upc.edu.cn

    通讯作者:

    符力耘(1964-),男,教授,博士生导师,主要从事地震学和勘探地球物理研究. E-mail:lfu@upc.edu.cn

  • 中图分类号: P313

Review of thermoelasticity theory in rocks and its applications in geophysics

Funds: Supported by the Fundamental Research Funds for the Central Universities and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA14010303)
  • 摘要: 热弹性力学研究弹性体在非均匀温度场影响下的变形问题,它是经典弹性力学的推广. 和弹性力学相比,热弹性理论考虑温度的影响,更加准确地阐述弹性介质在温度影响下的物理状态. 岩石物理实验证明了岩石存在热弹现象,即岩石的弹性参数(特别是速度和弹性模量)随着温度的变化而变化. 岩石热弹性理论为由温度引起的弹性模量及速度异常提供了解释. 本文回顾了岩石热弹性的主要理论模型,介绍了热弹性理论相关的岩石物理实验及数值模拟工作,讨论了热弹性理论在地球物理领域应用的研究进展,旨在将热弹性理论引入深层高温环境油气勘探应用中,支撑深层温度异常地球物理预测技术的发展.

     

  • 图  1  导热系数γ = 4.5×104 m kg/(s3°K)的热弹性模型中,快纵波(E波)和热波(T波)的相速度. (a)弛豫时间为0;(b)L-S模型

    Figure  1.  Phase velocities of the E and T waves as a function of frequency for the thermal conductivity γ = 4.5×104 m kg/(s3°K) for the thermoelasticity. (a) τ0 = 0; (b) L-S model

    图  2  Foxhills砂岩中弹性波速度随频率和温度的变化(修改自 Batzle et al., 2006

    Figure  2.  Variation of elastic wave velocity with frequency and temperature in Foxhill sandstone (modified from Batzle et al., 2006)

    图  3  (a)热弹性介质和(b)热孔弹性介质的弹性波

    Figure  3.  Elastic waves in (a) thermoelastic medium and (b) thermoporous elastic medium

    图  4  Palmdale地区测站的预测热弹性应变(实线)和标度GPS位置(点):(a)LLAS;(b)RSTP;(c)CHMS;(d)LL01;(e)PHLB;(f)QHTP(修改自 Prawirodirdjo et al., 2006

    Figure  4.  Predicted thermoelastic strain (solid line) and scaled GPS positions (dots) for stations in Palmdale region: (a) LLAS; (b) RSTP; (c) CHMS; (d) LL01; (e) PHLB; (f) QHTP (modified from Prawirodirdjo et al., 2006

  • [1] Abd-Alla A M, Abo-Dahab S M. 2012. Effect of rotation and initial stress on an infinite generalized magneto-thermoelastic diffusion body with a spherical cavity[J]. Journal of Thermal Stresses, 35(10): 892-912. doi: 10.1080/01495739.2012.720209
    [2] Abo-Dahab S M, Abd-Alla A M, Kilicman A. 2015. Propagation of p-and T-waves in solid-liquid of thermoelastic media subjected to initial stress and magnetic field in the context of CT-theory[J]. Journal of mechanical science and technology, 29(2): 579-591. doi: 10.1007/s12206-015-0118-x
    [3] Abo-el-nour N, Abo-Dahab S M. 2004. Rayleigh waves in magneto-thermo-viscoelastic solid with thermal relaxation times[J]. Applied mathematics and computation, 149(3): 861-877. doi: 10.1016/S0096-3003(03)00191-7
    [4] Abouhamzeh M, Sinke J, Jansen K M B, et al. 2015. Kinetic and thermo-viscoelastic characterisation of the epoxy adhesive in GLARE[J]. Composite Structures, 124: 19-28. doi: 10.1016/j.compstruct.2014.12.069
    [5] Aouadi M. 2015. On thermoelastic diffusion thin plate theory[J]. Applied Mathematics and Mechanics, 36(5): 619-632. doi: 10.1007/s10483-015-1930-7
    [6] Armstrong B H. 1984, Models for thermoelastic in heterogeneous solids attenuation of waves[J]. Geophysics, 49: 1032–1040. doi: 10.1190/1.1441718
    [7] Auriault J L. 2012. Wave propagation and transient heat transfer in thermoelastic composites[J]. International Journal of Heat and Mass Transfer, 55(21-22): 5972-5978. doi: 10.1016/j.ijheatmasstransfer.2012.06.007
    [8] Auriault J L. 2014. Inner thermal resonance in thermoelastic geological structures[J]. Acta Geophysica, 62(5): 993-1004. doi: 10.2478/s11600-014-0209-6
    [9] Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity-direct measurements[J]. Geophysics, 71(1): N1-N9. doi: 10.1190/1.2159053
    [10] Ben-Zion Y, Leary P. 1986. Thermoelastic strain in a half-space covered by unconsolidated material[J]. Bulletin of the Seismological Society of America, 76(5): 1447-1460.
    [11] Ben-Zion, Y, and Allam, A. A. 2013. Seasonal thermoelastic strain and postseismic effects in parkfield borehole dilatometers[J]. Earth and Planetary Science Letters, 379: 120-126. doi: 10.1016/j.jpgl.2013.08.024
    [12] Berger J. 1975. A note on thermoelastic strains and tilts[J]. Journal of Geophysical Research Atmospheres, 80(2): 274-277. doi: 10.1029/JB080i002p00274
    [13] Biot M A. 1956a. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 27(3): 240-253. doi: 10.1063/1.1722351
    [14] Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous aolid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 28(2): 168-178. doi: 10.1121/1.1908239
    [15] Biot M A. 1956c. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the acoustical Society of America, 28(2): 179-191. doi: 10.1121/1.1908241
    [16] Bonafede M. 1991. Hot fluid migration: an efficient source of ground deformation: application to the 1982-1985 crisis at Campi Flegrei-Italy[J]. Journal of Volcanology and Geothermal Research, 48(1-2): 187-198. doi: 10.1016/0377-0273(91)90042-X
    [17] Bonnet G. 1987. Basic singular solutions for a poroelastic medium in the dynamic range[J]. The Journal of the acoustical Society of America, 82(5): 1758-1762. doi: 10.1121/1.395169
    [18] Boschi E. 1973. A thermoviscoelastic model of the earthquake source mechanism[J]. Journal of Geophysical Research, 78(32): 7733-7737. doi: 10.1029/JB078i032p07733
    [19] Budiansky B, Sumner E E, O'Connell R J. 1983. Bulk thermoelastic attenuation of composite materials[J]. Journal of Geophysical Research: Solid Earth, 88(B12): 10343-10348. doi: 10.1029/JB088iB12p10343
    [20] 晁俊奇, 罗运军, 侯建军, 等. 2009. 高温石灰岩纵波波速的实验研究[J]. 河南理工大学学报: 自然科学版, 28(6): 778-782.

    Cao J Q, Luo Y J, Hou J J, et al. 2009. Experimental research on longitudinal wave velocity of limestone under high temperature[J]. Journal of Henan University of Technology (Natural Science), 28(6): 778-782 (in Chinese).
    [21] Carcione J M, Cavallini F, Wang E, et al. 2019, Physics and simulation of wave propagation in linear thermo-poroelastic media[J]. Journal of Geophysical Research - Solid Earth, 124(8): 8147-8166. doi: 10.1029/2019JB017851
    [22] Carcione J M, Mainardi F, Picotti S, et al. 2020a, Thermoelasticity and P-wave simulation based on the Cole-Cole model[J]. Journal of Thermal Stresses, 43(4): 512-527. doi: 10.1080/01495739.2020.1722772
    [23] Carcione J M, Gei D, Santos J E, et al. 2020b, Canonical analytical solutions of wave-induced thermoelastic attenuation[J]. Geophysical Journal International, 221(2): 835-842. doi: 10.1093/gji/ggaa033
    [24] Cermak V, Bodri L, Rybach L, et al. 1990. Relationship between seismic velocity and heat production: comparison of two sets of data and test of validity[J]. Earth and Planetary Science Letters, 99(1-2): 48-57. doi: 10.1016/0012-821X(90)90069-A
    [25] Chandrasekharaiah D S. 1998. Hyperbolic thermoelasticity:A review of recent literature[J]. Applied Mechanics Reviews, 51(12): 705-729. doi: 10.1115/1.3098984
    [26] 陈新明, 李小双, 郭文兵. 2007. 粗砂岩高温后纵波波速特性的试验研究[J]. 能源技术与管理, 6: 6-7. doi: 10.3969/j.issn.1672-9943-B.2007.01.004

    Chen X M, Li X S, Guo W B. 2007. Experimental study on P-wave velocity characteristics of coarse sandstone after high temperature[J]. Energy technology and management, 6: 6-7 (in Chinese). doi: 10.3969/j.issn.1672-9943-B.2007.01.004
    [27] Das P, Kanoria M. 2009. Magneto-thermo-elastic waves in an infinite perfectly conducting elastic solid with energy dissipation[J]. Applied Mathematics and Mechanics, 30(2): 221-228. doi: 10.1007/s10483-009-0209-6
    [28] Davies D, Goes S, Lau H. 2015. Thermally Dominated Deep Mantle LLSVPs: A Review[M]//The Earth's Heterogeneous Mantle. Switzerland: Springer, Cham, 441-477.
    [29] Deswal S, Kalkal K K. 2014. Plane waves in a fractional order micropolar magneto-thermoelastic half-space[J]. Wave Motion, 51(1): 100-113. doi: 10.1016/j.wavemoti.2013.06.009
    [30] 杜守继, 马明, 陈浩华, 等. 2003. 花岗岩经历不同高温后纵波波速分析[J]. 岩石力学与工程学报, 22(11): 1803-1803. doi: 10.3321/j.issn:1000-6915.2003.11.010

    Du S J, Ma M, Chen H H, et al. 2003. Testing study on longitudinal wave characteristics of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 22(11): 1803-1803 (in Chinese). doi: 10.3321/j.issn:1000-6915.2003.11.010
    [31] Ersoy Y. 1981. Propagation of waves in magneto-thermo-viscoelastic solids subjected to a uniform magnetic field[J]. International Journal of Engineering Science, 19(1): 91-115. doi: 10.1016/0020-7225(81)90053-7
    [32] Ezzat M A, El-Bary A A, El-Karamany A S. 2009. Two-temperature theory in generalized magneto-thermo-viscoelasticity[J]. Canadian Journal of Physics, 87(4): 329-336. doi: 10.1139/P08-143
    [33] Ghassemi A, Zhou X. 2011. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics, 40(1): 39-49 doi: 10.1016/j.geothermics.2010.12.001
    [34] Green A E, Lindsay K A. 1972. Thermoelasticity[J]. Journal of Elasticity, 2(1): 1-7. doi: 10.1007/BF00045689
    [35] Green A E, Naghdi P M. 1993. Thermoelasticity without energy dissipation[J]. Journal of elasticity, 31(3): 189-208. doi: 10.1007/BF00044969
    [36] Gueguen Y. 2013. Wave propagation and attenuation in rocks from poroelasticity and thermoelasticity[C]//Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, 2391-2394.
    [37] He T, Li C, Shi S, et al. 2015. A two-dimensional generalized thermoelastic diffusion problem for a half-space[J]. European Journal of Mechanics-A/Solids, 52: 37-43. doi: 10.1016/j.euromechsol.2015.01.002
    [38] Hetnarski R B, Ignaczak J. 1996. Soliton-like waves in a low temperature nonlinear thermoelastic solid[J]. International journal of engineering science, 34(15): 1767-1787. doi: 10.1016/S0020-7225(96)00046-8
    [39] Hetnarski R B, Ignaczak J. 1997. On solition-like thermoelastic waves[J]. Applicable Analysis, 65(1-2): 183-204. doi: 10.1080/00036819708840557
    [40] Hetnarski R B, Ignaczak J. 1999. Generalized thermoelasticity[J]. Journal of Thermal Stresses, 22(4-5): 451-476. doi: 10.1080/014957399280832
    [41] Hillers G, Ben-Zion Y, Campillo M, et al. 2015. Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise[J]. Geophysical Journal International, 202: 920-932. doi: 10.1093/gji/ggv151
    [42] 侯婉婷, 符力耘, 魏佳, 等. 2021. 热弹性介质中波传播特征分析[J]. 地球物理学报, 64(4): 1364-1374. doi: 10.6038/cjg2021N0458

    Hou W T, Fu L Y, Wei J, et al. 2021. Characteristic analysis of wave propagation in thermoelastic medium[J]. Chinese Journal of Geophysics, 64(4): 1364-1374 (in Chinese). doi: 10.6038/cjg2021N0458
    [43] 胡顺田, 刘文堂, 李军, 等. 2008. 热弹性介质中波的一类反射问题的解[J]. 地震, 28(2): 46-53. doi: 10.3969/j.issn.1000-3274.2008.02.005

    Hu S T, Liu W T, Li J, et al. 2008. The solution of a type of reflection problem of wave in the thermoelastic medium[J]. Earthquake, 28(2): 46-53 (in Chinese). doi: 10.3969/j.issn.1000-3274.2008.02.005
    [44] Islam M N, Azaiez J. 2011. Thermo-viscous fingering in quarter five-spot miscible displacements[J]. European Journal of Mechanics-B/Fluids, 30(1): 107-119. doi: 10.1016/j.euromechflu.2010.07.004
    [45] Jacquey A B, Cacace M, BloCher, et al. 2015. Numerical investigation of thermoelastic effects on fault slip tendency during injection and production of geothermal fluids[J]. Energy Procedia, 76(9): 311-320.
    [46] Jafarian A, Ghaderi P, Golmankhaneh A K, et al. 2013. Analytic solution for a nonlinear problem of magneto-Thermoelasticity[J]. Reports on Mathematical Physics, 71(3): 399-411. doi: 10.1016/S0034-4877(13)60039-7
    [47] Jaya M S, Shapiro S A, Kristinsdottir L H, et al. 2010. Temperature dependence of seismic properties in geothermal rocks at reservoir conditions[J]. Geothermics, 39(1): 115-123. doi: 10.1016/j.geothermics.2009.12.002
    [48] Ji S, Wang Q, Xia B. 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores[M]. Montreal, Canada: Presses inter Polytechnique.
    [49] 蒋玺, 谢鸿森, 周文戈, 等. 2007. 1.0 GPa、高温下岩石熔融玻璃的弹性波速测量及其地球物理意义[J]. 地学前缘, 14(3): 158-164. doi: 10.3321/j.issn:1005-2321.2007.03.014

    Jiang X, Xie H S, Zhou W G, et al. 2007. Measurement of elastic wave velocities in rock glasses up to 900 ℃ at 1.0 GPa and their geophysical implications[J]. Earth Science Frontiers, 14(3): 158-164 (in Chinese). doi: 10.3321/j.issn:1005-2321.2007.03.014
    [50] Kjartansson E. 1979. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research Atmospheres, 84(B9): 4737-4748. doi: 10.1029/JB084iB09p04737
    [51] Kohl T, Evansi K F, Hopkirk R J, et al. 1995. Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs[J]. Geothermics, 24(3): 345-359. doi: 10.1016/0375-6505(95)00013-G
    [52] Kristinsdóttir L H, Flóvenz Ó G, Árnason K, et al. 2010. Electrical conductivity and P-wave velocity in rock samples from high-temperature Icelandic geothermal fields[J]. Geothermics, 39(1): 94-105. doi: 10.1016/j.geothermics.2009.12.001
    [53] 刘文堂, 胡顺田, 李军, 等. 2008. 地震波在热弹性介质中的衰减性质及其相应Qr值的计算方法[J]. 地震, 28(2): 39-45. doi: 10.3969/j.issn.1000-3274.2008.02.004

    Liu W T, Hu S T, Li J, et al. 2008. Attenuation of seismic wave in thermal elastic medium and calculation of the corresponding Qr value[J]. Earthquake, 28(2): 39-45 (in Chinese). doi: 10.3969/j.issn.1000-3274.2008.02.004
    [54] Lord H W, Shulman Y. 1967. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 15(5): 299-309. doi: 10.1016/0022-5096(67)90024-5
    [55] Lu J F, Hanyga A. 2005. Linear dynamic model for porous media saturated by two immiscible fluids[J]. International Journal of Solids and Structures, 42(9-10): 2689-2709. doi: 10.1016/j.ijsolstr.2004.09.032
    [56] Mainprice, D. 2015. Seismic anisotropy of the deep earth from a mineral and rock physics perspective[M]. Treatise on Geophysics, 2: 487-538.
    [57] Martin J T, Lowell R P. 1997. On thermoelasticity and silica precipitation in hydrothermal systems: Numerical modeling of laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 102(B6): 12095-12107. doi: 10.1029/97JB00507
    [58] Miao S, Zhou Y. 2017. Temperature dependence of thermal diffusivity and conductivity for sandstone and carbonate rocks[J]. Journal of Thermal Analysis and Calorimetry, 131(2): 1647-1652.
    [59] Nath S, Sengupta P R, Debnath L. 1998. Magneto-thermoelastic surface waves in micropolar elastic media[J]. Computers & Mathematics with Applications, 35(3): 47-55.
    [60] Norris A. 1992. On the correspondence between poroelasticity and thermoelasticity[J]. Journal of applied physics, 71(3): 1138-1141. doi: 10.1063/1.351278
    [61] Othman M I A, Kumar R. 2009. Reflection of magneto-thermoelasticity waves with temperature dependent properties in generalized thermoelasticity[J]. International Communications in Heat and Mass Transfer, 36(5): 513-520. doi: 10.1016/j.icheatmasstransfer.2009.02.002
    [62] Othman M I A, Said S M. 2013. Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories[J]. International Journal of Thermophysics, 34(2): 366-383. doi: 10.1007/s10765-013-1417-z
    [63] Poletto F, Farina B, Carcione J M. 2018. Sensitivity of seismic properties to temperature variations in a geothermal reservoir[J]. Geothermics, 76(11): 149-163.
    [64] Prawirodirdjo L, Ben-Zion Y, Bock, Y. 2006. Observation and modeling of thermoelastic strain in southern California integrated GPS network daily position time series[J]. Journal of Geophysical Research Solid Earth, 111: B02408
    [65] Rawal C, Ghassemi A. 2014. A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir[J]. Geothermics, 50: 10–23. doi: 10.1016/j.geothermics.2013.05.007
    [66] Rutqvist J, Majer E, Oldenburg C, et al. 2006. Integrated modeling and field study of potential mechanisms for induced seismicity at The Geysers Goethermal Field [J]. Transactions: Geothermal Resources Council, 30: 629–633.
    [67] Savage J C. 1965. Attenuation of elastic waves in granular mediums[J]. Journal of Geophysical Research, 70(16): 3935-3942. doi: 10.1029/JZ070i016p03935
    [68] Savage J C. 1966. Thermoelastic attenuation of elastic waves by cracks[J]. Journal of Geophysical Research, 71(16): 3929-3938. doi: 10.1029/JZ071i016p03929
    [69] Semwal S, Mukhopadhyay S. 2014. Boundary integral equation formulation for generalized thermoelastic diffusion–Analytical aspects[J]. Applied Mathematical Modelling, 38(14): 3523-3537. doi: 10.1016/j.apm.2013.11.070
    [70] Sharma K, Bhargava R R. 2014. Propagation of thermoelastic plane waves at an imperfect boundary of thermal conducting viscous liquid/generalized thermoelastic solid[J]. Afrika Matematika, 25(1): 81-102. doi: 10.1007/s13370-012-0099-1
    [71] Sharma M D. 2014. Propagation and attenuation of Rayleigh waves in generalized thermoelastic media[J]. Journal of seismology, 18(1): 61-79. doi: 10.1007/s10950-013-9401-4
    [72] Singh B. 2005. Reflection of P and SV waves from free surface of an elastic solid with generalized thermodiffusion[J]. Journal of earth system science, 114(2): 159-168. doi: 10.1007/BF02702017
    [73] Singh M C, Chakraborty N. 2015. Reflection of a plane magneto-thermoelastic wave at the boundary of a solid half-space in presence of initial stress[J]. Applied Mathematical Modelling, 39(5-6): 1409-1421. doi: 10.1016/j.apm.2014.09.013
    [74] Singh S J, Khurana S. 2002. Reflection of P and SV waves at the free surface of a monoclinic elastic half-space[J]. Journal of Earth System Science, 111(4): 401-412. doi: 10.1007/BF02702053
    [75] Sirdesai N N, Singh A, Sharma L K, et al. 2018. Determination of thermal damage in rock specimen using intelligent techniques[J]. Engineering Geology, 239(9): 179-194.
    [76] Tao H B, Liu G B, Xie K H, et al. 2014. Characteristics of wave propagation in the saturated thermoelastic porous medium[J]. Transport in porous media, 103(1): 47-68. doi: 10.1007/s11242-014-0287-6
    [77] Tauzin B, Ricard Y. 2014. Seismically deduced thermodynamics phase diagrams for the mantle transition zone[J]. Earth and Planetary Science Letters, 401: 337-346. doi: 10.1016/j.jpgl.2014.05.039
    [78] Timmerman E H. 1982. Practical reservoir engineering[M]. Oklahoma: Pennwell Corporation.
    [79] Treitel S. 1959. On the attenuation of small-amplitude plane stress waves in a thermoelastic solid[J]. Journal of Geophysical Research, 64(6): 661–665. doi: 10.1029/JZ064i006p00661
    [80] Tripathi J J, Kedar G D, Deshmukh K C. 2015. Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply[J]. Acta Mechanica, 226(7): 2121-2134. doi: 10.1007/s00707-015-1305-7
    [81] Tsai V C. 2011. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations[J]. Journal of Geophysical Research: Solid Earth, 116(B4): B04404.
    [82] Tzou D Y. 1995. A unified field approach for heat conduction from macro-to micro-scales[J]. Journal of Heat Transfer, 117(1): 8-16. doi: 10.1115/1.2822329
    [83] Valdez M N, Wu Z Q, Yu Y G, et al. 2012. Thermoelastic properties of ringwoodite (Fex, Mg1−x)2SiO4: Its relationship to the 520 km seismic discontinuity[J]. Earth and Planetary Science Letters, 351-352(1): 115-122.
    [84] Vinciguerra S, Trovato C, Meredith P G, et al. 2006. Understanding the seismic velocity structure of Campi Flegrei Caldera (Italy): From the laboratory to the field scale[J]. Pure and Applied Geophysics, 163(10): 2205-2221. doi: 10.1007/s00024-006-0118-y
    [85] Wang E, Carcione J M, Cavallini F, et al. 2021. Generalized thermo-poroelasticity equations and wave simulation[J]. Surveys in Geophysics, 42(1): 133-157. doi: 10.1007/s10712-020-09619-z
    [86] 王勤, 嵇少丞, 许志琴. 2007. 橄榄石的晶格优选定向、含水量与地震波各向异性:对大陆俯冲带变形环境的约束[J]. 岩石学报, 23(12): 3065-3077. doi: 10.3969/j.issn.1000-0569.2007.12.003

    Wang Q, Ji S C. Xu Z Q. 2007. Lattice-preferred orientation, water content and seismic anisotropy of olivine implications for deformation environment of continental subduction zones[J]. Acta Petrologica Sinaica, 23(12): 3065-3077 (in Chinese).Wang Q, Burlini L, Mainprice D, et al. 2009. Geochemistry, petrofabrics and seismic properties of eclogites from the Chinese Continental Scientific Drilling boreholes in the Sulu UHP terrane, eastern China[J]. Tectonophysics, 475(2): 251-266. doi: 10.3969/j.issn.1000-0569.2007.12.003
    [87] Wang Q, Burlini L, Mainprice D, et al. 2009. Geochemistry, petrofabrics and seismic properties of eclogites from the Chinese Continental Scientific Drilling boreholes in the Sulu UHP terrane, eastern China[J]. Tectonophysics, 475(2): 251-266.
    [88] Wang Z W, Fu L Y, Wei J, et al. 2020. On the Green function of the Lord–Shulman thermoelasticity equations[J]. Geophysical Journal International, 220(1): 393-403. doi: 10.1093/gji/ggz453
    [89] Wangen M, Munz I A. 2004. Formation of quartz veins by local dissolution and transport of silica[J]. Chemical Geology, 209(3): 179-192.
    [90] Wei J, Fu L Y, Wang Z W, et al. 2020a, Green function of the Lord-Shulman thermo-poroelasticity theory[J]. Geophysical Journal International, 221(3), 1765-1776. doi: 10.1093/gji/ggaa100
    [91] Wei J, Fu LY, Han, T, et al. 2020b. Thermoelastic dispersion and attenuation of P and SV wave scattering by aligned fluid-saturated cracks of finite thickness in an isothermal elastic medium[J]. Journal of Geophysical Research: Solid Earth, 125(9): e2020JB019942.
    [92] Xi D, Liu X, Zhang C. 2007. The frequency (or time) -temperature equivalence of relaxation in saturated rocks[J]. Pure and Applied Geophysics, 164(11): 2157-2173. doi: 10.1007/s00024-007-0270-z
    [93] Xi D, Xu S, Du Y, et al. 2011. Wave propagation analysis of porous rocks with the thermal activated relaxation mechanism[J]. Journal of Applied Geophysics, 73(3): 289-303. doi: 10.1016/j.jappgeo.2011.01.013
    [94] 席道瑛, 刘斌, 谢端, 等. 1998. 孔隙流体饱和砂岩的衰减与频率的相关性[J]. 石油地球物理勘探, 33(1): 66-70. doi: 10.3321/j.issn:1000-7210.1998.01.009

    Xi D Y, Liu B, Xie R, et al.1998. Relation between attenuation and frequency of vibration in fluid-saturated porous sandstone[J]. Oil Geophysical Prospecting, 33(1): 66-70 (in Chinese). doi: 10.3321/j.issn:1000-7210.1998.01.009
    [95] 席道瑛, 张程远, 刘小燕, 等. 2000. 饱和岩石的时温等效关系[J]. 物探化探计算技术, 22(2): 127-131. doi: 10.3969/j.issn.1001-1749.2000.02.006

    Xi D Y, Zhang C Y, Liu X Y, et al. 2000. Time-temperature equivalence of saturated rocks[J]. Geophysical and Geochemical Exploration, 22(2): 127-131 (in Chinese). doi: 10.3969/j.issn.1001-1749.2000.02.006
    [96] 席道瑛, 杜赟, 薛彦伟, 等. 2007. 岩石非线性细观响应中温度对岩石力学性能的影响[J]. 岩石力学与工程学报, 26(S1): 3342-3347.

    Xi D Y, Du Y, Xue Y W, et al. 2007. Influence of temperature on mechanical properties of rock in nonlinear mesoscopic response[J]. Chinese Journal of Geotechnical Engineering, 26(S1): 3342-3347 (in Chinese).
    [97] 席道瑛, 徐松林. 2012. 岩石物理学基础[M].合肥: 中国科学技术大学出版社.

    Xi D Y, Xu S L. 2012. Fundamentals of Rock Physics[M]. Hefei: China University of science and Technology Press (in Chinese).
    [98] 席道瑛, 徐松林. 2016. 岩石物理与本构理论[M]. 合肥: 中国科学技术大学出版社.

    Xi D Y, Xu S L. 2016. Rock Physics and Constitutive Theory[M]. Hefei: China University of science and Technology Press (in Chinese).
    [99] Xie F, Ren Y, Zhou Y, et al. 2018. Monitoring local changes in granite rock under biaxial test: a spatiotemporal imaging application with diffuse waves[J]. Journal of Geophysical Research: Solid Earth, 123(3): 2214-2227. doi: 10.1002/2017JB014940
    [100] Xu X, Dong D, Fang M, et al. 2017. Contributions of thermoelastic deformation to seasonal variations in GPS station position[J]. GPS Solutions, 21(3): 1-10.
    [101] 闫小兵. 2008. 地壳岩石各向异性的实验研究[D]. 北京: 中国地震局地质研究所.

    Yan X B. 2008. An experimental study of crustal rock anisotropy[D]. Beijing: Institute of geology, China Earthquake Administration (in Chinese).
    [102] 闫治国, 朱合华, 邓涛, 等. 2006. 三种岩石高温后纵波波速特性的试验研究[J]. 岩土工程学报, 28(11): 2010-2014. doi: 10.3321/j.issn:1000-4548.2006.11.017

    Yan Z G, Zhu H H. Deng T, et al. 2006. Experimental study on longitudinal wave characteristics of tuff, granite and breccia after high temperature[J]. Chinese Journal of Geotechnical Engineering, 28(11): 2010-2014 (in Chinese). doi: 10.3321/j.issn:1000-4548.2006.11.017
    [103] Yang J, Fu L Y, Fu B Y, et al. 2019a. On the nonlinear temperature dependence of elastic constants and wave velocities for solid media with applications to geologic materials[J]. The Journal of the Acoustical Society of America, 146(3): 1556-1567. doi: 10.1121/1.5124485
    [104] Yang J, Fu L Y, Zhang W, et al. 2019b. Mechanical property and thermal damage factor of limestone at high temperature[J]. International Journal of Rock Mechanics and Mining Sciences, 117: 11-19. doi: 10.1016/j.ijrmms.2019.03.012
    [105] Yang X, Luo J. 2013. The thermo-viscous properties of the linseed oil modified with pentaerythritol[J]. Industrial crops and products, 41: 437-441. doi: 10.1016/j.indcrop.2012.04.042
    [106] Zener C. 1938. Internal friction in solids II. General theory of thermoelastic internal friction[J]. Physical Review, 53(1): 90–99. doi: 10.1103/PhysRev.53.90
    [107] Zhang W, Sun Q, Hao, S. et al. 2016. Experimental study on the thermal damage characteristics of limestone and underlying mechanism[J]. Rock Mechanics and Rock Engineering, 49(8): 2999-3008. doi: 10.1007/s00603-016-0983-3
    [108] Zhang W, Sun Q, Zhu S, et al. 2017. Experimental study on mechanical and porous characteristics of limestone affected by high temperature[J]. Applied Thermal Engineering, 110: 356-362. doi: 10.1016/j.applthermaleng.2016.08.194
    [109] Zhang Z Q, Yang J L, Li Q M. 2013. An analytical model of foamed concrete aircraft arresting system[J]. International Journal of Impact Engineering, 61(9): 1-12.
  • 加载中
图(4)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  194
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-26
  • 录用日期:  2021-05-27
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回