• ISSN 2097-1893
  • CN 10-1855/P

电离层日变化特性研究简述

刘立波 陈一定 张瑞龙 乐会军 张辉

引用本文: 刘立波,陈一定,张瑞龙,乐会军,张辉. 2021. 电离层日变化特性研究简述. 地球与行星物理论评,52(6):647-661
Liu L B, Chen Y D, Zhang R L, Le H J, Zhang H. 2021. Some investigations of ionospheric diurnal variation. Reviews of Geophysics and Planetary Physics, 52(6): 647-661

电离层日变化特性研究简述

doi: 10.19975/j.dqyxx.2021-006
基金项目: 国家自然科学基金资助项目(42030202,41774161)
详细信息
    通讯作者:

    刘立波(1970-),男,研究员,主要从事电离层物理研究. E-mail:liul@mail.iggcas.ac.cn

  • 中图分类号: P352.1

Some investigations of ionospheric diurnal variation

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 42030202, 41774161)
  • 摘要: 电离层具有非常鲜明的日变化特性. 电离层日变化特性是认识包括逐日变化等众多电离层现象的出发点,也是电离层经验模型需要呈现的最基本特性. 本文简要介绍了有关电离层日变化的一些研究工作,重点关注以电场为核心的电离层日出变化、电离层午时咬失现象、电离层夜间增强,特别是以威德海异常为典型代表的中纬电离层夏季夜间异常变化. 评述了这些方面相关研究进展、目前存在的争议、需要特别注意的地方及应进一步探讨的问题.

     

  • 图  1  2004年6月10日Jicamarca非相干散射雷达观测的垂直漂移速度、及测高仪探测的foF2和hmF2日变化. (上图)带圆点线是非相干散射雷达观测垂直漂移速度,无圆点实线是由S-F经验模型给出的漂移. (中、下图)带圆点线表示测高仪foF2和hmF2当日观测值,无圆点实线是其27天滑动值(修改自Zhang et al., 2016

    Figure  1.  Diurnal variation of the vertical plasma drift from Jicamarca incoherent scatter radar and foF2 and hmF2 from Jicamarca ionosonde observations on June 10, 2004. (Top) vertical drift from Jicamarca incoherent scatter radar observations (curve with circles) and from S-F model (line without circles); (middle and bottom) foF2 and hmF2 from ionosonde observations (curve with solid circles denotes the observations and line without circles for 27-day moving values) (modified from Zhang et al., 2016)

    图  2  基于ROCSAT-1观测统计的赤道电场日出增强事件随经度分布. 从上到下分别是等分季节、六月至季和十二月至季. 竖条给出日出时段卫星轨道跨过赤道的数目,填充条为存在电场日出增强的轨道数目(修改自Zhang et al., 2015

    Figure  2.  Longitudinal distribution of the number of the events with sunrise enhancements in the equatorial zonal electric field and orbits of ROCSAT-1 observations in (top) Equinox, (middle) June solstice, and (bottom) December solstice. Bars denote the total numbers of orbits crossing the equator and filled part plots the number of the orbits with a sunrise enhancement in electric field (modified from Zhang et al., 2015)

    图  3  高太阳活动水平期间F2层峰值电子密度(NmF2)随地方时和月份的变化,自左至右依次为磁赤道Kodaikanal站、磁赤道北侧Manila站和磁赤道南侧Singapore站的结果. Kodaikanal站子图中的虚线框指示了午时咬失现象(修改自Chen Y et al., 2020

    Figure  3.  Diurnal and seasonal variations of the peak electron density of F2 layer (NmF2) at (left) Kodaikanal, (middle) Manila, and (right) Singapore stations for high solar activity. The vertical dash line in the left panel denotes the appearance of the noontime bite-out feature at Kodaikanal (modfied from Chen Y et al., 2020)

    图  4  在高(Smax)低(Smin)太阳活动条件下6月份Okinawa、Wakkanai和Yakutsk台站F2层临界频率(foF2,有圆点曲线)和峰高(hmF2)的周日变化. 图中阴影部分表示300 km高度无光照时间段(修改自Chen et al., 2021

    Figure  4.  Diurnal variations of the critical frequency (foF2, with solid circles) and peak height (hmF2) of F2 layer at (left) Okinawa, (middle) Wakkanai, and (right) Yakutsk stations for low (Smin) and high (Smax) solar activity. The grey area denotes the time interval without sun light at 300 km altitude (modified from Chen et al., 2021)

    图  5  Alma-Ata台站测高仪F2层临界频率(foF2)夜间增强典型事例. 图中箭头表示日落时刻以及地面与300 km高度日出时刻(修改自Yakovets et al., 2009

    Figure  5.  Cases of nighttime enhancements in the F2 layer critical frequency (foF2) at Alma-Ata. The arrows denote the time of ground sunset and sunrise at ground and 300 km altitude, respectively (modified from Yakovets et al., 2009)

    图  6  典型夜间增强事例中北京台站测高仪F2层临界频率(foF2)、hmF2和TEC日变化(修改自Li et al., 2020

    Figure  6.  Diurnal variations of the F2 layer critical frequency (foF2) and peak height (hmF2) and total electron content (TEC) during three cases of nighttime enhancements at Beijing (modified from Li et al., 2020)

    图  7  2012年148~150天期间三亚台站测高仪F2层临界频率(foF2)、hmF2和标高以及地磁活动Kp指数变化. 带圆圈线为观测值,带误差棒曲线为月中值及上下四分值,黑色短竖线标示当地子夜,阴影区域为夜间时段(修改自Liu et al., 2013

    Figure  7.  Diurnal variations of the F2 layer critical frequency (foF2), hmF2 and scale height at Sanya during 148~150 days in 2012. The geomagnetic activity Kp index is plotted in the bottom panel. The curve with circles denotes the observations and line with bars shows the monthly median values and upper and lower quartiles. The vertical solid lines mark the local midnight and the gray regions outline the nighttime intervals(modified from Liu et al., 2013)

    图  8  2014年4月8日我国曲靖台站电离层最大密度NmF2及四个高度上电子密度的日变化. 灰色区域展示在NmF2增强发生时,在峰高以上电子密度出现下降,而底部电离层出现增强(修改自Liu et al., 2020

    Figure  8.  Diurnal variations of the electron density at the F2 layer peak and four altitudes at Qujing on April 8, 2014. The grey area denotes the time interval of NmF2 enhancement (modified from Liu et al., 2020)

    图  9  六月至季COSMIC掩星观测在(120°E, 60°N)附近NmF2日变化. COSMIC观测值以散点表示,而平均值及方差以曲线和误差棒画出(修改自Chen et al., 2016

    Figure  9.  Local time variation of COSMIC NmF2 around (120°E, 60°N) at June solstice. Dots show the COSMIC measurements, the line with bars are the average and deviations of NmF2 (modified from Chen et al., 2016)

    图  10  2007~2009年期间冬季NmF2夜间增强幅度△NmF2. 黑实线对应零地磁偏角(修改自Chen et al., 2015b

    Figure  10.  The amplitude of the enhancement of NmF2 in December solstice and June Solstice determined from COSMIC observations in 2007~2009. Dark lines plot the zero magnetic declination, and the gray lines show the iso-dip contours (modified from Chen et al., 2015b)

  • [1] Aggson T L, Herrero F A, Johnson J A, et al. 1995. Satellite observations of zonal electric fields near sunrise in the equatorial ionosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 57: 19-24. doi: 10.1016/0021-9169(93)E0013-Y
    [2] Ambili K M, St.-Maurice J-P, Choudhary R K. 2012. On the sunrise oscillation of the F region in the equatorial ionosphere[J]. Geophysical Research Letters, 39: L16102. doi: 10.1029/2012GL052876
    [3] Ambili K M, Choudhary R K, St.-Maurice J-P. 2014. Seasonal differences in the sunrise undulations at the dip equator at solar minimum at two distinct locations and their relation with postsunset electrodynamics[J]. Journal of Geophysical Research: Space Physics, 119: 5777-5789. doi: 10.1002/2014JA019783
    [4] Balan N, Rao P B. 1984. Relationship between nighttime total electron content enhancements and VHF scintillations at the equator[J]. Journal of Geophysical Research, 89: 9009-1013. doi: 10.1029/JA089iA10p09009
    [5] Balan N, Rao P B. 1987. Latitudinal variations of nighttime enhancements in total electron content[J]. Journal of Geophysical Research, 92: 3436-3440. doi: 10.1029/JA092iA04p03436
    [6] Balan N, Bailey G J, Nair R B, et al. 1994. Nighttime enhancements in ionospheric electron content in the northern and southern hemispheres[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 56(1): 67-79. doi: 10.1016/0021-9169(94)90177-5
    [7] Bellchambers W, Piggott W. 1958. Ionospheric measurements made at Halley Bay[J]. Nature, 182: 1596-1597. doi: 10.1038/1821596a0
    [8] Burns A G, Zeng Z, Wang W, et al. 2008. Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data[J]. Journal of Geophysical Research, 113: A12305. doi: 10.1029/2008JA013308
    [9] Burns A G, Solomon S C, Wang W, et al. 2011. The summer evening anomaly and conjugate effects[J]. Journal of Geophysical Research, 116: A01311. doi: 10.1029/2010JA015648
    [10] Chen C H, Huba J D, Saito A, et al. 2011. Theoretical study of the ionospheric Weddell Sea Anomaly using SAMI2[J]. Journal of Geophysical Research, 116: A04305. doi: 10.1029/2010JA015573
    [11] Chen C H, Saito A, Lin C H, et al. 2012. Long-term variations of the nighttime electron density enhancement during the ionospheric midlatitude summer[J]. Journal of Geophysical Research, 117: A07313. doi: 10.1029/2011JA017138
    [12] Chen J, Wang W, Lei J, et al. 2020. The physical mechanisms for the sunrise enhancement of equatorial ionospheric upward vertical drifts[J]. Journal of Geophysical Research: Space Physics, 125: e2020JA028161. doi: 10.1029/2020JA028161
    [13] Chen Y, Ma G, Huang W, et al. 2008. Night-time total electron content enhancements at equatorial anomaly region in China[J]. Advances in Space Research, 41: 617-623. doi: 10.1016/j.asr.2007.07.035
    [14] Chen Y, Liu L, Le H, et al. 2015a. Dusk-to-nighttime enhancement of mid-latitude NmF2 in local summer: Inter-hemispheric asymmetry and solar activity dependence[J]. Annales Geophysicae, 33: 711-718. doi: 10.5194/angeo-33-711-2015
    [15] Chen Y, Liu L, Le H, et al. 2015b. NmF2 enhancement during ionospheric F2 region nighttime: A statistical analysis based on COSMIC observations during the 2007-2009 solar minimum[J]. Journal of Geophysical Research: Space Physics: 120. doi: 10.1002/2015JA021652
    [16] Chen Y, Liu L, Le H, et al. 2016. The global distribution of the dusk-to-nighttime enhancement of summer NmF2 at solar minimum[J]. Journal of Geophysical Research: Space Physics, 121: 7914-7922. doi: 10.1002/2016JA022670
    [17] Chen Y, Liu L, Le H, et al. 2020. Equatorial north-south difference of noontime electron density bite-out in the F2 layer[J]. Journal of Geophysical Research: Space Physics, 125: e2020JA028124. doi: 10.1029/2020JA028124
    [18] Chen Y, Liu L, Le H, et al. 2021. Latitudinal dependence of daytime electron density bite-out in the ionospheric F2-Layer[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028277. doi: 10.1029/2020JA028277
    [19] Dabas R S, Kersley L. 2003. Study of mid-latitude nighttime enhancement in F-region electron density using tomographic images over the UK[J]. Annales Geophysicae, 21: 2323-2328. doi: 10.5194/angeo-21-2323-2003
    [20] Davies K, Anderson D N, Pau A K, et al. 1979. Nighttime increases in total electron content observed with ATS 6 radio beacon[J]. Journal of Geophysical Research, 84: 1536-1542. doi: 10.1029/JA084iA04p01536
    [21] Dudeney J R, Piggott W R. 1978. Antarctic Ionospheric Research[M]// Lanzerotti L J, Park C G. Upper Atmosphere Research in Antarctica. AGU, Washington, D. C. 29: 200–235.
    [22] Essex E A, Klobuchar J A. 1980. Mid-latitude winter nighttime increases in the total electron content of the ionosphere[J]. Journal of Geophysical Research, 85: 6011-6020. doi: 10.1029/JA085iA11p06011
    [23] Essex E A, Klobuchar J A. 1981. Ionospheric total electron content behavior at a pair of mid-latitude conjugate stations[J]. Journal of Geophysical Research, 86: 5815-5818. doi: 10.1029/JA086iA07p05815
    [24] Farelo A F, Herraiz M, Mikhailov A V. 2002. Global morphology of night-time NmF2 enhancements[J]. Annales Geophysicae, 20: 1795-1806. doi: 10.5194/angeo-20-1795-2002
    [25] Fejer B, Scherliess L. 1997. Empirical models of storm time equatorial zonal electric fields[J]. Journal of Geophysical Research, 102: 24047-24056. doi: 10.1029/97JA02164
    [26] Gong Y, Zhou Q, Zhang S, et al. 2012. Midnight ionosphere collapse at Arecibo and its relationship to the neutral wind, electric field, and ambipolar diffusion[J]. Journal of Geophysical Research, 117: A08332. doi: 10.1029/2012JA017530
    [27] Gordienko G I, Zachateiskiy D E, Kaliev M Z, et al. 2001. Nighttime increases in ionosphere electron content (a statistical and experimental study)[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 63: 617-625. doi: 10.1016/S1364-6826(01)00002-5
    [28] He M, Liu L, Wan W, et al. 2009. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC[J]. Journal of Geophysical Research, 114. doi: 10.1029/2009JA014175
    [29] Horvath I, Essex E A. 2000. Using observations from the GPS and TOPEX satellites to investigate night-time TEC enhancements at mid-latitudes in the southern hemisphere during a low sunspot number period[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 62: 371-391. doi: 10.1016/S1364-6826(99)00101-7
    [30] Horvath I, Essex E A. 2003. The Weddell sea anomaly observed with the Topex satellite data[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 65: 693-706. doi: 10.1016/S1364-6826(03)00083-X
    [31] Horvath I, Lovell B C. 2009. An investigation of the northern hemisphere midlatitude nighttime plasma density enhancements and their relations to the midlatitude nighttime trough during summer[J]. Journal of Geophysical Research, 114: A08308. doi: 10.1029/2009JA014094
    [32] Hsu M L, Lin C H, Hsu R R, et al. 2011. The O I 135.6 nm airglow observations of the midlatitude summer nighttime anomaly by TIMED/GUVI[J]. Journal of Geophysical Research, 116: A07313. doi: 10.1029/2010JA016150
    [33] Jain A, Tiwari S, Jain S, et al. 2011. Nighttime enhancements in TEC near the crest of northern equatorial ionization anomaly during low solar activity period[J]. Indian Journal of Physics, 85: 1367-1380. doi: 10.1007/s12648-011-0159-7
    [34] Jakowski N, Jungstand A, Lois L, et al. 1991. Night-time enhancements of the F2-layer ionization over Havana, Cuba[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 53: 1131-1138. doi: 10.1016/0021-9169(91)90062-C
    [35] Jiang C, Deng C, Yang G, et al. 2016. Latitudinal variation of the specific local time of postmidnight enhancement peaks in F layer electron density at low latitudes: A case study[J]. Journal of Geophysical Research: Space Physics, 121: 3476-3483. doi: 10.1002/2015JA022319
    [36] Jiang C, Wang W, Yang G, et al. 2020. An investigation of mid-latitude ionospheric peak in TEC using the TIEGCM[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 211: 105480. doi: 10.1016/j.jastp.2020.105480
    [37] Kelley C M. 2009. The Earth's Ionosphere, Second Edition[M]. Amsterdam: Academic Press.
    [38] Kelley M C, Rodrigues F S, Pfaff R F, et al. 2014. Observations of the generation of eastward equatorial electric fields near dawn[J]. Annales Geophysicae, 32: 1169-1175. doi: 10.5194/angeo-32-1169-2014
    [39] Klobuchar J A. 1987. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE Transactions on Aerospace and Electronic Systems, AES-23, 3: 325-331.
    [40] Kolomiitsev O P, Reddy B M, Surotkin V A. 1997. Sunrise effects in the equatorial F-layer[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 59: 1287-1297. doi: 10.1016/S1364-6826(96)00093-4
    [41] Le H, Liu L, Chen Y, et al. 2014. Modeling study of nighttime enhancements in F region electron[J]. Journal of Geophysical Research: Space Physics, 119: 6648-6656. doi: 10.1002/2013JA019295
    [42] Lee C-C. 2012. Examination of the absence of noontime bite-out in equatorial total electron content[J]. Journal of Geophysical Research, 117: A09303. doi: 10.1029/2012JA017909
    [43] Li Q, Hao Y, Zhang D, et al. 2018. Nighttime enhancements in the midlatitude ionosphere and their relation to the plasmasphere[J]. Journal of Geophysical Research: Space Physics, 123: 7686-7696. doi: 10.1029/2018JA025422
    [44] Li W, Chen Y, Liu L, et al. 2020. A statistical study on the winter ionospheric nighttime enhancement at middle latitudes in the Northern Hemisphere[J]. Journal of Geophysical Research: Space Physics, 125: e2020JA027950. doi: 10.1029/2020JA027950
    [45] Lin C H, Liu J Y, Cheng C Z, et al. 2009. Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly[J]. Journal of Geophysical Research, 114: A02312. doi: 10.1029/2008JA013455
    [46] Lin C H, Liu C H, Liu J Y, et al. 2010. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC[J]. Journal of Geophysical Research, 115: A03308. doi: 10.1029/2009JA014084
    [47] Liu L, Luan X, Wan W, et al. 2003. A new approach to the derivation of dynamic information from ionosonde measurements[J]. Annales Geophysicae, 21(11): 2185-2191. doi: 10.5194/angeo-21-2185-2003
    [48] Liu L, Wan W, Chen Y, et al. 2011. Solar activity effects of the ionosphere: A brief review[J]. Chinese Science Bulletin, 56(12): 1202-1211. doi: 10.1007/s11434-010-4226-9
    [49] Liu L, Chen Y, Le H, et al. 2013. A case study of post-midnight enhancement in F-layer electron density over Sanya of China[J]. Journal of Geophysical Research: Space Physics, 118: 4640-4648. doi: 10.1002/jgra.50422
    [50] Liu L, Ding Z, Le H, et al. 2020. New features of the enhancements in electron density at low latitudes[J]. Journal of Geophysical Research: Space Physics, 125: e2019JA027539. doi: 10.1029/2019JA027539
    [51] Lomidze L, Scherliess L, Schunk R W. 2016. Modeling and analysis of ionospheric evening anomalies with a physics-based data assimilation model[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 140: 65-78. doi: 10.1016/j.jastp.2016.02.009
    [52] Luan X, Wang W, Burns A, et al. 2008. Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition[J]. Journal of Geophysical Research, 113: A09319. doi: 10.1029/2008JA013063
    [53] Lynn K J W, Gardiner-Garden R S, Heitmann A. 2014. The spatial and temporal structure of twin peaks and midday bite out in foF2 (with associated height changes) in the Australian and South Pacific low midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 119: 10294-10304. doi: 10.1002/2014JA020617
    [54] Pavlov A V, Pavlova N M. 2007. Anomalous night-time peaks in diurnal variations of NmF2 close to the geomagnetic equator: A statistical study[J]. Journal of Atmospheric and Solar–Terrestrial Physics, 69: 1871-1883. doi: 10.1016/j.jastp.2007.07.003
    [55] Penndorf R. 1965. The Average Ionospheric Conditions Over the Antarctic Geomagnetism and Aeronomy[M]//Waynick A H. Antarctic Research Series, 4: 1–45.
    [56] Pezzopane M, Fagundes P R, Ciraolo L, et al. 2011. Unusual nighttime impulsive foF2 enhancement below the southern anomaly crest under geomagnetically quiet conditions[J]. Journal of Geophysical Research, 116: A12314. doi: 10.1029/2011JA016593
    [57] Pi X, Mendillo M, Fox M W. 1993. Diurnal double maxima patterns in the F region ionosphere: Substorm-related aspects[J]. Journal of Geophysical Research, 98(A8): 13677-13691. doi: 10.1029/93JA00502
    [58] Pirog O, Deminov M, Deminova G, et al. 2011. Peculiarities of the nighttime winter foF2 increase over Irkutsk[J]. Advances in Space Research, 47: 921-929. doi: 10.1016/j.asr.2010.11.015
    [59] Prolss G W. 2004. Physics of the Earth’s Space Environment: An Introduction[M]. Springer: Verlag Berlin Heidelberg.
    [60] Slominska E, Blecki J, Lebreton P, et al. 2014. Seasonal trends of nighttime plasma density enhancements in the topside ionosphere[J]. Journal of Geophysical Research: Space Physics, 119: 6902-6912. doi: 10.1002/2014JA020181
    [61] Thampi S V, Lin C, Liu H, et al. 2009. First tomographic observations of the Midlatitude Summer Nighttime Anomaly over Japan[J]. Journal of Geophysical Research, 114: A10318. doi: 10.1029/2009JA014439
    [62] Thampi S V, Balan N, Lin C, et al. 2011. Mid-latitude Summer Nighttime Anomaly (MSNA)- observations and model simulations[J]. Annales Geophysicae, 29: 157-165. doi: 10.5194/angeo-29-157-2011
    [63] Titheridge J E. 1968. The maintenance of the night ionosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 30: 1857-1875. doi: 10.1016/0021-9169(68)90028-7
    [64] Trivedi R, Jain S, Jain A, et al. 2013. Solar and magnetic control on night-time enhancement in TEC near the crest of the Equatorial Ionization Anomaly[J]. Advances in Space Research, 51: 61-68. doi: 10.1016/j.asr.2012.08.016
    [65] Tsagouri I, Belehaki A. 2002. On the nature of nighttime ionisation enhancements observed with the Athens Digisonde[J]. Annales Geophysicae, 20: 1225-1238. doi: 10.5194/angeo-20-1225-2002
    [66] Unnikrishnan K, Nair R B, Venugopal C. 2002. A comparative study of night-time enhancement of TEC at a low latitude station on storm and quiet nights including the local time, seasonal and solar activity dependence[J]. Annales Geophysicae, 20: 1843-1850. doi: 10.5194/angeo-20-1843-2002
    [67] Venkatesh K, Fagundes P R, de Abreu A J, et al. 2016. Unusual noon-time bite-outs in the ionospheric electron density around the anomaly crest locations over the Indian and Brazilian sectors during quiet conditions- A case study[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 147: 126-137. doi: 10.1016/j.jastp.2016.07.016
    [68] Wang Y, Huang F, Lei J, et al. 2021. Ionospheric diurnal double-maxima patterns observed by the TEC from Beidou geostationary satellites in the Asian-Australian sector during 2016-2018[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028578. doi: 10.1029/2020JA028578
    [69] Xiong C, Lühr H. 2014. The Mid-latitude Summer Night Anomaly as observed by CHAMP and GRACE: Interpreted as tidal features[J]. Journal of Geophysical Research: Space Physics, 119: 4905-4915. doi: 10.1002/2014JA019959
    [70] Xu J, Liu X. 2016. Nighttime anomaly of ionospheric electron density[J]. Science China: Earth Sciences, 59: 1517-1518. doi: 10.1007/s11430-016-0083-x
    [71] Xu S, Zhang B-C, Liu R-Y, et al. 2014. Comparative studies on ionospheric climatological features of NmF2 among the Arctic and Antarctic stations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 119: 63-70. doi: 10.1016/j.jastp.2014.06.016
    [72] Yadav S, Choudhary R K, Kumari J, et al. 2020. Reverse fountain and the nighttime enhancement in the ionospheric electron density over the equatorial region: A case study[J]. Journal of Geophysical Research: Space Physics, 124: e2019JA027286. doi: 10.1029/2019JA027286
    [73] Yakovets A F, Vodyannikov V V, Gordienko G I, et al. 2009. Vertical structure of the midlatitude winter F region of the ionosphere during postmidnight enhancements in NmF2[J]. Geomagnetism and Aeronomy, 49: 490-496. doi: 10.1134/S0016793209040094
    [74] Young D M L, Yuen P C, Roelofs T H. 1970. Anomalous nighttime increases in total electron content[J]. Planetary and Space Science, 18: 1163-1179. doi: 10.1016/0032-0633(70)90210-2
    [75] Zhang R, Liu L, Chen Y, et al. 2015. The dawn enhancement of the equatorial ionospheric vertical plasma drift[J]. Journal of Geophysical Research: Space Physics, 120: 10688-10697. doi: 10.1002/2015JA021972
    [76] Zhang R, Liu L, Le H, et al. 2016. Evidence and effects of the sunrise enhancement of the equatorial vertical plasma drift in the F region ionosphere[J]. Journal of Geophysical Research: Space Physics, 121: 4826-4834. doi: 10.1002/2016JA022491
    [77] Zhang S-R, Oliver W L, Fukao S, et al. 2000. A study of the forenoon ionospheric F2 layer behavior over the middle and upper atmospheric radar[J]. Journal of Geophysical Research, 105(A7): 15823-15833. doi: 10.1029/2000JA000007
  • 加载中
图(10)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  307
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 录用日期:  2021-03-11
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回