• ISSN 2097-1893
  • CN 10-1855/P

青藏高原东南缘地壳结构与变形机制研究进展

黄周传 吉聪 吴寒婷 石宇通 耿嘉琪 徐弥坚 韩存瑞 徐鸣洁 王良书

引用本文: 黄周传,吉聪,吴寒婷,石宇通,耿嘉琪,徐弥坚,韩存瑞,徐鸣洁,王良书. 2021. 青藏高原东南缘地壳结构与变形机制研究进展. 地球与行星物理论评,52(3):291-307
Huang Z C, Ji C, Wu H T, Shi Y T, Geng J Q, Xu M J, Han C R, Xu M J, Wang L S. 2021. Review on the crustal structures and deformations in the southeastern margin of the Tibetan Plateau. Reviews of Geophysics and Planetary Physics, 52(3): 291-307

青藏高原东南缘地壳结构与变形机制研究进展

doi: 10.19975/j.dqyxx.2021-005
基金项目: 国家自然科学基金资助项目(41674044)
详细信息
    通讯作者:

    黄周传(1984-),男,教授,博士生导师,主要从事地震层析成像与各向异性等方面研究.E-mail:huangz@nju.edu.cn

  • 中图分类号: P315

Review on the crustal structures and deformations in the southeastern margin of the Tibetan Plateau

Funds: Supported by the National Natural Science Foundations of China (Grant No. 41674044)
  • 摘要: 新生代青藏高原的隆升改变了整个亚洲的构造格局,对气候、环境均产生了重要的影响,但高原的隆升扩展机制众说纷纭. 青藏高原东南缘作为扩展前缘,其构造演化对了解整个高原的扩展机制具有重要的意义. 本文总结了近年来对青藏高原东南缘地壳结构研究的最新进展,特别是2011年中国地震科学探测台阵计划开展以来,利用密集地震台阵取得的新成果,探讨了青藏高原东南缘地壳的结构与变形机制. 这些研究发现青藏高原的地壳由高原向外围减薄,但在高原边界断裂附近存在地壳厚度突变带;下地壳中存在两个独立的低速异常,一个位于松潘—甘孜块体下方,被高原的边界断裂所围限,另一个位于小江断裂带下方,呈NE-SW向展布. 我们认为青藏高原东南缘下地壳物质被边界(丽江—小金河)断裂所围限,并没有继续向边缘流出,但是地壳挤出产生的应力作用继续向东南方向传递,造成了小江断裂带附近的地壳变形.

     

  • 图  1  青藏高原及周边地区的构造背景. 紫色、红色、蓝色和灰条线条分别代表研究区的缝合带、逆断层、左行走滑和右行走滑断裂(修改自Styron et al., 2010). 蓝色方框给定了青藏高原东南缘的位置

    Figure  1.  Tectonics in and around the Tibetan Plateau. The purple, red, blue and gray lines denote the suture zones, thrust faults, sinistral and dextral strike-slip faults, respectively (modified from Styron et al., 2010). The blue box marks the location of the southeastern margin of the Tibetan Plateau

    图  2  青藏高原东南缘的地质背景.(a)主要块体和断裂(修改自Han et al., 2020). 蓝色实线表示断层,黑色虚线表示省界.(b)二叠纪玄武岩的分布(修改自Hu et al., 2020). 粉红色线条勾画了峨眉山大火成岩省内带和中带的范围

    Figure  2.  Geological structure in the southeastern margin of the Tibetan Plateau. (a) The major blocks and faults (modified from Han et al., 2020). The solid blue lines denote the faults, the dashed black lines denote the plate boundaries. (b) The distribution of the Permian basalt (modified from Hu et al., 2020). The magenta lines mark the location of the inner and middle zones of the Emeishan large igneous province

    图  3  青藏高原东南缘的GPS速度场与地壳应变场(修改自Bao et al., 2015; Huang et al., 2018).(a)绿色箭头代表相对于华南块体的GPS速度场,黑线表示主要断裂,黑色小球表示震源机制解,粉红色虚线表示大地震分布的东南边界.(b)不同颜色表示应变速率大小,色标在底部. 黑线表示主要断裂,紫线表示主要块体边界. L-X表示丽江—小金河断裂带,XJF表示小江断裂带,RRF表示红河断裂带

    Figure  3.  The GPS velocities and crustal strain in the southeastern margin of the Tibetan Plateau (modified from Bao et al., 2015; Huang et al., 2018). (a) The blue arrows denote the crustal motions with respect to the South China Block. The black lines denote major faults. The beach balls denote the earthquake focal mechanisms. The magenta line denotes a possible frontier of the large earthquakes in the southeastern plateau margin. (b) Different colors denote the strain rate with references shown at the bottom. Black and purple lines denote the faults and major boundaries. The abbreviations are: L-X, Lijiang-Xiaojinhe fault; XJF, Xiaojiang fault; RRF, Red-River fault

    图  4  青藏高原东南缘地壳应力场与大地热流(修改自Huang et al., 2018).(a)蓝色短线表示通过震源机制解反演得到的水平最大主压应力(SH),黄色和红色短线分别表示拉张背景和挤压—走滑背景下的水平拉张方向(Sh). 黑线表示平滑的高程等值线,绿线表示主要块体边界. 黄色阴影区表示下地壳负径向异性(Vsv>Vsh)分布的范围(修改自Xie et al., 2017).(b)不同颜色表示大地热流值,色标在底部. 竖线表示垂直方向的GPS观测值(修改自Pan and Shen, 2017),黑线表示主要断裂,紫色虚线表示主要块体边界,黄线表示下地壳负径向异性(Vsv>Vsh)分布的范围

    Figure  4.  Stress field and heat flow of the southeastern margin of the Tibetan Plateau (modified from Huang et al., 2018). (a) The blue bars denote the maximum horizontal stress orientations (SH) obtained by the inversion of the focal mechanism solutions; the yellow and red bars denote the minimum horizontal stress orientations (Sh) in extensional and compressional-strike-slip environments, respectively. The black lines denote the contour of the topography. The green lines denote the major plate boundaries. The green shades show the region with negative radial anisotropy (Vsv>Vsh) in the lower crust obtained by Xie et al. (2017). (b) Different colors denote different heat flow values with references shown at the bottom. The vertical bars denote the vertical crustal motions (modified from Pan and Shen, 2017). The black lines denote the major faults; The purple lines denote the major plate boundaries. The yellow lines mark the region with negative radial anisotropy (Vsv>Vsh) in the lower crust

    图  5  青藏高原东南缘的地壳厚度和泊松比.(a, b)利用H-k叠加方法获得的平均地壳厚度与泊松比(修改自Wang et al., 2017),黑色虚线表示主要的块体边界.(c, d)利用CCP叠加方向获得的地壳厚度及其水平梯度(修改自Xu et al., 2020). 灰色线条表示主要断裂. 红色和黑色封闭虚线表示莫霍面深度的水平梯度大于15 km/deg的范围,(d)黑色短线表示地壳厚度最大水平梯度的方向

    Figure  5.  Crustal thickness and Poisson's ratio in the southeastern margin of the Tibetan Plateau. (a, b) The crustal thickness and Poisson's ratio obtained by H-k method (modified from Wang et al., 2017). The black lines show the block boundaries. (c, d) The crustal thickness and its horizontal gradient obtained by the CCP method (modified from Xu et al., 2020). Gray lines denote the faults. The closed red and black lines denote the region where the lateral gradient of the Moho depths are larger than 15 km/deg; black bars in (d) show the directions of the maximum horizontal gradients of the crustal thickness

    图  6  青藏高原东南缘下地壳速度与各向异性.(a)接收函数与面波联合反演得到的31 km处的S波速度(修改自Bao et al., 2015),黑线表示主要断裂. (b)面波层析成像获得的32.5 km处的方位各向异性(修改自Bao et al., 2020),短线表示各向异性方向与大小,底图颜色同样表示各向异性强度.(c)面波层析成像获得的25 km的S波速度结构(修改自张智奇等,2020),黑线表示主要断裂,白色虚线表示主要块体边界,圆圈表示5级在上地震分布.(d)P波各向异性层析成像获得的40 km处的P波速度(底图颜色)与方位各向异性(黑色短线)(修改自Huang et al., 2018). 黑线表示主要断裂,紫线表示主要块体边界,红色粗线圈定了结果可靠的区域的范围

    Figure  6.  Lower crustal velocities and anisotropy beneath the southeastern margin of the Tibetan Plateau. (a) The S wave velocities at 31 km depth revealed by joint inversion of receiver function and surface wave (modified from Bao et al., 2015). The black lines denote the faults. (b) The azimuthal anisotropy at 32.5 km depth revealed by surface wave tomography (modified from Bao et al., 2020). The orientations and lengths of the short bars denote the fast velocity directions and strengths of the anisotropy, respectively. The background colors also show the strength of anisotropy with reference shown at the bottom. (c) The S wave velocities at 25 km depth revealed by surface wave tomography (modified from Zhang et al., 2020). The black lines denote the faults. The dashed white lines denote the tectonic boundaries. The circles denote the earthquakes. (d) P wave velocity and anisotropy at 40 km depth (modified from Huang et al., 2018). The orientations and lengths of the short bars denote the fast velocity directions and strengths of the anisotropy, respectively. The black and purple lines denote the faults and block boundaries, respectively. The bold magenta line outlines the region where the results are reliable

    图  7  青藏高原东南缘地壳各向异性.(a)近震S波分裂获得的上地壳各向异性(修改自Shi et al., 2012; Huang et al., 2018). 黑线表示主要断裂,绿线表示主要块体边界.(b)Pms分裂获得的地壳各向异性(修改自Sun et al., 2012; Chen et al., 2013; Cai et al., 2016; Huang et al., 2018).(c, d)利用接收函数马尔科夫链—蒙特卡罗(MCMC)反演获得的上地壳与下地壳的各向异性(修改自Han et al., 2020). 黄线表示断裂分布

    Figure  7.  Crustal anisotropy of the southeastern margin of the Tibetan Plateau. (a) Seismic anisotropy of the upper crust revealed by local S wave splitting (modified from Shi et al., 2012; Huang et al., 2018). The black and green lines denote the faults and major boundaries, respectively. (b) Anisotropy of the whole crust revealed by Pms splitting measurements (modified from Sun et al., 2012; Chen et al., 2013; Cai et al., 2016; Huang et al., 2018). (c, d) The anisotropy in the upper and mid-lower crust obtained by the Markov-Chain-Monte-Carlo inversion of receiver function (modified from Han et al., 2020). The yellow lines denote the faults

  • [1] Ando M, Ishikawa Y, Wada H. 1980. S-wave anisotropy in the upper mantle under a volcanic area in Japan[J]. Nature, 286: 43–46. doi: 10.1038/286043a0
    [2] Bai D, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3: 358-362. doi: 10.1038/ngeo830
    [3] Bao X, Song X, Li J. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 417: 132–141. doi: 10.1016/j.jpgl.2015.02.024
    [4] Bao X, Song X, Eaton D W, et al. 2020. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy [J]. Geophysical Research Letters, 47(3): e2019GL085721.
    [5] Brookfield M. 1993. The Himalayan passive margin from Precambrian to Cretaceous times[J]. Sedimentary Geology, 84 (1-4): 1–35. doi: 10.1016/0037-0738(93)90042-4
    [6] Burtman V S, Molnar P H. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the pamir[M]. Geological Society of America.
    [7] Cai Y, Wu J, Fang L, et al. 2016. Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau revealed by Pms splitting[J]. Journal of Asian Earth Sciences, 121: 120-126. doi: 10.1016/j.jseaes.2016.02.005
    [8] Cao F, Liang C, Zhou L, et al. 2020. Seismic azimuthal anisotropy for the southeastern Tibetan Plateau extracted by Wave Gradiometry analysis[J]. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018395.
    [9] Chen H P, Zhu L B, Su Y J. 2016. Low velocity crustal flow and crust–mantle coupling mechanism in Yunnan, SE Tibet, revealed by 3D S-wave velocity and azimuthal anisotropy[J]. Tectonophysics, 685: 8-20. doi: 10.1016/j.tecto.2016.07.007
    [10] Chen M, Huang H, Yao H J, et al. 2014. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 41(2): 334-340. doi: 10.1002/2013GL058476
    [11] Chen M, Niu F, Tromp J, et al. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature Communications, 8(1): 15659. doi: 10.1038/ncomms15659
    [12] Chen Y, Zhang Z, Sun C, et al. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 24(3–4): 946–957. doi: 10.1016/j.gr.2012.04.003
    [13] Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
    [14] Dai A, Tang C C, Liu L, et al. 2020. Seismic attenuation tomography in southwestern China: Insight into the evolution of crustal flow in the Tibetan Plateau[J]. Tectonophysics, 792: 228589. doi: 10.1016/j.tecto.2020.228589
    [15] 邓山泉, 章文波, 于湘伟, 等. 2021. 川滇地区三维P波速度结构研究[J]. 地球物理学进展, 1-17.

    Deng S Q, Zhang W B, Yu X W, et al. 2021. Three-dimensional P-wave velocity structure in Sichuan-Yunnan area[J]. Progress in Geophysics, 1-17 (in Chinese).
    [16] 董蕾, 沈旭章, 钱银苹. 2020. 青藏高原东南缘 Moho面速度密度跃变研究[J]. 地球物理学报, 63(3): 915–927. doi: 10.6038/cjg2020N0168

    Dong L, Shen X Z, Qian Y P. 2020. Study on velocity and density contrasts across the Moho in the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3): 915-927 (in Chinese). doi: 10.6038/cjg2020N0168
    [17] Dueker K G, Sheehan A F. 1997. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track[J]. Journal of Geophysical Research: Solid Earth, 102(B4): 8313–8327. doi: 10.1029/96JB03857
    [18] England P, Houseman G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 91(B3): 3664–3676. doi: 10.1029/JB091iB03p03664
    [19] 范莉苹, 吴建平, 房立华, 等. 2015. 青藏高原东南缘瑞利波群速度分布特征及其构造意义探讨[J]. 地球物理学报, 58(5): 1555-1567. doi: 10.6038/cjg20150509

    Fan L P, Wu J P, Fang L H, et al. 2015. The characteristic of Rayleigh wave group velocities in the southeastern margin of the Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 58(5): 1555-1567(in Chinese). doi: 10.6038/cjg20150509
    [20] Frederick D J, Millner S R, Chang C, et al. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 379–413. doi: 10.1098/rsta.1988.0135
    [21] French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots[J]. Nature, 525: 95-99. doi: 10.1038/nature14876
    [22] Fu Y V, Jia R, Han F, et al. 2018. SH wave structure of the crust and upper mantle in southeastern margin of the Tibetan plateau from teleseismic love wave tomography[J]. Physics of the Earth and Planetary Interiors, 279: 15-20. doi: 10.1016/j.pepi.2018.04.002
    [23] 高原, 石玉涛, 王琼. 2020. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报, 63(3): 802-816. doi: 10.6038/cjg2020O0003

    Gao Y, Shi Y T, Wang Q. 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its dep tectonic significances[J]. Chinese Journal of Geophysics, 63(3): 802-816 (in Chinese). doi: 10.6038/cjg2020O0003
    [24] 郭希, 陈赞, 李士东, 等. 2017. 峨眉山大火成岩省地壳横波速度结构特征及其动力学意义[J]. 地球物理学报, 60(9): 3338-3351. doi: 10.6038/cjg20170906

    Guo X, Chen Y, Li S D, et al. 2017. Crustal shear-wave velocity structure and its geodynamic implications beneath the Emeishan large igneous province[J]. Chinese Journal of Geophysics, 60(9): 3338-3351 (in Chinese). doi: 10.6038/cjg20170906
    [25] Guo Z, Wilson M. 2019. Late Oligocene–early Miocene transformation of post-collisional magmatism in Tibet[J]. Geology, 47(8): 776-780. doi: 10.1130/G46147.1
    [26] Han C, Huang Z, Xu M, et al. 2019. Focal mechanism and stress field in the northeastern Tibetan Plateau: insight into layered crustal deformations[J]. Geophysical Journal International, 218, 2066-2078. doi: 10.1093/gji/ggz267
    [27] Han C, Xu M, Huang Z, et al. 2020. Layered crustal anisotropy and deformation in the SE Tibetan plateau revealed by Markov-Chain-Monte-Carlo inversion of receiver functions[J]. Physics of the Earth and Planetary Interiors, 306, 106522. doi: 10.1016/j.pepi.2020.106522
    [28] Han F Q, Jia R Z, Fu Y V. 2017. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array[J]. Tectonophysics, 712-713: 125-131. doi: 10.1016/j.tecto.2017.05.013
    [29] 韩明, 李建有, 徐晓雅, 等. 2017. 按方位叠加接收函数分析青藏高原东南缘的地壳各向异性[J]. 地球物理学报, 60(12): 4537-4556. doi: 10.6038/cjg20171202

    Han M, Li J Y, Xu X Y, et al. 2017. Analysis for crustal anisotropy beneath the southeastern margin of Tibet by stacking azimuthal receiver functions[J]. Chinese Journal of Geophysics, 60(12): 4537-4556(in Chinese). doi: 10.6038/cjg20171202
    [30] Hu J, Badal J, Yang H, et al. 2018. Comprehensive crustal structure and seismological evidence for lower crustal flow in the southeastern margin of Tibet revealed by receiver functions[J]. Gondwana Research, 55: 42-59. doi: 10.1016/j.gr.2017.11.007
    [31] Hu J, Liu J, Song T, et al. 2020. Magma plumbing system of Emeishan large igneous province at the end-Permian: Insights from clinopyroxene compositional zoning and thermobarometry[J]. Minerals, 10: 979. doi: 10.3390/min10110979
    [32] Hu S, He L, Wang J. 2000. Heat flow in the continental area of China: A new data set[J]. Earth and Planetary Science Letters, 179(2): 407–419. doi: 10.1016/S0012-821X(00)00126-6
    [33] Huang H, Yao H J, Der Hilst R D. 2010. Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry[J]. Journal of Geophysical Research: Solid Earth, 37(21): L21310.
    [34] Huang Z, Zhao D, Wang L. 2011. Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan[J]. Geochemistry, Geophysics, Geosystems, 12(1): Q01002.
    [35] Huang Z, Wang L, Xu M, et al. 2018. P wave anisotropic tomography of the SE Tibetan Plateau: Evidence for the crustal and upper-mantle deformations[J]. Journal of Geophysical Research: Solid Earth, 123: 8957-8978. doi: 10.1029/2018JB016048
    [36] Julia J, Ammon C, Herrmann R, et al. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophysical Journal International, 143: 99-112. doi: 10.1046/j.1365-246x.2000.00217.x
    [37] Kind R, Yuan X, Saul J, et al. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction[J]. Science, 298(5596): 1219–1221. doi: 10.1126/science.1078115
    [38] Kong F, Wu J, Liu K H, et al. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas[J]. Earth and Planetary Science Letters, 442: 72-79. doi: 10.1016/j.jpgl.2016.03.003
    [39] Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 15: 3849–3889. doi: 10.1002/2014GC005407
    [40] Lei J S, Li Y, Xie F R, et al. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 119(3): 2174-2198. doi: 10.1002/2013JB010847
    [41] Lei J, Zhao D, Xu X, et al. 2019. Is there a big mantle wedge under eastern Tibet?[J]. Physics of the Earth and Planetary Interiors, 292: 100–113. doi: 10.1016/j.pepi.2019.04.005
    [42] Li C, Van Der Hilst R D, Engdahl E R, et al. 2008a. A new global model for P wave speed variations in Earth’s mantle [J]. Geochemistry, Geophysics, Geosystems, 9(5): Q05018.
    [43] 李长军, 甘卫军, 秦姗兰, 等. 2019. 青藏高原东南缘南段现今变形特征研究[J]. 地球物理学报, 62(12): 4540–4553. doi: 10.6038/cjg2019M0692

    Li C J, Gan W J, Qin S L, et al. 2019. Present-day deformation characteristics of the southeast borderland of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 62(12): 4540-4553(in Chinese). doi: 10.6038/cjg2019M0692
    [44] Li H, Su W, Wang C Y, et al. 2010. Ambient noise Love wave tomography in the eastern margin of the Tibetan plateau[J]. Tectonophysics, 491: 194-204. doi: 10.1016/j.tecto.2009.12.018
    [45] Li J T, Song X D, Zhu L P, et al. 2017. Joint inversion of surface wave dispersions and receiver functions with P velocity constraints: application to southeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 122(9): 7291-7310. doi: 10.1002/2017JB014135
    [46] Li M, Zhang S, Wang F, et al. 2016. Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions[J]. Journal of Asian Earth Sciences, 17: 52-63.
    [47] Li X, Bai D H, Ma X B, et al. 2019. Electrical resistivity structure of the Xiaojiang strike-slip fault system (SW China) and its tectonic implications[J]. Journal of Asian Earth Sciences, 176: 57-67. doi: 10.1016/j.jseaes.2019.01.031
    [48] Li X, Ma X, Chen Y, et al. 2020a. A plume-modified lithospheric barrier to the southeastward flow of partially molten Tibetan crust inferred from magnetotelluric data[J]. Earth and Planetary Science Letters, 548: 116493. doi: 10.1016/j.jpgl.2020.116493
    [49] Li Y, Wu Q, Zhang R, et al. 2008b. The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data[J]. Physics of the Earth and Planetary Interiors, 170(1-2): 134-146. doi: 10.1016/j.pepi.2008.08.006
    [50] 李永华, 徐小明, 张恩会, 等. 2014. 青藏高原东南缘地壳结构及云南鲁甸、景谷地震深部孕震环境[J]. 地震地质, 36(4): 1204-1216. doi: 10.3969/j.issn.0253-4967.2014.04.021

    Li Y H, Xu X M, Zhang E H, et al. 2014. Three-dimensional crust structure beneath SE Tibetan Plateau and its seismotectonic implications for the Ludian and Jinggu earthquakes[J]. Seismology and Geology, 36(4): 1204-1216 (in Chinese). doi: 10.3969/j.issn.0253-4967.2014.04.021
    [51] Li Z J, Wang Y, Gan W J, et al. 2020b. Diffuse deformation in the SE Tibetan Plateau: new insights from geodetic observations[J]. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019383.
    [52] Ling Y, Zheng T, He Y, et al. 2020. Response of Yunnan crustal structure to eastward growth of the Tibet Plateau and subduction of the India plate in Cenozoic[J]. Tectonophysics, 797: 228661. doi: 10.1016/j.tecto.2020.228661
    [53] Liu H, Niu F. 2011. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data[J]. Geophysical Journal International, 188(1): 144–164.
    [54] Liu Q Y, Robert D, van der Hilst, et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 7: 361-365. doi: 10.1038/ngeo2130
    [55] 鲁来玉, 何正勤, 丁志峰, 等. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报, 57(3): 822-836. doi: 10.6038/cjg20140312

    Lu L Y, He Z Q, Ding Z F, et al. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics, 57(3): 822-836(in Chinese). doi: 10.6038/cjg20140312
    [56] 马宏生, 张国民, 刘杰, 等. 2007. 云南及邻区应力应变场分区耦合特性初步研究[J]. 地震学报, 29(2): 130-141. doi: 10.3321/j.issn:0253-3782.2007.02.002

    Ma H S, Zhang G M, Liu J., et al. 2007. Coupling characteristics of stress and strain at different layers of different sub-regions in Yunnan and it adjacent areas[J]. Acta Seismologica Sinica, 29(2): 130-141(in Chinese). doi: 10.3321/j.issn:0253-3782.2007.02.002
    [57] Mainprice D. 2015. Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective[M]. Elsevier: Treatise on Geophysics, 487–538.
    [58] Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 189(4201): 419–426. doi: 10.1126/science.189.4201.419
    [59] 潘佳铁, 李永华, 吴庆举, 等. 2015. 青藏高原东南部地区瑞雷波相速度层析成像[J]. 地球物理学报, 58(11): 3993-4006. doi: 10.6038/cjg20151109

    Pan J T, Li Y H, Wu Q J, et al. 2015. Phase velocity maps of Rayleigh waves in the southeast Tibetan plateau[J]. Chinese Journal of Geophysics, 58(11): 3993-4006 (in Chinese). doi: 10.6038/cjg20151109
    [60] Pan Y, Shen W B. 2017. Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements[J]. Scientific Reports, 7: 45348. doi: 10.1038/srep45348
    [61] Qian H, Mechie J, Li H, et al. 2018. Structure of the crust and mantle down to 700 km depth beneath the Longmenshan from P receiver functions[J]. Tectonics, 37(6): 1688–1708. doi: 10.1029/2017TC004726
    [62] Rawlinson N, Pozgay S, Fishwick S. 2010. Seismic tomography: A window into deep Earth[J]. Physics of the Earth and Planetary Interiors, 178 (3–4): 101–135.
    [63] Replumaz A, Guillot S, Villaseñor A, et al. 2013. Amount of Asian lithospheric mantle subducted during the India/Asia collision[J]. Gondwana Research, 24(3-4): 936–945. doi: 10.1016/j.gr.2012.07.019
    [64] Replumaz A, Funiciello F, Reitano R, et al. 2016. Asian collisional subduction: A key process driving formation of the Tibetan Plateau[J]. Geology, 44(11): 943–946. doi: 10.1130/G38276.1
    [65] Romanowicz B. 2003. Global mantle tomography: progress status in the past 10 years[J]. Annual Review of Earth and Planetary Sciences, 31: 303-328. doi: 10.1146/annurev.earth.31.091602.113555
    [66] Royden L H, Burchfiel B C, Van Der Hilst R D. 2008. The geological evolution of the Tibetan Plateau[J]. Science, 321(5892): 1054–1058. doi: 10.1126/science.1155371
    [67] Shapiro N M, Ritzwoller M H, Molnar P. 2004. Thinning and flow of Tibetan crust constrained by seismic anisotropy[J]. Science, 305(5681): 233–236. doi: 10.1126/science.1098276
    [68] Shapiro N, Campillo M, Stehly L. et al. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307: 1615-1618. doi: 10.1126/science.1108339
    [69] Shen Z, Lv J, Burgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 110: B11409.
    [70] 石玉涛, 高原, 吴晶, 等. 2006. 云南地区地壳介质各向异性——快剪切波偏振特性. 地震地质, 28: 574-585.

    Shi Y T, Gao Y, Wu J, et al. 2006. Seismic anisotropy of the crust in Yunnan, China: Polarizations of fast shear-waves[J]. Acta Seismologica Sinica, 28(6): 574-585 (in Chinese).
    [71] Shi Y, Gao Y, Su Y, et al. 2012. Shear-wave splitting beneath Yunnan area of Southwest China[J]. Earthquake Science, 25(1): 25–34. doi: 10.1007/s11589-012-0828-4
    [72] Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research: Solid Earth, 96: 16429–16454. doi: 10.1029/91JB00899
    [73] Styron R, Taylor M, Okoronkwo K. 2010. Database of active structures from the Indo-Asian collision[J]. Eos, 91(20): 181–182.
    [74] Sun Y, Niu F, Liu H, et al. 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 349-350: 186-197. doi: 10.1016/j.jpgl.2012.07.007
    [75] 太龄雪, 高原, 刘庚, 等. 2015. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性: 第一期观测资料的剪切波分裂特征[J]. 地球物理学报, 58(11): 4079-4091. doi: 10.6038/cjg20151116

    Tai L X, Gao Y, Liu G, et al. 2015. Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinAray data: Shear-wave splitting from temporary observations of the first phase[J]. Chinese Journal of Geophysics, 58(11): 4079-4091(in Chinese). doi: 10.6038/cjg20151116
    [76] 唐晗晗, 郭良辉, 方圆. 2020. 青藏高原东南缘热流估算及与地震活动相关性分析[J]. 地球物理学报, 63(3): 1056-1069. doi: 10.6038/cjg2019N0045

    Tang H H, Guo L H, Fang Y. 2020. Estimation of heat flow in southeastern margin of Tibetan Plateau and its analysis of the correlation with earthquake activity[J]. Chinese Journal of Geophysics, 63(3): 1056-1069 (in Chinese). doi: 10.6038/cjg2019N0045
    [77] Tapponnier P, Xu Z, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294 (5547): 1671–1677. doi: 10.1126/science.105978
    [78] Wang C Y, Zhu L P, Lou H, et al. 2010. Crustal thicknesses and Poisson's ratios in the eastern Tibetan Plateau and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 115(B11): B11301. doi: 10.1029/2010JB007527
    [79] Wang H, Huang Z. 2020. Seismic tomography in the southern margin of the Sichuan Basin: Insight into the plateau-craton interaction and seismotectonics in the SE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 199, 104464. doi: 10.1016/j.jseaes.2020.104464
    [80] 王怀富, 吴建平, 周仕勇, 等. 2020. 青藏高原东南缘基于程函方程的面波方位各向异性研究[J]. 地球物理学报, 63(3): 1070–1084. doi: 10.6038/cjg2020N0104

    Wang H F, Wu J P, Zhou S Y, et al. 2020. Rayleigh wave azimuthal anisotropy in the Southeastern Tibetan Plateau from Eikonal tomography[J]. Chinese Journal of Geophysics, 63(3): 1070-1084(in Chinese). doi: 10.6038/cjg2020N0104
    [81] Wang J, Zhao D. 2008. P-wave anisotropic tomography beneath Northeast Japan[J]. Physics of the Earth and Planetary Interiors, 170(1-2): 115–133. doi: 10.1016/j.pepi.2008.07.042
    [82] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derivated from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.
    [83] 王琼, 高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学: 地球科学, 44(11): 2440-2450.

    Wang Q, Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China: Earth Sciences, 57: 2532–2542(in Chinese).
    [84] Wang W L, Wu J P, Fang L H, et al. 2017. Crustal thickness and Poisson's ratio in southwest China based on data from dense seismic arrays[J]. Journal of Geophysical Research: Solid Earth, 122(9): 7219-7235. doi: 10.1002/2017JB013978
    [85] Wang W, Wu J, Fang L, et al. 2014. S wave velocity structure in southwest China from surface wave tomography and receiver functions[J]. Journal of Geophysical Research: Solid Earth, 119(2): 1061-1078. doi: 10.1002/2013JB010317
    [86] Wang Z, Zhao D, Gao R, et al. 2019. Complex subduction beneath the Tibetan plateau: A slab warping model[J]. Physics of the Earth and Planetary Interiors, 292: 42–54. doi: 10.1016/j.pepi.2019.04.007
    [87] 韦伟, 孙若昧, 石耀霖. 2010. 青藏高原东南缘地震层析成像及汶川地震成因探讨[J]. 中国科学: 地球科学, 40(7): 831-839.

    Wei W, Sun R M, Shi Y L. 2010. P-wave tomographic images beneath southeastern Tibet: Investigating the mechanism of the 2008 Wenchuan earthquake[J]. Science China: Earth Sciences, 40(7): 831-839.
    [88] Wen L, Badal J, Hu J. 2019. Anisotropic H-k stacking and (revisited) crustal structure in the southeastern margin of Tibet[J]. Journal of Asian Earth Sciences, 169: 93-104. doi: 10.1016/j.jseaes.2018.07.028
    [89] Wu J, Zhang Z, 2012. Spatial distribution of seismic layer, crustal thickness, and VP/VS ratio in the Permian Emeishan Mantle Plume region[J]. Gondwana Research, 22(1): 127-139. doi: 10.1016/j.gr.2011.10.007
    [90] 吴建平, 杨婷, 王未来, 等. 2013. 小江断裂带周边地区三维P波速度结构及其构造意义[J]. 地球物理学报, 56(7): 2257-2267. doi: 10.6038/cjg20130713

    Wu J P, Yang T, Wang W L, et al. 2013. The three-dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications[J]. Chinese Journal of Geophysics, 56(7): 2257-2267(in Chinese). doi: 10.6038/cjg20130713
    [91] Wu T, Zhang S, Li M, et al. 2016. Two crustal flowing channels and volcanic magma migration underneath the SE margin of the Tibetan Plateau as revealed by surface wave tomography[J]. Journal of Asian Earth Sciences, 132: 25-39. doi: 10.1016/j.jseaes.2016.09.017
    [92] Wu T, Zhang S, Li M, et al. 2019. Complex deformation within the crust and upper mantle beneath SE Tibet revealed by anisotropic Rayleigh wave tomography[J]. Physics of the Earth and Planetary Interiors, 286: 165-178. doi: 10.1016/j.pepi.2018.12.002
    [93] Xie J, Ritzwoller M H, Shen W, et al. 2013. Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton[J]. Journal of Geophysical Research: Solid Earth, 118: 4226-4252. doi: 10.1002/jgrb.50296
    [94] Xie J, Ritzwoller M H, Shen W, et al. 2017. Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium[J]. Geophysical Journal International, 209(1): 466–491.
    [95] Xu M, Huang Z, Wang L, et al. 2020. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018117.
    [96] Xu X M, Ding Z F, Shi D N, et al. 2013. Receiver function analysis of crustal structure beneath the eastern Tibetan plateau[J]. Journal of Asian Earth Sciences, 73: 121-127. doi: 10.1016/j.jseaes.2013.04.018
    [97] Xu Y, Liu J, Liu F, et al. 2005. Crust and upper mantle structure of the Ailao Shan-Red River fault zone and adjacent regions[J]. Science in China: Earth Sciences, 48: 156-164.
    [98] 徐义刚, 钟孙霖. 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件. 地球化学, 30: 1-9. doi: 10.3321/j.issn:0379-1726.2001.01.002

    Xu Y G, Zhong S L, 2001. The Emeishan large igneous province: Evidence for mantle plume activity and melting conditions[J]. Geochimica, 30(1): 1-9 (in Chinese). doi: 10.3321/j.issn:0379-1726.2001.01.002
    [99] Xu Z, Huang Z, Wang L, et al. 2016. Crustal stress field in Yunnan: implication for crust-mantle coupling[J]. Earthquake Science, 29, 105-115. doi: 10.1007/s11589-016-0146-3
    [100] 许志琴, 杨经绥, 侯增谦, 等. 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43: 1-42. doi: 10.3969/j.issn.1000-3657.2016.01.001

    Xu Z Q, Yang J S, Hou Z Q, et al. 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China 43(1): 1-42(in Chinese). doi: 10.3969/j.issn.1000-3657.2016.01.001
    [101] Yang H, Peng H, Hu J, 2017. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions[J]. Journal of Asian Earth Sciences, 138: 62-71. doi: 10.1016/j.jseaes.2017.02.001
    [102] Yang Y, Ritzwoller M H, Zheng Y, et al. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 117: B04303.
    [103] Yao H, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 173(1): 205–219. doi: 10.1111/j.1365-246X.2007.03696.x
    [104] Yao H J, Robert D, van der Hilst, et al. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12307. doi: 10.1029/2009JB007142
    [105] Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 488(1-4): 293–325. doi: 10.1016/j.tecto.2009.06.002
    [106] Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211–280 doi: 10.1146/annurev.earth.28.1.211
    [107] Yu N, Unsworth M, Wang X B, et al. 2020. New insights into crustal and mantle flow beneath the Red River Fault Zone and adjacent areas on the southern margin of the Tibetan Plateau revealed by a 3-D magnetotelluric study[J]. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019396.
    [108] Zhang B, Zhang S, Wu T, et al. 2018. Upper crustal anisotropy from local shear-wave splitting and crust-mantle coupling of Yunnan, SE margin of Tibetan Plateau[J]. Geodesy and Geodynamics, 9(4): 302-311. doi: 10.1016/j.geog.2018.01.004
    [109] 张洪双, 田小波, 滕吉文. 2009. 接收函数方法估计Moho倾斜地区的地壳速度比[J]. 地球物理学报, 52(5): 1243-1252. doi: 10.3969/j.issn.0001-5733.2009.05.013

    Zhang H X, Tian X B, Teng J W, 2009. Estimation of crustal VP/VS with dipping Moho from receiver functions. Chinese Journal of Geophysics, 52(5): 1243-1252 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.05.013
    [110] Zhang X, Wang Y. 2009. Crustal and upper mantle velocity structure in Yunnan, Southwest China[J]. Tectonophysics, 471: 171-185. doi: 10.1016/j.tecto.2009.02.009
    [111] Zhang Z, Wang Y, Chen Y, et al. 2009. Crustal structure across Longmenshan fault belt from passive source seismic profiling[J]. Geophysical Research Letters, 36(17): L17310. doi: 10.1029/2009GL039580
    [112] 张智奇, 姚华建, 杨妍. 2020. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J]. 中国科学: 地球科学, 50(9): 1242-1258.

    Zhang Z Q, Yao H J, Yang Y. 2020. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications[J]. Science China: Earth Sciences, 50(9): 1242-1258 (in Chinese).
    [113] Zhao J, Yuan X, Liu H, et al. 2010. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11229–11233. doi: 10.1073/pnas.1001921107
    [114] Zhao L, Luo Y, Liu T, et al. 2013a. Earthquake focal mechanisms in Yunnan and their inference on the regional stress field[J]. Bullutin of Seismological Society of America, 103: 2498-2507. doi: 10.1785/0120120309
    [115] Zhao L F, Xie X B, He J K, et al. 2013b. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth and Planetary Science Letters, 383: 113-122. doi: 10.1016/j.jpgl.2013.09.038
    [116] Zhao Y, Guo L H, Guo Z, et al. 2020. High resolution crustal model of SE Tibet from joint inversion of seismic P wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow[J]. Tectonophysics, 792: 228580. doi: 10.1016/j.tecto.2020.228580
    [117] 郑晨, 丁志峰, 宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构[J]. 地球物理学报, 59(9): 3223-3236. doi: 10.6038/cjg20160908

    Zheng C, Ding Z F, Song X D. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in Southeast Tibetan Plateau[J]. Chinese Journal of Geophysics, 59(9): 3223-3236 (in Chinese). doi: 10.6038/cjg20160908
    [118] Zheng T, Ding Z, Ning J, et al. 2018. Crustal azimuthal anisotropy beneath the southeastern Tibetan Plateau and its geodynamic implications[J]. Journal of Geophysical Research: Solid Earth, 123: 9733-9749. doi: 10.1029/2018JB015995
    [119] Zhu L, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 105(B2): 2969. doi: 10.1029/1999JB900322
  • 加载中
图(7)
计量
  • 文章访问数:  725
  • HTML全文浏览量:  333
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 录用日期:  2021-03-01
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回