Research progress of the glacier seismology
-
摘要: 冰川地震学结合了冰川学和地震学的综合优势,形成一门年轻的交叉学科. 冰震是指冰川运动和破裂过程中产生的振动,包括从微小的嘎吱声到相当于7级地震的突发性破裂或滑动. 当前,根据冰震发生的位置以及发生机理的不同,将冰震大概分为五类:冰川表层破裂、冰川终端崩解、冰内水力压裂、冰腔水流震荡、冰层基底黏滑. 冰震研究除了可以采用传统地震学方法外,也可以结合GPS、数值模拟、冰川物性等多学科综合方法来研究,进一步可以探究冰崩的发生过程及危险性评估. 本文回顾了国内外冰川地震学的研究进展,介绍了我国研究人员在青藏高原地区开展的冰川地震研究工作,综合探讨了冰川地震对天然地震研究的启示.Abstract: Combining the advantages of Glaciology and seismology, Glacier seismology formes a young interdisciplinary subject. Icequakes refer to the vibration generated during the movement and rupture of a glacier, ranging from small creaks to sudden rupture or sliding equivalent to an earthquake (MW7). According to the location and mechanism of icequakes, the icequakes can be divided into five types: surface crevasses, stick-slip motion, iceberg calving, subglacial water flow and hydrofracturing. In addition to traditional seismological methods, icequake research can be used combing with multidisciplinary methods such as GPS, numerical simulation, and glacier physical properties. Icequake research can further explore the occurrence process and risk assessment of ice avalanches. We reviewed the research progress of glacier seismology. Moreover, we introduced part of the glacial earthquake research work carried out by domestic researchers in the Tibetan Plateau. Finally, we comprehensively discussed the enlightenments from glacier earthquakes to natural earthquake research.
-
Key words:
- glacier seismology /
- Tibetan Plateau /
- earthquakes
-
图 1 1950~2019年冰川地震学的论文数量增长情况(修改自Podolskiy and Walter, 2016)
Figure 1. Cumulative number of papers on passive glacier seismology, 1950~2019 (modified from Podolskiy and Walter, 2016)
图 2 典型冰震的位置和发生机理示意图(修改自Larose et al., 2015)
Figure 2. Schematic diagram of the location and mechanism of typical icequakes (modified from Larose et al., 2015)
图 3 (a)含P波的浅表冰裂隙冰震及瑞利波频谱;(b)深部冰震及更高频的P波频谱(修改自Roosli et al., 2014)
Figure 3. (a) Surface crevasse icequake with P-arrival and dominant Rayleigh wave; (b) Deep icequake with dominant P-arrival, higher frequencies (modified from Roosli et al., 2014)
图 4 格陵兰岛冰崩的波形特征。(a)冰震时间序列的水平南北分量(红色)和附近测量的海洋水位(青色),清楚显示了冰山崩解事件引发长达1小时的水位振荡;(b)冰崩事件的开始时的频谱(红色)和前期噪声谱(黑色)(修改自Walter et al., 2013)
Figure 4. Seismic signature of a calving event at Kangerdlugssup Sermerssua (Greenland), recorded on the station NUUG of the Greenland Ice Sheet Monitoring Network. (a) Horizontal north-south component of seismic time series (red) and nearby measured ocean water level (cyan). Both time series clearly show the hour-long water level oscillation triggered by the iceberg calving event. (b) Spectrum of the calving event's onset (red) and prevent noise (black) (modified from Walter et al., 2013)
图 5 冰腔水流震颤与水位有关(修改自Roeoesli et al., 2016)
Figure 5. The tremor caused by subglacial water flow is related to rising water levels (modified from Roeoesli et al., 2016)
图 6 冰层基底黏滑的相似波形(修改自Allstadt and Malone, 2014)
Figure 6. The similar waveforms of stick-slip motion (modified from Allstadt and Malone, 2014)
图 7 观测气温、气温梯度与高频冰震的时间分布(陈宇乔,2018)
Figure 7. The temporal distribution of air temperature, air temperature gradient and number of detected short-period icequakes ( Chen, 2018)
-
[1] Allstadt K, Malone S D. 2014. Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano[J]. Journal of Geophysical Research-Earth Surface, 119(5): 1180-1203. doi: 10.1002/2014JF003086 [2] Amundson J M, Truffer M, Lüthi M P, et al. 2008. Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland[J]. Geophysical Research Letters, 35(22):L 22501. doi: 10.1029/2008GL035281 [3] Anandakrishnan S, Blankenship D D, Alley R B, et al.1998.Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations[J]. Nature, 394(6688): 62-65. [4] Anderson R S, Anderson S P, Macgregor K R, et al. 2004.Strong feedbacks between hydrology and sliding of a small alpine glacier[J]. Journal of Geophysical Research-Earth Surface, 109(F3):F03005. [5] Canassy P D, Walter F, Husen S, et al. 2013. Investigating the dynamics of an Alpine glacier using probabilistic icequake locations: Triftgletscher, Switzerland[J]. Journal of Geophysical Research-Earth Surface, 118(4): 2003-2018. doi: 10.1002/jgrf.20097 [6] Carmichael J D.2019. Narrowband signals recorded near a moulin that are not moulin tremor: a cautionary short note[J]. Annals of Glaciology, 60(79): 231-237. [7] Carmichael J D, Joughin I, Behn M D, et al. 2015. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins[J]. Journal of Geophysical Research-Earth Surface, 120(6): 1082-1106. doi: 10.1002/2014JF003398 [8] 常利军, 丁志峰, 孙为国. 2012. 第27次南极科学考察度夏期间长城站地震观测[J]. 极地研究, 24(01): 98-103.Chang L J, Ding Z F, Sun W G.2012. Seismological observation at the Great Wall station during the 27th Chinese antarctic expedition in the summer[J]. Chinese Journal of Polar Research, 24(1): 98-103 (in Chinese). [9] Chen X, Shearer P M, Walter F, et al. 2011. Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images[J]. Journal of Geophysical Research-Solid Earth, 116:B06311. [10] 陈宇乔. 2018. 大陆型山谷冰川冰震的规律和影响因素——以老虎沟12号冰川为例[J]. 海洋学研究, 36(3): 50-56.Chen Y Q. 2018. Rule and affecting factors of seismic events in valley glacier with continental features: A case study on Laohugou Glacier No. 12[J]. Journal of Marine Sciences, 36(03): 50-56 (in Chinese). [11] Cohen D, Hooyer T S, Iverson N R, et al. 2006. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions[J]. Journal of Geophysical Research-Earth Surface, 111(F3):F03006. [12] Colgan W, Rajaram H, Abdalati W, et al. 2016. Glacier crevasses: Observations, models, and mass balance implications[J]. Reviews of Geophysics, 54(1): 119-161. doi: 10.1002/2015RG000504 [13] Danesi S, Bannister S, Morelli A. 2007. Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier[J]. Earth and Planetary Science Letters, 253(1): 151-158. [14] Deichmann N, Ansorge J, Scherbaum F, et al. 2000. Evidence for deep icequakes in an Alpine glacier[J]. Annals of Glaciology, 31: 85-90. doi: 10.3189/172756400781820462 [15] Dmitrieva K, Hotovec-Ellis A J, Prejean S, et al. 2013. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions[J]. Nature Geoscience, 6(8): 652-656. doi: 10.1038/ngeo1879 [16] Ekstrom G, Nettles M, Abers G A. 2003. Glacial earthquakes. Science, 302(5645): 622-624. doi: 10.1126/science.1088057 [17] Faillettaz J, Pralong A, Funk M, et al. 2008. Evidence of log-periodic oscillations and increasing icequake activity during the breaking-off of large ice masses[J]. Journal of Glaciology, 54(187): 725-737. doi: 10.3189/002214308786570845 [18] Farra V, Wittlinger G. 2013. Observation of low shear-wave velocity at the base of the polar ice sheets: evidence for enhanced anisotropy[OL]. EGU2013-5296.https://ui.adsabs.harvard.edu/abs/2013EGUGA..15.5296F. [19] Goldberg D N, Schoof C, Sergienko O V. 2014. Stick-slip motion of an Antarctic Ice Stream: The effects of viscoelasticity[J]. Journal of Geophysical Research-Earth Surface, 119(7): 1564-1580. doi: 10.1002/2014JF003132 [20] Harland S R, Kendall J M, Stuart G W, et al.2013. Deformation in Rutford Ice Stream, West Antarctica: measuring shear-wave anisotropy from icequakes[J]. Annals of Glaciology, 54(64): 105-114. [21] Heeszel D S, Walter F, Kilb D L.2014. Humming glaciers[J]. Geology, 42(12): 1099-1102. [22] Helmstetter A, Moreau L, Nicolas B, et al. 2015. Intermediate-depth icequakes and harmonic tremor in an Alpine glacier (Glacier d'Argentière, France): Evidence for hydraulic fracturing?[J]. Journal of Geophysical Research-Earth Surface,120(3). [23] 胡文涛, 姚檀栋, 余武生, 等. 2018. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 40(6): 1141-1152.Hu W T, Yao C D, Yu W S, et al. 2018.Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology, 40(6): 1141-1152 (in Chinese). [24] Kaab A, Leinss S, Gilbert A, et al. 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 11(2): 114-120. doi: 10.1038/s41561-017-0039-7 [25] Kohler A, Nuth C, Schweitzer J, et al. 2015.Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen[J]. Svalbard. Polar Research, 34, 26178. doi: 10.3402/polar.v34.26178 [26] Larose E, Carrière S, Voisin C, et al. 2015. Environmental seismology: What can we learn on earth surface processes with ambient noise?[J]. Journal of Applied Geophysics, 116: 62-74. doi: 10.1016/j.jappgeo.2015.02.001 [27] Ma H C, Chu R S, Sheng M H, et al. 2020. Template matching for simple waveforms with low signal-to-noise ratio and its application to icequake detection[J]. Earthquake Science, 33: 1-8. [28] Macayeal D R, Banwell A F, Okal E A, et al. 2018. Diurnal seismicity cycle linked to subsurface melting on an ice shelf[J]. Annals of Glaciology, 60(79): 137-157. [29] Métaxian J-P. 2003. Seismicity related to the glacier of Cotopaxi Volcano, Ecuador[J]. Geophysical Research Letters, 30(9):1483. doi: 10.1029/2002GL016773 [30] Mikesell T D, Van Wijk K, Haney M M, et al. 2012. Monitoring glacier surface seismicity in time and space using Rayleigh waves[J]. Journal of Geophysical Research-Earth Surface, 117(F2):F02020. [31] Neave K G, Savage J C. 1970.Icequakes on the Athabasca Glacier[J]. Journal of Geophysical Research, 75(8): 1351-1362. doi: 10.1029/JB075i008p01351 [32] Nettles M, Ekström G. 2010. Glacial Earthquakes in Greenland and Antarctica[J]. Annual Review of Earth and Planetary Sciences, 38(1): 467-491. doi: 10.1146/annurev-earth-040809-152414 [33] Peng Z, Walter J I, Aster R C, et al. 2014. Antarctic icequakes triggered by the 2010 Maule earthquake in Chile[J]. Nature Geoscience, 7(9): 677-681. doi: 10.1038/ngeo2212 [34] Perol T, Gharbi M, Denolle M.2018. Convolutional neural network for earthquake detection and location[J]. Science Advances,4(2): e1700578. doi: 10.1126/sciadv.1700578 [35] Podolskiy E A, Walter F. 2016. Cryoseismology[J]. Reviews of Geophysics, 54(4): 708-758. doi: 10.1002/2016RG000526 [36] Powell T W, Neuberg J. 2003. Time dependent features in tremor spectra[J]. Journal of Volcanology and Geothermal Research, 128(1-3): 177-185. doi: 10.1016/S0377-0273(03)00253-1 [37] Pratt M J, Winberry J P, Wiens D A, et al. 2014. Seismic and geodetic evidence for grounding-line control of Whillans Ice Stream stick-slip events[J]. Journal of Geophysical Research-Earth Surface, 119(2): 333-348. doi: 10.1002/2013JF002842 [38] Ritz C, Edwards T L, Durand G, et al. 2015. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations[J]. Nature, 528(7580): 115-118. [39] Roeoesli C, Walter F, Ampuero J P, et al. 2016.Seismic moulin tremor[J]. Journal of Geophysical Research-Solid Earth, 121(8): 5838-5858. doi: 10.1002/2015JB012786 [40] Roosli C, Walter F, Husen S, et al. 2014. Sustained seismic tremors and icequakes detected in the ablation zone of the Greenland ice sheet. Journal of Glaciology, 60(221): 563-575. doi: 10.3189/2014JoG13J210 [41] Seth S, Dominic L, Michael W, et al. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Blackwell Publishing. [42] Smith E C, Smith A M, White R S, et al. 2015. Mapping the ice-bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity[J]. Journal of Geophysical Research-Earth Surface, 120(9): 1881-1894. doi: 10.1002/2015JF003587 [43] Tsai V C, Rice J R, Fahnestock M.2008. Possible mechanisms for glacial earthquakes[J]. Journal of Geophysical Research-Earth Surface, 113(F3):F03014. [44] Tsai V C, Stewart A L, Thompson A F. 2015. Marine ice-sheet profiles and stability under Coulomb basal conditions[J]. Journal of Glaciology, 61(226): 205-215. doi: 10.3189/2015JoG14J221 [45] Van Der Veen C J. 1998. Fracture mechanics approach to penetration of surface crevasses on glaciers[J]. Cold Regions Science and Technology, 27(1): 31-47. [46] Walter F, Deichmann N, Funk M. 2008. Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland[J]. Journal of Glaciology, 54(186): 511-521. doi: 10.3189/002214308785837110 [47] Walter F, Olivieri M, Clinton J F. 2013. Calving event detection by observation of seiche effects on the Greenland fjords[J]. Journal of Glaciology, 59(213): 162-178. doi: 10.3189/2013JoG12J118 [48] Walter F, Chaput J, Lüthi M P. 2014. Thick sediments beneath Greenland’s ablation zone and their potential role in future ice sheet dynamics[J]. Geology, 42(6): 487-490. doi: 10.1130/G35492.1 [49] Walter F, Clinton J F, Deichmann N, et al. 2009. Moment Tensor Inversions of Icequakes on Gornergletscher, Switzerland[J]. Bulletin of the Seismological Society of America, 99(2A): 852-870. doi: 10.1785/0120080110 [50] Walter F, Roux P, Roeoesli C, et al. 2015. Using glacier seismicity for phase velocity measurements and Green\"s function retrieval[J]. Geophysical Journal International, 201(3): 1722-1737. doi: 10.1093/gji/ggv069 [51] Walter J I, Brodsky E E, Tulaczyk S, et al. 2011. Transient slip events from near-field seismic and geodetic data on a glacier fault, Whillans Ice Plain, West Antarctica[J]. Journal of Geophysical Research-Earth Surface, 116:F01021. [52] Wapenaar K.2004. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation[J]. Physical Review Letters, 93: 254301. [53] Winberry J P, Anandakrishnan S, Wiens D A, et al. 2013. Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica[J]. Geophysical Research Letters, 40(2): 312-315. doi: 10.1002/grl.50130 [54] Winberry J P, Anandakrishnan S, Alley R B, et al. 2009. Basal mechanics of ice streams: Insights from the stick-slip motion of Whillans Ice Stream, West Antarctica[J]. Journal of Geophysical Research-Earth Surface, 114:F01016. [55] Wittlinger G, Farra V. 2015. Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets[J]. Polar Science,9(1): 66-79. [56] 晏鹏. 2018. 基于被动源地震学方法的南极冰盖结构研究[D]. 武汉: 武汉大学.Yan P. 2018. Antarctic ice sheet structure inferred from passive seismic methods[D]. Wuhan: Wuhan Univeisity (in Chinese). [57] 杨康, 刘巧. 2016. 冰川表面水文过程研究进展[J]. 冰川冻土, 38(6): 1666-1678.Yang K, Liu Q. 2016. Supraglacial drainage system: a review[J]. Journal of Glaciology and Geocryology, 38(6): 1666-1678 (in Chinese). [58] 杨旭, 李永华, 盖增喜. 2021.机器学习在地震学中的应用进展. 地球与行星物理论评, 52(1): 76-88. doi: 10.19975/j.dqyxx.2020-006Yang X, Li Y H, Ge Z X. 2021. Machine learning and its application in seismology. Reviews of Geophysics and Planetary Physics, 52(1):76-88. doi: 10.19975/j.dqyxx.2020-006 [59] Zoet L K, Alley R B, Anandakrishnan S, et al. 2013. Accelerated subglacial erosion in response to stick-slip motion[J]. Geology, 41(2): 159-162. doi: 10.1130/G33624.1 -