• ISSN 2097-1893
  • CN 10-1855/P

全球油气开采诱发地震的研究现状与对策

张捷 况文欢 张雄 莫程康 张东晓

引用本文: 张捷,况文欢,张雄,莫程康,张东晓. 2021. 全球油气开采诱发地震的研究现状与对策. 地球与行星物理论评,52(3):239-265
Zhang J, Kuang W H, Zhang X, Mo C K, Zhang D X. 2021. Global review of induced earthquakes in oil and gas production fields. Reviews of Geophysics and Planetary Physics, 52(3): 239-265

全球油气开采诱发地震的研究现状与对策

doi: 10.19975/j.dqyxx.2020-027
基金项目: 国家自然科学基金资助项目(U1663208,51520105005)
详细信息
    作者简介:

    张捷,男,讲席教授,美国国家工程院院士,主要从事勘探地球物理、地震监测与预测等方面的研究. E-mail:jzhang25@ustc.edu.cn

    通讯作者:

    张东晓,男,教授,美国国家工程院院士,主要从事地下水文学、非常规油气开采(煤层气、页岩气)、二氧化碳地质埋藏等方面的研究. E-mail:zhangdx@sustech.edu.cn

  • 中图分类号: P315

Global review of induced earthquakes in oil and gas production fields

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. U1663208, 51520105005)
  • 摘要: 人工诱发地震现象已经有很久的历史. 水库蓄水、采矿、地热开发、从地下提取液体或气体,或将液体注入地球内部都可能诱发地震. 大量地震监测数据与科学分析结果显示:美国俄克拉何马州的地震剧增主要与页岩油气开采的废水回注量相关;加拿大阿尔伯塔省的地震剧增主要与页岩油气开采水力压裂的工作量相关;而荷兰罗宁根天然气田的传统天然气开采也同样诱发了较强的地震活动. 在中国四川盆地的页岩油气开发区域,地震活动近几年也大幅度增强,但目前监测与科研工作较少,对某些地震成因尚有争议. 目前研究诱发地震问题已成为学术界与工业界的一门专业学科. 推断诱发地震,除了分析时空分布与工业活动的相关性之外,本文综述了该领域基于地震学、地质动力学、构造地质学的多种分析方法. 如何在油气开采过程中减少诱发地震的灾害影响成为当前相关各界极为关注的科研问题,本文介绍了多个国家或地区建立的控制诱发地震的管理系统、基于地震大数据的诱发地震概率预测方法,以及基于地球物理与地质信息的综合诱发地震风险评估方法,并对我国控制诱发地震问题提出建设性意见.

     

  • 图  1  三种可能的注水压裂诱发的断层活化(修改自Eyre et al., 2019a

    Figure  1.  Three models proposed for fault activation due to hydraulic fracturing (modified from Eyre et al., 2019a)

    图  2  三维莫尔圆和断层示意图(修改自Zoback, 2010

    Figure  2.  The Mohr circle and the fault (modified from Zoback, 2010)

    图  3  每月俄克拉何马州中部与西部废水回注量(SWD)与诱发地震数量的结合图. 每月废水注水量(2000年至2016年6月)(蓝色线),诱发地震随注水量变化而延迟几个月发生(绿色),较大地震的余震序列也显而易见. 红色线是注水深度3 km以下的压力变化(振幅归一化),2016以后的压力数据为预测. 每个较大地震发生出现的地震量峰值是余震响应的结果(修改自Langenbruch and Zoback, 2016

    Figure  3.  Monthly injection rate (blue line) and number of induced earthquakes (green line) . The number of induced earthquakes varies with the injection rate and delayed several months, and we could observe the aftershock of the large earthquakes. The red line is the pressure variation bellow 3 km of the injection (Normalized amplitude). The pressure data after 2016 are the prediction. The peak value is related to the aftershocks (modified from Langenbruch and Zoback, 2016)

    图  4  俄克拉何马州废盐水回注量与地震分布. 图中颜色背景对应于2009年至2015年12月期间废盐水回注地域与注水量(m3),注水量是以任何点半径0.5°(约8000 km2)内累计计算的. 1979~2008年3级以上地震是黑色点,2009年至2016年9月的3级以上地震是灰色点,4.5级以上较大地震是彩色,黑色实线与黑色虚线分别画出西部与中部地区(修改自Langenbruch and Zoback, 2016

    Figure  4.  Salt water injection and earthquake distribution. The background color denotes the injection volume from 2009 to 2015. The injection volume is calculated by the accumulated amount of the radius of 0.5°. The black and gray dots are the earthquakes during 1979~2008 and 2009~Sep 2016. The color stars are the M4.5 earthquakes. The black line and dash line are corresponding to western and central areas (modified from Langenbruch and Zoback, 2016)

    图  5  (a)地震事件的空间位置分布,虚线框为福克斯克里克地区,紫色区域为迪韦奈地层.(b)位于福克斯克里克西南的Crooked Lake地区方圆100 km累计震级大于2.5的地震事件,从2013年12月1日起,地震发生频率出现了陡增,与该地区第一起注水压裂活动同步发生(修改自Schultz et al., 2017

    Figure  5.  (a) The earthquake distribution; dot line box denotes the Fox Creak area; purple area is Duvernay layer. (b) The M>2.5 earthquakes located in Crooked Lake, Fox Creek. The earthquake rate increases beginning from 1 Dec., 2013, which occurred at the same time with the first injection (modified from Schultz et al., 2017)

    图  6  应用双差定位确定的地震活动地图. 深灰色区域为福克斯克里克镇,蓝色区域为科鲁科尔德湖,紫色区域为迪韦奈地层,圆环和线的组合图形代表水平井,与地震事件相关的水平井线段被加粗(修改自Schultz et al., 2017

    Figure  6.  Apply the double difference method to locate the earthquakes. The dark gray area is Fox Creek; blue area is Crooked Lake, and the purple area is Duvernay layer; the circle and line figure denotes the horizontal well; the bold line denotes the horizontal well related to earthquakes (modified from Schultz et al., 2017)

    图  7  在CLS区域的系列地震事件和水力压裂完井在时间上的分布.(a)检测到的地震(红色柱)和通过交叉相关方法计算得到的地震(蓝色柱)柱状图,带有颜色的虚线框代表水力压裂完井作业.(b)监测到的地震的矩震级(红色圆圈)和通过交叉相关方法计算得到的地震的矩震级(蓝色圆圈)与水平井段压裂的平均注入压力(灰色柱子)在时间上的对照.(c)产生时间较晚的系列地震与水平井段压裂的平均注入压力在时间上的对照(修改自Schultz et al., 2015

    Figure  7.  The earthquake and hydraulic fracturing well distribution in CLS area. (a) The detected earthquakes (red) and the located earthquakes with cross correlation (blue), the colored dash box denotes the hydraulic fracturing well. (b) The monitoring of the earthquake moment magnitude and the moment magnitude calculated from cross correlation, which is compared with the injection pressure. (c) The comparison between the injection pressure and the delayed earthquake sequence (modified from Schultz et al., 2015)

    图  8  来自于实验室实验以及数值模拟的结果:在流体注入的情形下,断层的摩擦性质的演化(修改自Cappa et al., 2019

    Figure  8.  The simulated and laboratory experiment results: the friction feature evolution after injection (modified from Cappa et al., 2019)

    图  9  格罗宁根天然气田每年开采量和诱发地震数量时间变化图.(a)1990~2000年期间开采量(蓝色)和大于1.5级的地震数量(红色);(b)2001年之后的开采量(蓝色),大于1.5级地震数量(红色),以及大于2.5级的地震数量(绿色). 虚线为根据实线所示的数据插值拟合得到的结果(修改自Vlek, 2019

    Figure  9.  The gas extraction and number of induced earthquakes vs. time in Groningen gas field. (a) The gas extraction (blue) and the M>1.5 earthquakes (red) during 1990~2000; (b) The gas extraction after 2001 (blue), M>1.5 earthquakes (red), and the M>2.5 earthquakes (blue). The dash line is the interpolated result (modified from Vlek, 2019)

    图  10  (a) 2013年4月1日至11月1日之间和2014年,地震密度差别(每平方公里地震个数)和开采量差别的空间分布图,其中绿色表示和2013年相比,2014年密度降低区域,红色表示升高区域. 黑色圆圈表示压力波10个月时间传播的距离(3.5 km);(b)2013~2014年期间开采量差别的空间分布,其中绿色表示和2013年相比,2014年开采量减少区域,红色表示升高区域(修改自van Thienen-Visser and Breunese, 2015

    Figure  10.  (a) The earthquake density and extraction amount difference distribution; the blue indicate the decreasing area of the comparison between 2013 and 2014; the red indicate the increasing area. The black circle indicates the propagation distance of the pressure after ten months (3.5 km); (b) The extraction different distribution during 2013~2014; the blue indicate the extraction decreased area of the comparison between 2013 and 2014; the red indicate the increasing area (modified from van Thienen-Visser and Breunese, 2015)

    图  11  中国四川盆地及其周边的地震分布图. 灰色点代表1980~2013年期间2.5级以上的地震,彩色点代表2014~2016年期间1.5级以上的地震. 背景线条为该地区的活断层分布图. A(上罗)是本研究关注区域,B(威远)也是页岩气开发区域,C和D是两个废水回注的区域(修改自Lei et al., 2017

    Figure  11.  The earthquake distribution around Sichuan Basin, China. The gray dot denotes the M>2.5 earthquakes during 1980~2013; the colored dot denotes the M>1.5 earthquakes during 2014~2016. The background line is the active fault. A (Shangluo) is the studying area; B(Weiyuan) is the gas production area; C and D are two injection area (modified from Lei et al., 2017)

    图  12  长宁背斜区天然地震的投影及其构造地质背景(修改自何登发等,2019

    Figure  12.  Projection and tectonic geological setting of natural earthquakes in Changning anticline area (modified from He et al., 2019)

    图  13  不同地区或国家的红绿灯系统,在具体标准上都有很大不同(修改自Zoback and Kohli, 2019

    Figure  13.  Traffic light systems in different regions or countries adopt very different specific standards (modified from Zoback and Kohli, 2019)

    图  14  美国俄克拉何马州与堪萨斯州:2015~2020年基于物理模型的M≥4以上地震发生的概率预测. 本研究计算1257 km2(20 km半径)的区域里的一年的超越概率预测. 在做预测这一年已经发生的M≥3(灰色圆)和M≥4(黄色圆)地震显示在图中. 当地的地震风险是由其当地的压力增加以及孕震状态决定的. 2015~2020年期间的概率降低主要是由于减少注水量的原因,减缓了孕震带的压力增加. 地震风险的最大缓解区域是在尼马哈断层东部,那里注水量大幅度减少. 2018~2020年期间假设均衡的注水率. 该预测图可以根据未来注水情况的变化相应更新(修改自Langenbruch et al., 2018

    Figure  14.  The Oklahoma and Kansas, US: The probability prediction based on the physical model of the M≥4 earthquakes during 2015~2020. The probability prediction is calculated in a 1257 km2 area in one year, and the M≥3 and M≥4 earthquakes are denoted in the figure. The local earthquake risk is determined by the stress increasing and state of earthquake preparation. The decreasing of 2015~2020 results from the decreasing of the injection. The largest decreasing area of the earthquake risk is the east part of Memaha fault, and the injection is decreased dramatically. The prediction figure could be updated according to the future injection condition (modified from Langenbruch et al., 2018)

  • [1] Ake J, Mahrer K, O'Connell D, Block L. 2005. Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado[J]. Bulletin of the Seismological Society of America, 95(2): 664-683. doi: 10.1785/0120040072
    [2] Alberta Energy Regular. 2015. https://www.aer.ca/regulating-development/rules-and-directives/acts-regulations-and-rules#legislation.
    [3] Almakari M, Dublanchet P, Chauris H, Pellet F. 2019. Effect of the injection scenario on the rate and magnitude content of injection-induced seismicity: Case of a heterogeneous fault[J]. Journal of Geophysical Research Solid Earth, 124.
    [4] Amitrano D. 2003. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the bvalue[J]. Journal of Geophysical Research, 108(B1).
    [5] Atkinson G M, Eaton D W, Ghofrani H, et al. 2016. Hydraulic fracturing and seismicity in the western Canada sedimentary basin[J]. Seismological Research Letters, 87(3): 631-647. doi: 10.1785/0220150263
    [6] Bachmann C E, Wiemer S, Goertz-Allmann B P, Woessner J. 2012. Influence of pore-pressure on the event-size distribution of induced earthquakes[J]. Geophysical Research Letters, 39(9): L09302.
    [7] Baisch S, Vörös R, Rothert E, et al. 2010. A numerical model for fluid injection induced seismicity at Soultz-sous-Forêts[J]. International Journal of Rock Mechanics and Mining Sciences, 47(3): 405-413. doi: 10.1016/j.ijrmms.2009.10.001
    [8] Bao X, Eaton D W. 2016. Fault activation by hydraulic fracturing in western Canada[J]. Science, 354(6318): 1406-1409. doi: 10.1126/science.aag2583
    [9] Beeler N M, Simpson R W, Hickman S H, Lockner D A. 2000. Pore fluid pressure, apparent friction, and Coulomb failure[J]. Journal of Geophysical Research, 105(B11): 25533-25542. doi: 10.1029/2000JB900119
    [10] Bommer J J, Crowley H, Pinho R. 2015. A risk-mitigation approach to the management of induced seismicity[J]. Journal of Seismology, 19(2): 623-646. doi: 10.1007/s10950-015-9478-z
    [11] Bourne S J, Oates S J, Van Elk J, Doornhof D. 2014. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir[J]. Journal of Geophysical Research Solid Earth, 119(12): 8991-9015. doi: 10.1002/2014JB011663
    [12] Bourne S J, Oates S J. 2017. Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field[J]. Netherlands Journal of Geosciences, 96(5): s175-s182. doi: 10.1017/njg.2017.35
    [13] Bourne S J, Oates S J, Van Elk J. 2018. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk[J]. Geophysical Journal International, 213(3): 1693-1700. doi: 10.1093/gji/ggy084
    [14] Brown M R M, Ge S. 2018. Small earthquakes matter in injection-induced seismicity[J]. Geophysical Research Letters, 45(11): 5445-5453.
    [15] Candela T, Wassing B, Ter Heege J, Buijze L. 2018. How earthquakes are induced[J]. Science, 360(6389): 598-600. doi: 10.1126/science.aat2776
    [16] Cappa F, Scuderi M M, Collettini C, et al 2019. Stabilization of fault slip by fluid injection in the laboratory and in situ[J]. Science Advances, 5(3): eaau4065. doi: 10.1126/sciadv.aau4065
    [17] Clarke H, Verdon J P, Kettlety T, et al. 2019. Real-time imaging, forecasting, and management of human-induced seismicity at Preston New Road, Lancashire, England[J]. Seismological Research Letters, 90(5): 1902-1915.
    [18] Clerc F, Harrington R M, Liu Y, Gu Y J. 2016. Stress drop estimates and hypocenter relocations of induced seismicity near Crooked Lake, Alberta[J]. Geophysical Research Letters, 43(13): 6942-6951. doi: 10.1002/2016GL069800
    [19] Corlett H, Schultz R, Branscombe P, et al. 2018. Subsurface faults inferred from reflection seismic, earthquakes, and sedimentological relationships: Implications for induced seismicity in Alberta, Canada[J]. Marine and Petroleum Geology, 93: 135-144. doi: 10.1016/j.marpetgeo.2018.03.008
    [20] Cornell C A. 1968. Engineering seismic risk analysis[J]. Bulletin of the Seismological Society of America, 58(5): 1583-1606.
    [21] Davies R, Foulger G, Bindley A, Styles P. 2013a. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons[J]. Marine and Petroleum Geology, 45: 171-185. doi: 10.1016/j.marpetgeo.2013.03.016
    [22] Davies R J, Foulger G R, Mathias S, et al. 2013b. Reply: Davies et al. 2012. Hydraulic fractures: How far can they go[J]. Marine and Petroleum Geology, 43: 519-521.
    [23] De Barros L, Cappa F, Guglielmi Y, et al. 2019. Energy of injection-induced seismicity predicted from in-situ experiments[J]. Scientific Reports, 9(1): 4999. doi: 10.1038/s41598-019-41306-x
    [24] Deichmann N, Giardini D. 2009. Earthquakes induced by the stimulation of an Enhanced Geothermal System below Basel (Switzerland)[J]. Seismological Research Letters, 80(5): 784-798. doi: 10.1785/gssrl.80.5.784
    [25] Dempsey D, Suckale J. 2017. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands[J]. Geophysical Research Letters, 44(15): 7773-7782. doi: 10.1002/2017GL073878
    [26] Dempsey D, Kelkar S, Pawar R. 2014. Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage[J]. International Journal of Greenhouse Gas Control, 28: 96-113 doi: 10.1016/j.ijggc.2014.06.002
    [27] Deng K, Liu Y, Harrington R M. 2016. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence[J]. Geophysical Research Letters, 43(16): 8482-8491. doi: 10.1002/2016GL070421
    [28] 邓宾, 雍自权, 刘树根, 等. 2016. 青藏高原东南缘大凉山新生代隆升建造过程: 多封闭系统低温热年代学与热模型限制[J]. 地球物理学报, 59(6): 2162-2175. doi: 10.6038/cjg20160621

    Deng B, Yong Z Q, Liu S G, et al. 2016.Cenozoic mountain-building processes in the Daliangshan, southeastern margin of the Tibetan Plateau: Evidence from low-temperature thermochronology and thermal modeling[J].Chinese Journal Of Geophysics, 59(6): 2162-2175(in Chinese).doi: 10.6038/cjg20160621
    [29] 邓起东, 张培震, 冉勇康, 等. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73.

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Active tectonics and seismicity in China[J]. Earth Science Frontiers, 10(S1): 66-73(in Chinese).
    [30] 邓起东, 闻学泽. 2008. 活动构造研究: 历史、进展与建议[J]. 地震地质, 30(1): 1-30. doi: 10.3969/j.issn.0253-4967.2008.01.002

    Deng Q D, Wen X Z. 2008. Active tectonic study: history, development and suggestion[J]. Seismology and Geology, 30(1): 1-30(in Chinese). doi: 10.3969/j.issn.0253-4967.2008.01.002
    [31] Dinske C, Shapiro S A. 2013. Seismotectonic state of reservoirs inferred from magnitude distributions of fluid-induced seismicity[J]. Journal of Seismology, 17(1): 13-25. doi: 10.1007/s10950-012-9292-9
    [32] Dost B, Van Eck T, Haak H. 2004. Scaling of peak ground acceleration and peak ground velocity recorded in the Netherlands[J]. Bollettino di Geofisica Teorica Ed Appliocata, 45(3): 153-168.
    [33] Dost B, Haak H W, Wong T E, et al. 2007. Natural and induced seismicity[J]. Geology of the Netherlands, 223-239.
    [34] Dost B, Kraaijpoel D. 2013. The August 16, 2012 earthquake near Huizinge (Groningen)[R]. Utrecht, The Netherlands: KNMI Scientific Report, Royal Netherlands Meteorological Institute (KNMI).
    [35] Dougherty S L, Cochran E S, Harrington R M. 2019. The LArge-n Seismic Survey in Oklahoma (LASSO) experiment[J]. Seismological Research Letters, 90(5): 2051–2057.
    [36] Dublanchet P. 2019. Fluid driven shear cracks on a strengthening rate-and-state frictional fault[J]. Journal of the Mechanics and Physics of Solids, 132: 103672. doi: 10.1016/j.jmps.2019.07.015
    [37] Eaton D W, Schultz R. 2018. Increased likelihood of induced seismicity in highly overpressured shale formations[J]. Geophysical Journal International, 214(1): 751-757. doi: 10.1093/gji/ggy167
    [38] Edwards B, Douglas J. 2014. Magnitude scaling of induced earthquakes[J]. Geothermics, 52: 132-139. doi: 10.1016/j.geothermics.2013.09.012
    [39] EIA U. 2013. Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States[R]. Washington, DC: US Energy Information Administration.
    [40] Ellsworth W L. 2013. Injection-induced earthquakes[J]. Science, 341(6142): 1225942. doi: 10.1126/science.1225942
    [41] Ellsworth W L, Giardini D, Townend J, et al. 2019. Triggering of the Pohang, Korea, earthquake (MW5.5) by enhanced geothermal system stimulation[J]. Seismological Research Letters, 90(5): 1844-1858.
    [42] Eyre T S, Eaton D W, Garagash D I, et al. 2019a. The role of aseismic slip in hydraulic fracturing–induced seismicity[J]. Science Advances, 5(8): eaav7172. doi: 10.1126/sciadv.aav7172
    [43] Eyre T S, Eaton D W, Zecevic M, et al. 2019b. Microseismicity reveals fault activation before MW 4.1 hydraulic-fracturing induced earthquake[J]. Geophysical Journal International, 218(1): 534-546. doi: 10.1093/gji/ggz168
    [44] Farahbod A M, Kao H, Walker D M, Cassidy J F. 2015. Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, northeast British Columbia[J]. Canadian Journal of Earth Sciences, 52(2): 112-122. doi: 10.1139/cjes-2014-0162
    [45] Foulger G R, Julian B R, Hill D P, et al. 2004. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing[J]. Journal of Volcanology and Geothermal Research, 132(1): 45-71. doi: 10.1016/S0377-0273(03)00420-7
    [46] Foulger G R, Wilson M P, Gluyas J G, et al. 2018. Global review of human-induced earthquakes[J]. Earth Science Reviews, 178: 438-514. doi: 10.1016/j.earscirev.2017.07.008
    [47] Frankel A D, Mueller C, Barnhard T, et al. 1996. National seismic-hazard maps: Documentation June 1996[J]. Reston, VA: US Geological Survey, 96-532.
    [48] Friberg P A, Besana-Ostman G M, Dricker I. 2014. Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio[J]. Seismological Research Letters, 85(6): 1295-1307. doi: 10.1785/0220140127
    [49] Frohlich C. 1994. Earthquakes with non-double-couple mechanisms[J]. Science, 264(5160): 804-809. doi: 10.1126/science.264.5160.804
    [50] Frohlich C. 2012. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(35): 13934-13938. doi: 10.1073/pnas.1207728109
    [51] Frohlich C, Ellsworth W, Brown W A, et al. 2014. The 17 May 2012 M 4.8 earthquake near Timpson, east Texas: an event possibly triggered by fluid injection[J]. Journal of Geophysical Research, 119(1): 581-593.
    [52] Galloway E, Hauck T, Corlett H, et al. 2018. Faults and associated karst collapse suggest conduits for fluid flow that influence hydraulic fracturing-induced seismicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(43): E10003-E10012. doi: 10.1073/pnas.1807549115
    [53] Ghofrani H, Atkinson G M. 2016. A preliminary statistical model for hydraulic fracture-induced seismicity in the western Canada sedimentary basin[J]. Geophysical Research Letters, 43(19): 10164-10172. doi: 10.1002/2016GL070042
    [54] Goebel T H W, Kwiatek G, Becker T W, et al. 2017. What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments[J]. Geology, 45(9): 815-818. doi: 10.1130/G39147.1
    [55] Goebel T H, Brodsky E E. 2018. The spatial footprint of injection wells in a global compilation of induced earthquake sequences[J]. Science, 361(6405): 899-904. doi: 10.1126/science.aat5449
    [56] Green D G, Mountjoy E W. 2005. Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta deep basin[J]. Bulletin of Canadian Petroleum Geology, 2005, 53(2): 101-129.
    [57] Grigoli F, Cesca S, Priolo E, et al. 2017. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective[J]. Reviews of Geophysics, 55(2): 310-340. doi: 10.1002/2016RG000542
    [58] Grigoli F, Cesca S, Rinaldi A P, et al. 2018. The November 2017 MW5.5 Pohang earthquake: A possible case of induced seismicity in South Korea[J]. Science, 360(6392): 1003-1006. doi: 10.1126/science.aat2010
    [59] Guglielmi Y, Cappa F, Avouac J, et al. 2015. Seismicity triggered by fluid injection-induced aseismic slip[J]. Science, 348(6240): 1224-1226. doi: 10.1126/science.aab0476
    [60] Guha S K. 2013. Induced earthquakes[M]. Springer: Science & Business Media.
    [61] 郭正吾, 邓康龄, 韩永辉. 1996. 四川盆地形成与演化[M]. 北京: 地质出版社.

    Guo Z W, Deng K L, Han Y H. 1996. Formation and Evolution of Sichuan Basin[M]. Beijing: Geological Publishing House (in Chinese).
    [62] Gupta H K. 2002. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India[J]. Earth-Science Reviews, 58(3-4): 279-310. doi: 10.1016/S0012-8252(02)00063-6
    [63] Gutenberg B, Richter C F. 1942. Earthquake magnitude, intensity, energy, and acceleration[J]. Bulletin of the Seismological Society of America, 32(3): 163-191.
    [64] Gutenberg B, Richter C F. 1944. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 34(4): 185-188.
    [65] Hainzl S, Ogata Y. 2005. Detecting fluid signals in seismicity data through statistical earthquake modeling[J]. Journal of Geophysical Research, 110(B5).
    [66] Hajati T, Langenbruch C, Shapiro S A. 2015. A statistical model for seismic hazard assessment of hydraulic-fracturing-induced seismicity[J]. Geophysical Research Letters, 42(24): 10601-10606. doi: 10.1002/2015GL066652
    [67] Hasegawa H S, Wetmiller R J, Gendzwill D J. 1989. Induced seismicity in mines in Canada-an overview[J].Pure and Applied Geophysics, 129(3-4): 423-453. doi: 10.1007/BF00874518
    [68] 何登发, 李德生, 张国伟, 等. 2011. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 46(3): 589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001

    He D F, Li D S, Zhang G W, et al. 2011. Formation and evolution of polycyclic superimposed basins in Sichuan[J]. Geological Science, 46(3): 589-606(in Chinese). doi: 10.3969/j.issn.0563-5020.2011.03.001
    [69] 何登发, 鲁人齐, 黄涵宇, 等. 2019. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 46(5): 993-1006.

    He D F, Lu R Q, Huang H Y, et al. 2019. Tectonic geological background of earthquakes in Changning shale gas development field[J]. Petroleum Exploration and Development, 46(5): 993-1006(in Chinese).
    [70] Healy J H, Rubey W W, Griggs D T, Raleigh C B. 1968. The Denver Earthquakes-Disposal of waste fluids by injection into a deep well has triggered earthquakes near Denver, Colorado[J]. Science, 161: 1301-1310. doi: 10.1126/science.161.3848.1301
    [71] Herrmann R B, Park S K, Wang C Y. 1981. The Denver earthquakes of 1967-1968[J]. Bulletin of the Seismological Society of America, 71(3): 731-745.
    [72] Hofmann H, Zimmermann G, Zang A, Min K B. 2018. Min Cyclic Soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments[J]. Geothermal Energy, 6(1): 27. doi: 10.1186/s40517-018-0114-3
    [73] Hofmann H, Zimmermann G, Farkas M, et al 2019. First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea[J]. Geophysical Journal International, 217(2): 926-949. doi: 10.1093/gji/ggz058
    [74] Holland A A. 2013. Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bulletin of the Seismological Society of America, 103(3): 1784-1792. doi: 10.1785/0120120109
    [75] Hough S E, Seeber L, Armbruster J G. 2003. Intraplate Triggered Earthquakes: Observations and Interpretation[J]. Bulletin of the Seismological Society of America, 93(5): 2212-2221. doi: 10.1785/0120020055
    [76] Hu J, Chen J, Chen Z, et al. 2018. Risk assessment of seismic hazards in hydraulic fracturing areas based on fuzzy comprehensive evaluation and AHP method (FAHP): A case analysis of Shangluo area in Yibin City, Sichuan Province, China[J]. Journal of Petroleum Science and Engineering, 170: 797-812. doi: 10.1016/j.petrol.2018.06.066
    [77] Hurd O, Zoback M D. 2012. Intraplate earthquakes, regional stress and fault mechanics in the Central and eastern U.S. and Southeastern Canada[J]. Tectonophysics, 581: 182-192. doi: 10.1016/j.tecto.2012.04.002
    [78] Israel M, Nur A. 1979. A complete solution of a one-dimensional propagating fault with nonuniform stress and strength[J]. Journal of Geophysical Research, 84(B5): 2223-2234. doi: 10.1029/JB084iB05p02223
    [79] Jiang G, Qiao X, Wang X, et al. 2020. GPS observed horizontal ground extension at the Hutubi (China) underground gas storage facility and its application to geomechanical modeling for induced seismicity[J]. Earth and Planetary Science Letters, 530: 115943. doi: 10.1016/j.jpgl.2019.115943
    [80] Kao H, Hyndman R, Jiang Y, et al. 2018. Induced seismicity in western Canada linked to tectonic strain rate: implications for regional seismic hazard[J]. Geophysical Research Letters, 45(20): 11104-111115.
    [81] Keranen K M, Savage H M, Abers G A, Cochran E S. 2013. Potential induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 MW 5.7 earthquake sequence[J]. Geology, 41(6): 699-702. doi: 10.1130/G34045.1
    [82] Keranen K M, Weingarten M. 2018. Induced seismicity. Annual Review of Earth and Planetary Sciences, 46: 149-174. doi: 10.1146/annurev-earth-082517-010054
    [83] Kettlety T, Verdon J P, Werner M J, et al. 2019. Investigating the role of elastostatic stress transfer during hydraulic fracturing-induced fault activation[J]. Geophysical Journal International, 217(2): 1200-1216.
    [84] Kim K H, Ree J H, Kim Y H, et al. 2018. Assessing whether the 2017 MW 5.4 Pohang earthquake in South Korea was an induced event[J]. Science, 360(6392): 1007-1009. doi: 10.1126/science.aat6081
    [85] Kim W Y. 2013. Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio[J]. Journal of Geophysical Research Solid Earth, 118(7): 3506-3518. doi: 10.1002/jgrb.50247
    [86] King G C, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes[J].Bulletin of the Seismological Society of America, 84(3): 935-953.
    [87] King Hubbert M, Rubey W W. 1959. Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting[J]. Geological Society of America Bulletin, 70(2): 167-206. doi: 10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2
    [88] KNMI. 2018. List of all induced earthquakes recorded in the Netherlands since 1986. De Bilt (NL): Royal Dutch Meteorological Institute, http://cdn.knmi.nl/knmi/map/page/seismologie/all_induced.pdf.
    [89] Kumar A, Zorn E, Hammack R, Harbert W. 2017. Long-period, long-duration seismicity observed during hydraulic fracturing of the marcellus shale in Greene County, Pennsylvania[J]. The Leading Edge, 36(7): 580-587. doi: 10.1190/tle36070580.1
    [90] Langenbruch C, Zoback M D. 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science Advances, 2(11): e1601542. doi: 10.1126/sciadv.1601542
    [91] Langenbruch C, Weingarten M, Zoback M D. 2018. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansa[J]. Nature Communications, 9(1): 3946. doi: 10.1038/s41467-018-06167-4
    [92] Lee K K, Ellsworth W L, Giardini D, et al. 2019. Managing injection-induced seismic risks[J]. Science, 364(6442): 730-732. doi: 10.1126/science.aax1878
    [93] Lei X, Ma S, Chen W, et al. 2013. A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China[J]. Journal of Geophysical Research Solid Earth, 118(8): 4296-4311. doi: 10.1002/jgrb.50310
    [94] Lei X, Huang D J, Su J R, et al. 2017. Fault reactivation and earthquakes with magnitudes of up to MW4. 7 induced by shale-gas hydraulic fracturing in Sichuan basin, China[J]. Scientific Reports, 7(1): 7971. doi: 10.1038/s41598-017-08557-y
    [95] Lei X, Wang Z W, Su J R. 2019. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in south Sichuan basin induced by shale gas hydraulic fracturing[J]. Seismological Research Letters, 90(3): 1099-1110. doi: 10.1785/0220190029
    [96] Lei X, Su J, Wang Z. 2020. Growing seismicity in the Sichuan Basin and its associated with industrial activities[J].Science China: Earth Science, 63(11): 1633-1660. doi: 10.1007/s11430-020-9646-x
    [97] 雷兴林, 李霞颖, 李琦, 等. 2014. 沉积岩储藏系统小断层在油气田注水诱发地震中的作用——以四川盆地为例[J]. 地震地质, 36(3): 625-643. doi: 10.3969/j.issn.0253-4967.2014.03.007

    Lei X L, Li X Y, Li Q, et al. 2014. The role of small faults in sedimentary rock storage system in water flooding induced earthquakes in oil and gas fields-Sichuan Basin[J]. Seismology and Geology, 36(3): 625-643(in Chinese). doi: 10.3969/j.issn.0253-4967.2014.03.007
    [98] Li B Q, Silva B G, Einstein H. 2019a. Laboratory hydraulic fracturing of granite: Acoustic emission observations and interpretation[J]. Engineering Fracture Mechanics, 209: 200-220. doi: 10.1016/j.engfracmech.2019.01.034
    [99] Li L, Tan J, Wood D A, et al. 2019b. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs[J]. Fuel, 242: 195-210. doi: 10.1016/j.fuel.2019.01.026
    [100] Li T, Cai M F, Cai M. 2007. A review of mining-induced seismicity in China[J]. International Journal of Rock Mechanics and Mining Sciences, 44(8): 1149-1171. doi: 10.1016/j.ijrmms.2007.06.002
    [101] Li T, Gu Y J, Wang Z, et al. 2019. Spatiotemporal variations in crustal seismic anisotropy surrounding induced earthquakes near 福克斯克里克, Alberta[J]. Geophysical Research Letters, 46(10): 5180-5189. doi: 10.1029/2018GL081766
    [102] Lin C H. 2005. Seismicity increase after the construction of the world's tallest building: An active blind fault beneath the Taipei 101[J]. Geophysical Research Letters, 32(22): L22313.
    [103] Llenos A L, Michael A J. 2013. Modeling earthquake rate changes in Oklahoma and Arkansas: possible signatures of induced seismicity[J].Bulletin of the Seismological Society of America, 103(5): 2850-2861. doi: 10.1785/0120130017
    [104] Magnani M B, Blanpied M L, DeShon H R, Hornbach M J. 2017. Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults[J]. Science Advances, 3(11): e1701593. doi: 10.1126/sciadv.1701593
    [105] Mahani A B, Schultz R, Kao H, et al. 2017. Fluid injection and seismic activity in the northern Montney play, British Columbia, Canada, with special reference to the 17 August 2015MW 4.6 induced earthquake[J]. Bulletin of the Seismological Society of America, 107(2): 542-552. doi: 10.1785/0120160175
    [106] Martínez-Garzón P, Bohnhoff M, Kwiatek G, Dresen G. 2013. Stress tensor changes related to fluid injection at The Geysers geothermal field, California[J]. Geophysical Research Letters, 40(11): 2596-2601. doi: 10.1002/grl.50438
    [107] Maxwell S C, Zhang F, Damjanac B. 2015. Geomechanical modeling of induced seismicity resulting from hydraulic fracturing[J]. The Leading Edge, 34(6): 678-683. doi: 10.1190/tle34060678.1
    [108] McClure M W, Horne R N. 2011. Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model[J]. Geophysics, 76(6), WC181-WC198. doi: 10.1190/geo2011-0064.1
    [109] McGarr A, Simpson D, Seeber L, Lee W. 2002. Case histories of induced and triggered seismicity[J]. International Geophysics, 81(A): 647-664.
    [110] McGarr A. 2014. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research Solid Earth, 119(2): 1008-1019. doi: 10.1002/2013JB010597
    [111] McGarr A, Bekins B, Burkardt N, et al. 2015. Coping with earthquakes induced by fluid injection[J]. Science, 347(6224): 830-831. doi: 10.1126/science.aaa0494
    [112] Meng L Y, McGarr A, Zhou L Q, Zang Y. 2019. An investigation of seismicity induced by hydraulic fracturing in the Sichuan basin of China based on data from a temporary seismic network[J].Bulletin of the Seismological Society of America, 109(1): 348-357. doi: 10.1785/0120180310
    [113] Mignan A, Broccardo M, Wiemer S, Giardini D. 2017. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections[J].Scientific Reports, 7(1): 13607. doi: 10.1038/s41598-017-13585-9
    [114] Mousavi S M, Ogwari P O, Horton S P, Langston C A. 2017. Spatio-temporal evolution of frequency-magnitude distribution and seismogenic index during initiation of induced seismicity at Guy-Greenbrier, Arkansas[J].Physics of the Earth and Planetary Interiors, 267: 53-66. doi: 10.1016/j.pepi.2017.04.005
    [115] Mulder M, Perey P. 2018. Gas production and earthquakes in Groningen; reflection on economic and social consequences[J]. Center for Energy Economics Research (CEER), Policy Papers, ISBN: 978-94-034-0774-6.
    [116] National Research Council. 2013. Induced Seismicity Potential in Energy Technologies[M]. Washington, DC: The National Academies Press.
    [117] Nepveu M, van Thienen-Visser K, Sijacic D. 2016. Statistics of seismic events at the Groningen field[J]. Bulletin of Earthquake Engineering, 14(12): 3343-3362. doi: 10.1007/s10518-016-0007-4
    [118] Nygaard K J, Cardenas J, Krishna P P, et al. 2013. Technical considerations associated with risk management of potential induced seismicity in injection operations[J]. 5to Congreso de Producción y Desarrollo de Reservas, 5: 21-24.
    [119] Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes[J]. Journal ofthe American Statistical Association, 83(401): 9-27. doi: 10.1080/01621459.1988.10478560
    [120] Ogata Y, Katsura K. 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues[J]. Geophysical Journal International, 113(3): 727-738. doi: 10.1111/j.1365-246X.1993.tb04663.x
    [121] Ohio Division of Oil and Gas Resource Management. 2016. https://www.ooga.org/page/safety-council.
    [122] Oklahoma Corporation Commission. 2016. https://oklahoma.gov/occ/dockets/rules/current-rules.html.
    [123] Oklahoma Corporation Commission (news release). 2018. New protocol to further address seismicity in state’s largest oil and gas play. https://www.occeweb.com/og/02-27-18PROTOCOL.pdf.
    [124] Parsons T, Stein R S, Simpson R W, Reasenberg P A. 1999. Stress sensitivity of fault seismicity: a comparison between limited-offset oblique and major strike-slip faults[J]. Journal of Geophysical Research, 104(B9): 20183-20202. doi: 10.1029/1999JB900056
    [125] Pawley S, Schultz R, Playter T, et al. 2018. The geological susceptibility of induced earthquakes in the Duvernay play[J]. Geophysical Research Letters, 45(4): 1786-1793. doi: 10.1002/2017GL076100
    [126] 覃作鹏, 刘树根, 邓宾, 等. 2013. 川东南构造带中新生代多期构造特征及演化[J]. 成都理工大学学报(自然科学版), 40(6): 703-711.

    Qin Z P, Liu S G, Deng B, et al. 2013. Meso-Cenozoic multi-stage tectonic characteristics and evolution of the southeastern Sichuan tectonic belt[J]. Journal of Chengdu University of Technology(Science Edition), 40(6): 703-711(in Chinese).
    [127] Raleigh C B, Healy J H, Bredehoeft J D. 1976. An experiment in earthquake control at Rangely, Colorado[J]. Science, 191(4233): 1230-1237. doi: 10.1126/science.191.4233.1230
    [128] Reasenberg P A, Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake[J]. Science, 255(5025): 1687-1690.
    [129] 任勇, 钱斌, 张剑, 等.2015. 长宁地区龙马溪组页岩气工厂化压裂实践与认识[J]. 石油钻采工艺, 37: 96-99.

    Ren Y, Qian B, Zhang J, et al. 2015. Practice and understanding of industrial fracturing for shale gas of Longmaxi Formation in Changning region[J]. Oil Drilling & Production Technology, 37: 96-99(in Chinese).
    [130] Rivard C, Lavoie D, Lefebvre R, et al. 2014. An overview of Canadian shale gas production and environmental concerns[J]. International Journal of Coal Geology, 126: 64-76. doi: 10.1016/j.coal.2013.12.004
    [131] Rubinstein J L, Ellsworth W L, McGarr A, Benz H M. 2014. The 2001-present induced earthquake sequence in the raton basin of northern New Mexico and southern Colorado[J]. Bulletin of the Seismological Society of America, 104(5): 2162-2181. doi: 10.1785/0120140009
    [132] Rubinstein J L, Mahani A B. 2015. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity[J]. Seismological Research Letters, 86(4): 1060-1067. doi: 10.1785/0220150067
    [133] Rutqvist J, Rinaldi A P, Cappa F, Moridis G J. 2013. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs[J]. Journal of Petroleum Science and Engineering, 107: 31-44. doi: 10.1016/j.petrol.2013.04.023
    [134] Saaty T L. 1980. Analytic Hierarchy Process. Encyclopedia of Biostatistics[M].New Jersey: John Wiley and Sons, Ltd.
    [135] Schoenball M, Dorbath L, Gaucher E, et al. 2014. Change of stress regime during geothermal reservoir stimulation[J]. Geophysical Research Letters, 41(4): 1163-1170. doi: 10.1002/2013GL058514
    [136] Schultz R, Stern V, Gu Y J. 2014. An investigation of seismicity clustered near the Cordel Field, west central Alberta, and its relation to a nearby disposal well[J]. Journal of Geophysical Research Solid Earth, 119, 3410–3423.doi: 10.1002/2013JB010836.
    [137] Schultz R, Stern V. 2015. The regional Alberta observatory for earthquake studies network (RAVEN)[J]. CSEG Recorder, 40(8): 34-37.
    [138] Schultz R, Stern V, Novakovic M, et al 2015. Hydraulic fracturing and the Crooked Lake sequences: insights gleaned from regional seismic networks[J]. Geophysical Research Letters, 42(8): 2750-2758. doi: 10.1002/2015GL063455
    [139] Schultz R, Corlett H, Haug K, et al. 2016. Linking fossil reefs with earthquakes: Geologic insight to where induced seismicity occurs in Alberta[J]. Geophysical Research Letters, 43(6): 2534-2542. doi: 10.1002/2015GL067514
    [140] Schultz R, Wang R, Gu Y J, et al. 2017. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta[J]. Journal of Geophysical Research: Solid Earth, 122(1): 492-505. doi: 10.1002/2016JB013570
    [141] Schultz R, Atkinson G, Eaton D W, et al. 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play[J]. Science, 359(6373): 304-308. doi: 10.1126/science.aao0159
    [142] Schultz R, Wang R. 2020. Newly emerging cases of hydraulic fracturing induced seismicity in the Duvernay East Shale Basin[J]. Tectonophysics, 779: 228393. doi: 10.1016/j.tecto.2020.228393
    [143] Shapiro S A, Dinske C, Langenbruch C, Wenzel F. 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations[J]. Lead Edge, 29(3): 304-309. doi: 10.1190/1.3353727
    [144] Shapiro S A, Krüger O S, Dinske C, Langenbruch C. 2011. Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes[J]. Geophysics, 76(6): WC55-WC63. doi: 10.1190/geo2010-0349.1
    [145] Shcherbakov R, Turcotte D L, Rundle J B. 2004. A generalized Omori's law for earthquake aftershock decay[J]. Geophysical Research Letters, 31(11): L11613.
    [146] Sheng M, Chu R, Ni S, et al. 2020. Source parameters of three moderate size earthquakes in Weiyuan, China, and theirrelations toshale gas hydraulic fracturing[J]. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019932.
    [147] Shipman T, MacDonald R, Byrnes T. 2018. Experiences and learnings from induced seismicity regulation in Alberta[J]. Interpretation, 6(2): SE15-SE21. doi: 10.1190/INT-2017-0164.1
    [148] Šílený J, Hill D P, Eisner L, Cornet F H. 2009. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing[J]. Journal of Geophysical Research Solid Earth, 114(B8): B09307.
    [149] Simpson D W. 1986. Triggered earthquakes[J]. Annual Review of Earth and Planetary Sciences, 14(1): 21-42. doi: 10.1146/annurev.ea.14.050186.000321
    [150] Skoumal R J, Brudzinski M R, Currie B S. 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio[J].Bulletin of the Seismological Society of America, 105(1): 189-197. doi: 10.1785/0120140168
    [151] Skoumal R J, Ries R, Brudzinski M R, et al. 2018. Earthquakes induced by hydraulic fracturing are pervasive in Oklahoma[J]. Journal of Geophysical Research Solid Earth, 123(12), 10918-10935. doi: 10.1029/2018JB016790
    [152] Tan Y, Hu J, Zhang H, et al. 2020. Hydraulic fracturing induced seismicity in the Southern Sichuan Basin due to fluid diffusion inferred from seismic and injection data analysis[J]. Geophysical Research Letters, 47, e2019GL084885.
    [153] Toda S, Stein R S, Reasenberg P A, et al. 1998. Stress transferred by the 1995 MW= 6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities[J]. Journal of Geophysical Research, 103(B10): 24543-24565. doi: 10.1029/98JB00765
    [154] 童崇光. 1992. 四川盆地构造演化与油气聚集[M]. 北京: 地质出版社.

    Tong C G. 1992. Tectonic Evolution and Hydrocarbon Accumulation in Sichuan Basin[M]. Beijing: Geological Publishing House(in Chinese).
    [155] Townend J, Zoback M D. 2000. How faulting keeps the crust strong[J]. Geology, 28(5): 399-402. doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
    [156] Trutnevyte E, Ejderyan O. 2018. Managing geoenergy-induced seismicity with society[J]. Journal of Risk Research, 21(10): 1287-1294. doi: 10.1080/13669877.2017.1304979
    [157] United Kingdom Department of Energy and Climate Change. 2013. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/48331/5056-background-note-on-induced-seismicity-in-the-uk-an.pdf.
    [158] van der Baan M, Calixto F J. 2017. Human-induced seismicity and large-scale hydrocarbon production in the USA and Canada[J]. Geochemistry Geophysics Geosystems, 18(7): 2467-2485. doi: 10.1002/2017GC006915
    [159] Van Eck T, Goutbeek F, Haak H, Dost B. 2016. Seismic hazard due to small-magnitude, shallow-source, induced earthquakes in The Netherlands[J]. Engineering Geology, 87(1-2): 105-121.
    [160] Van Elk J, Doornhof D, Bommer J J, et al. 2017. Hazard and risk assessments for induced seismicity in Groningen[J]. Netherlands Journal of Geosciences, 96(5): s259-s269. doi: 10.1017/njg.2017.37
    [161] van Thienen-Visser K, Breunese J N. 2015. Induced seismicity of the Groningen gas field: History and recent developments[J]. The Leading Edge, 34(6): 664-671. doi: 10.1190/tle34060664.1
    [162] Vlek C. 2019. Rise and reduction of induced earthquakes in the Groningen gas field, 1991-2018: Statistical trends, social impacts, and policy change[J]. Environmental Earth Sciences, 78(3): 59. doi: 10.1007/s12665-019-8051-4
    [163] Walsh F R, Zoback M D. 2015. Oklahoma’s recent earthquakes and saltwater disposal[J]. Science Advances, 1(5): e1500195. doi: 10.1126/sciadv.1500195
    [164] Walters R J, Zoback M D, Baker J W, Beroza G C. 2015. Characterizing and responding to seismic risk associated with earthquakes potentially triggered by saltwater disposal and hydraulic fracturing[J]. Seismological Research Letters, 86(4): 1110-1118. doi: 10.1785/0220150048
    [165] 王椿镛, 杨文采, 吴建平, 丁志峰. 2015. 南北构造带岩石圈结构与地震的研究[J]. 地球物理学报, 58(11): 3867-3901.

    Wang C Y, Yang W C, Wu J P, Ding Z F. 2015. Study on the lithospheric structure and earthquakes in North-South Tectonic Belt[J].Chinese Journal of Geophysics, 58(11): 3867-3901(in Chinese).
    [166] Wang M, Yang H, Fang L, et al. 2020a. Shallow faults reactivated by hydraulic fracturing: The 2019 Weiyuan earthquake sequences in Sichuan, China[J]. Seismological Research Letters, 91(6): 3171-3181. doi: 10.1785/0220200174
    [167] Wang R, Gu Y J, Schultz R, et al. 2016. Source analysis of a potential hydraulic-fracturing-induced earthquake near Fox Creek, Alberta[J]. Geophysical Research Letters, 43(2): 564-573. doi: 10.1002/2015GL066917
    [168] Wang R, Gu Y J, Schultz R, et al. 2017. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta[J]. Geophysical Journal International, 210(2): 979-988. doi: 10.1093/gji/ggx204
    [169] Wang R, Gu Y J, Schultz R, Chen Y. 2018. Faults and non-double-couple components for induced earthquakes[J]. Geophysical Research Letters, 45, 8966–8975. doi: 10.1029/2018GL079027
    [170] Wang R, Weingarten M, Langenbruch C, DeShon H R. 2020b. Introduction to the special section on observations, mechanisms, and hazards of induced seismicity[J]. Bulletin of the Seismological Society of America, 110(5): 1999-2004. doi: 10.1785/0120200236
    [171] 王小龙, 马胜利, 雷兴林, 等. 2011. 重庆荣昌地区注水诱发地震加密观测[J]. 地震地质, 33(1): 151-156. doi: 10.3969/j.issn.0253-4967.2011.01.015

    Wang X L, Ma S L, Lei X L, et al. 2011. Intensified observation of water flooding induced earthquake in Rongchang area, Chongqing[J]. Seismology and Geology, 33(1): 151-156(in Chinese). doi: 10.3969/j.issn.0253-4967.2011.01.015
    [172] 王小龙, 马胜利, 雷兴林, 等. 2012. 重庆荣昌诱发地震区精细速度结构及2010年ML5.1地震序列精确定位[J]. 地震地质, 34(2): 348-358. doi: 10.3969/j.issn.0253-4967.2012.02.013

    Wang X L, Ma S L, Lei X L, et al. 2012. Fine velocity structure and location of 2010 ML5.1 earthquake sequence in Rongchang induced earthquake area, Chongqing[J]. S Seismology and Geology, 34(2): 348-358(in Chinese). doi: 10.3969/j.issn.0253-4967.2012.02.013
    [173] 王玉满, 黄金亮, 王淑芳, 等. 2016. 四川盆地长宁, 焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 27(3): 423-432. doi: 10.11764/j.issn.1672-1926.2016.03.0423

    Wang Y M, Huang J L, Wang S F, et al. 2016. Fine dissection of the scale area of Silurian Longmaxi Formation shale gas in Jiaoshiba, Changning, Sichuan Basin[J]. Natural Gas Geoscience, 27(3): 423-432(in Chinese). doi: 10.11764/j.issn.1672-1926.2016.03.0423
    [174] Weingarten M, Ge S, Godt J W, et al. 2015. High-rate injection is associated with the increase in U.S. mid-continent seismicity[J]. Science, 348(6241): 1336-1340. doi: 10.1126/science.aab1345
    [175] White J A, Foxall W. 2014. A phased approach to induced seismicity risk management[J]. Energy Procedia, 63: 4841-4849. doi: 10.1016/j.egypro.2014.11.515
    [176] Woessner J, Wiemer S. 2005. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty[J]. Bulletin of the Seismological Society of America, 95(2): 684-698. doi: 10.1785/0120040007
    [177] 徐锡伟, 韩竹军, 杨晓平, 等. 2016. 中国及邻近地区地震构造图[M]. 北京: 地震出版社.

    Xu X W, Han Z J, Yang X P, et al. 2016.Seismotectonic Map of China and its Adjacent Areas[M]. Beijing: Seismological Press (in Chinese).
    [178] Yang H, Liu Y, Wei M, et al. 2017. Induced earthquakes in the development of unconventional energy resources[J]. Science China: Earth Science, 60(9): 1632-1644. doi: 10.1007/s11430-017-9063-0
    [179] Yang H, Zhou P, Fang N, et al. 2020. A shallow shock: The 25 February 2019 ML 4.9 earthquake in the Weiyuan shale gas field in Sichuan, China[J]. Seismological Research Letters, 91(6): 3182-3194. doi: 10.1785/0220200202
    [180] 易桂喜, 龙锋, 梁明剑, 等.2020. 四川盆地荣县—威远—资中地区发震构造几何结构与构造变形特征: 基于震源机制解的认识和启示[J] 地球物理学报, 63(9): 3275-3291. doi: 10.6038/cjg2020O0095

    Yi G X, Long F, Liang M J, et al. 2020.Geometry and tectonic deformation of seismogenic structures in the Rongxian-Weiyuan-Zizhong region, Sichuan Basin: insights from focal mechanism solutions[J]. Chinese Journal of Geophysics, 63(9): 3275-3291(in Chinese). doi: 10.6038/cjg2020O0095
    [181] Yu H, Harrington R M, Liu Y, Wang B. 2019. Induced seismicity driven by fluid diffusion revealed by a near-field hydraulic stimulation monitoring array in the Montney Basin, British Columbia[J]. Journal of Geophysical Research Solid Earth, doi:10.1029/2018jb017039.
    [182] Zang A, Zimmermann G, Hofmann H, et al. 2019. How to reduce fluid-injection-induced seismicity[J]. Rock Mechanics and Rock Engineering, 52(2): 475-493. doi: 10.1007/s00603-018-1467-4
    [183] Zhang H, Eaton D W, Li G, et al. 2016. Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra[J]. Journal of Geophysical Research Solid Earth, 121(2): 972-993. doi: 10.1002/2015JB012603
    [184] Zhang H, Eaton D W, Rodriguez G, Jia S Q. 2019. Source-mechanism analysis and stress inversion for hydraulic-fracturing-induced event sequences near 福克斯克里克, Alberta[J]. Bulletin of the Seismological Society of America, 109(2): 636-651. doi: 10.1785/0120180275
    [185] Zhang X, Zhang J, Yuan C, et al. 2020. Locating induced earthquakes with a network of seismic stations in Oklahoma via a deep learning method[J]. Scientific Reports, 10, 1941. doi: 10.1038/s41598-020-58908-5
    [186] 张致伟, 程万正, 梁明剑, 等. 2012. 四川自贡—隆昌地区注水诱发地震研究[J]. 地球物理学报, 55(5): 1635-1645. doi: 10.6038/j.issn.0001-5733.2012.05.021

    Zhang Z W, Cheng W Z, Liang M J, et al. 2012. Study on earthquakes induced by water injection in Zigong-Longchang area, Sichuan[J]. Chinese Journal of Geophysics, (5): 1635-1645(in Chinese). doi: 10.6038/j.issn.0001-5733.2012.05.021
    [187] Zhong M, Zhang Q W. 2013. Using cloud model to improve the membership function in fuzzy risk assessment of reservoir-induced seismicity[J]. Advanced Materials Research, 664: 270-275. doi: 10.4028/www.scientific.net/AMR.664.270
    [188] Zhu L, Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophysical Journal International, 194(2): 839-843. doi: 10.1093/gji/ggt137
    [189] Zoback M D. 2010. Reservoir Geomechanics[M]. Cambridge: Cambridge University Press.
    [190] Zoback M D. 2012. Managing the seismic risk of wastewater disposal[J]. Earth, 57(4): 38-43.
    [191] Zoback M D, Kohli A H. 2019. Unconventional Reservoir Geomechanics: Shale Gas, Tight Oil, and Induced Seismicity[M]. Cambridge: Cambridge University Press.
    [192] Zöller G, Holschneider M. 2016. The maximum possible and the maximum expected earthquake magnitude for production-induced earthquakes at the gas field in Groningen, The Netherlands[J]. Bulletin of the Seismological Society of America, 106(6): 2917-2921. doi: 10.1785/0120160220
    [193] 邹才能, 董大忠, 杨桦, 等. 2011. 中国页岩气形成条件及勘探实践[J]. 天然气工业, 31(12): 26-39. doi: 10.3787/j.issn.1000-0976.2011.12.005

    Zou C N, Dong D Z, Yang H, et al. 2011. Formation conditions and exploration practice of shale gas in China[J]. Natural Gas Industry, 31(12): 26-39(in Chinese). doi: 10.3787/j.issn.1000-0976.2011.12.005
  • 加载中
图(14)
计量
  • 文章访问数:  1306
  • HTML全文浏览量:  622
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 录用日期:  2021-01-20
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回