• ISSN 2097-1893
  • CN 10-1855/P

“洞察”号火星表面地震探测中的发现

肖万博 王彦宾

引用本文: 肖万博,王彦宾. 2021. “洞察”号火星表面地震探测中的发现. 地球与行星物理论评,52(2):211-226
Xiao W B, Wang Y B. 2021. Discoveries of the InSight seismic investigation on Mars' surface. Reviews of Geophysics and Planetary Physics, 52(2): 211-226

“洞察”号火星表面地震探测中的发现

doi: 10.19975/j.dqyxx.2020-022
基金项目: 国家自然科学基金资助项目(41930103,41674052)
详细信息
    作者简介:

    肖万博,男,博士研究生,主要从事计算地震学与行星地震学研究. E-mail:wbxiao@pku.edu.cn

    通讯作者:

    王彦宾,男,教授,主要从事计算地震学和地震反演方面的教研工作. E-mail:ybwang@pku.edu.cn

  • 中图分类号: P691

Discoveries of the InSight seismic investigation on Mars' surface

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41930103 and 41674052)
  • 摘要: “洞察”号任务是火星探测历史上一次巨大的飞跃. 本文从介绍“洞察”号的科学目标和火星表面地震观测实验出发,展示“洞察”号地震数据中的发现. 受益于“维京”2号的火星探测经验,“洞察”号首次成功监测到了火星震信号,并由此得到了火星壳结构的衰减特征. 火星的地震数据中检测到了由气压引起的地表形变和HP3打孔信号,并用于约束登陆点附近表面土层的物理性质和地下结构的反演. 此外,使用在2.4 Hz处出现的结构响应能够辨别自然响应和登陆器自振等机械振动. 火星的地震数据中也检测出了Glitch和Donk等噪声信号,我们总结了其特征和形成原因. “洞察”号对火星壳的探测比较成功,但是由于缺乏大震级的火星震和陨石撞击事件的记录,对火星深部的了解依然比较有限.

     

  • 图  1  “洞察”号着陆点附近地形图. “洞察”号(星号标识)着陆于一个古老的火山平原上,该平原位于埃律西昂山火山以南、火星赤道以北. “勇气”号、“精神”号和“维京”2号的位置以及主要的地质特征都显示在地形图上(修改自Banerdt et al., 2020

    Figure  1.  The topographic map at the InSight landing site. InSight (shown as a star) landed on an ancient volcanic plain south of Elysium Mons and north of the Martian hemispheric dichotomy. The locations of the Curiosity and Spirit rovers, and the Viking 2 lander, along with major geologic features are shown on the map (modified from Banerdt et al., 2020)

    图  2  火星震与地震信号之间的对比. 顶部是两个火星震信号的垂向位移记录,滤波范围0.033~0.5 Hz. S0235b具有清晰的P波和S波到时. S0105a是一个低信噪比火星震事件的示例,它的P波和S波到时是通过功率谱密度的包络线来确定的. 注意两个事件的振幅不同. 底部是两个震中距近似的地震事件的垂直分量,滤波范围0.125~0.5 Hz. 发生在希腊的浅源地震中存在面波,而深源地震和火星震中没有发现面波(修改自Banerdt et al., 2020

    Figure  2.  Comparison between Marsquake and earthquake signals. The upper panel is the vertical displacement time series for two Marsquake signals, filtered between 0.033 and 0.5 Hz. S0235b shows clear P- and S-wave arrivals. S0105a is an example of a lower-SNR event, whose P- and S-wave arrivals are determined using power density function envelopes. Note the different amplitude scales. The lower panel shows the vertical components of two earthquake signals at a similar distance. The shallow earthquake in Greece has visible surface waves. However, surface waves, are not detectable for either the deep earthquake on Earth or Marsquakes (modified from Banerdt et al., 2020)

    图  3  火星高程图上显示的火星全球地震活动图. 白色阴影条带显示了震中距范围. 红色至黄色椭球体是S0173a和S0235b事件的估计震中位置. S0183a的估计震中用两个阴影椭圆显示,表示距离不确定性为5°和10°的定位情况. 右侧插图显示了三个事件相对于“洞察”号登陆点(黄色三角形)的震中区域的视图. 黑色和红色线条分别表示主要的逆断层和正断层(修改自Giardini et al., 2020

    Figure  3.  Global seismicity of Mars shown on Mars elevation map. White shaded bands show the range of epicentral distances. Red to yellow ellipsoids are the estimated locations of events S0173a and S0235b. The estimated location of S0183a is displayed with two shaded ellipses, representing distance uncertainties of 5° and 10°. The inset on the right shows a map view of the epicentral area of the three event locations relative to the InSight landing site (yellow triangle). Black and red lines are main reverse and normal faults, respectively (modified from Giardini et al., 2020)

    图  4  气旋(沙柱)的模拟和观测数据. 顶部3个子图分别表示气旋在北向、东向和垂向的地面运动加速度(修改自Banerdt et al., 2020

    Figure  4.  Model data and observed data due to an atmospheric vortex (dust devil). The top three subplots are north, east and vertical components of the ground acceleration due to the vortex pressure (bottom panel), respectively (modified from Banerdt et al., 2020)

    图  5  “洞察”号登陆点的地下土层厚度和P波波速的反演结果. 假设顶部0.8 m为压实模型. (a)基岩上方P波波速随深度变化的概率分布函数(PDF). 黄色和紫色分别代表低概率和高概率;(b)土层—基岩过渡带深度的边缘概率;(c)0.1 m深度处的土层中和基岩中P波波速的边缘概率;(d)基岩中P波波速随土层—基岩过渡带深度变化的标准概率分布函数(修改自Lognonné et al., 2020

    Figure  5.  Inversion results of the regolith thickness and VP of the underlying bedrock at the InSight landing site. A compaction-based profile in the top 0.8 m is assumed. (a) The probability density function (PDF) of VP just above the bedrock as a function of depth of the bedrock. Yellow and purple colours are low and high probability, respectively. (b) Marginal probabilities of the regolith-to-bedrock transition depth. (c) Marginal probabilities of VP in the regolith at 0.1 m depth and in the bedrock. (d) Normalized PDF showing VP in the bedrock as a function of the depth of the regolith-to-bedrock transition (modified from Lognonné et al., 2020)

    图  6  火星震服务中心(MQS)数据库中包含的非地震事件. Glitch信号为单分量或多分量脉冲. 太阳会合期间(中间的灰色条带)没有返回数据(修改自Ceylan et al., 2020 Preprint)

    Figure  6.  Non-seismic events in the MQS database. Glitches are shown as either single or multi-component pulses. During solar conjunction (grey shaded band in the middle) no data were retrieved (modified from Ceylan et al., 2020 Preprint)

    图  7  包含Glitch信号和去除Glitch信号的地震记录的对比. 顶部是采样率为20 sps的VBB-U分量的原始数据(黑色)和去除Glitch信号后的原始数据(灰色). 底部与顶部类似,但去除了仪器响应以展示加速度,并随之加了1 Hz低通滤波(二阶巴特沃思滤波器). 注意原始数据中加速度的阶跃在去除Glitch信号后消失(修改自Lognonné et al., 2020

    Figure  7.  Comparison between seismic records with glitches and deglitched records.The upper panel is the 20 sps data of VBB U-component in the original RAW (black) and deglitched RAW (grey). The lower panel is like the upper panel, but with the instrument response removed to show acceleration and subsequent 1 Hz low-pass filtering (second order Butterworth). Note the step in acceleration in the original data that is absent after deglitching (modified from Lognonné et al., 2020)

    图  8  100 sps的SP数据中的Donk信号示例. (a)垂直分量的速度谱;(b)在图(a)中用竖直虚线标记的时段内的三分量波形图. 时间尺度为10 s,开始于UTC时间2019-07-30的13:36:00(修改自Ceylan et al., 2020 Preprint)

    Figure  8.  Examples of donk events as seen on the 100 sps SP data. (a) Velocity spectrogram of the vertical component; (b) Three-component waveforms in the time frame marked with vertical dashed lines in (a). The time axis is 10 s long starting from 2019-07-30 13:36:00 UTC (modified from Ceylan et al., 2020 Preprint)

    图  9  VBB和SP记录的速度谱中的Crosstalk信号或Whistling信号. 仪器和分量名称显示在每个图的左下角. (a)100 sps数据中两个清晰的SP模式(A和B,使用虚线标出). (b)100 sps数据中频率高于1 Hz的不同VBB模式. (c)100 sps数据中频率低于1 Hz的VBB模式,用箭头进行了标注(修改自Ceylan et al., 2020 Preprint)

    Figure  9.  Crosstalk, or "whistling" signals, as seen in the velocity spectrograms for SP and VBB records. Instrument and channels are shown in the lower-left corner of each panel. (a) Two distinct SP modes from the 100 sps data (A and B; also outlined with dashed lines); (b) Different modes of the 100 sps VBB data at frequencies >1 Hz; (c) Some of the VBB modes that appear in frequencies below 1Hz, marked with arrows (modified from Ceylan et al., 2020 Preprint)

  • [1] Anderson D L, Duennebier F K, Latham G V, et al. The Viking seismic experiment[J]. Science, 1976, 194(4271): 1318-1321. doi: 10.1126/science.194.4271.1318
    [2] Anderson D L, Miller W F, Latham G V, et al. Seismology on Mars[J]. Journal of Geophysical Research Atmospheres, 1977, 82(28): 4524-4546. doi: 10.1029/JS082i028p04524
    [3] Ardhuin F, Gualtieri L, Stutzmann E. How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophysical Research Letters, 2015, 42(3): 765-772. doi: 10.1002/2014GL062782
    [4] Banerdt W B, Smrekar S E, Banfield D, et al. Initial results from the InSight mission on Mars[J]. Nature Geoscience, 2020, 13(3): 183–189. doi: 10.1038/s41561-020-0544-y
    [5] Banfield D, Rodriguez-Manfredi J A, Russell C T, et al. InSight auxiliary payload sensor suite (APSS)[J]. Space Science Reviews, 2019, 215(1): 4. doi: 10.1007/s11214-018-0570-x
    [6] Banfield D, Spiga A, Newman C, et al. The atmosphere of Mars as observed by InSight[J]. Nature Geoscience, 2020, 13(3): 190–198. doi: 10.1038/s41561-020-0534-0
    [7] Böse M, Clinton J F, Ceylan S, et al. A probabilistic framework for single-station location of seismicity on Earth and Mars[J]. Physics of the Earth and Planetary Interiors, 2017, 262: 48–65. doi: 10.1016/j.pepi.2016.11.003
    [8] Böse M, Giardini D, Stähler S, et al. Magnitude scales for Marsquakes[J]. Bulletin of the Seismological Society of America, 2018, 108(5A), 2764-2777. doi: 10.1785/0120180037
    [9] Ceylan S, Clinton J, Giardini D, et al. Companion guide to the Marsquake Catalog from InSight, Sols 0-478: data content and non-seismic events[J]. Physics of the Earth and Planetary Interiors, 2020, 106597. doi: 0.31219/osf.io/tq573 (Preprint).
    [10] Clinton J, Giardini D, Böse M, et al. The Marsquake Service: Securing daily analysis of SEIS data and building the Martian seismicity catalogue for InSight[J]. Space Science Reviews, 2018, 214(8): 133. doi: 10.1007/s11214-018-0567-5
    [11] Clinton J F, Ceylan S, van Driel M, et al. The Marsquake Catalogue from InSight, Sols 0-478[J]. Physics of the Earth and Planetary Interiors, 2020, 106595 doi: 10.31219/osf.io/ws967 (Preprint).
    [12] Cole H A. 1971. Method and apparatus for measuring the damping characteristics of a structure[P]. United States Patent No. 3620069. (http://www.freepatentsonline.com/3620069.html).
    [13] Compaire N, Margerin L, Garcia R F, et al. Autocorrelation of the ground vibrations recorded by the SEIS-InSight seismometer on Mars[J]. Earth and Space Science Open Archive, 2020, 25. doi: 10.1002/essoar.10503694.1 (Preprint).
    [14] Daubar I, Lognonné P, Teanby N A, et al. Impact-seismic investigations of the InSight mission[J]. Space Science Reviews, 2018, 214(8): 132. doi: 10.1007/s11214-018-0562-x
    [15] Daubar I J, Lognonné P, Teanby N A, et al. A new crater near InSight: Implications for seismic impact detectability on Mars[J]. Journal of Geophysical Research: Planets, 2020, 215(8): e2020JE006382.
    [16] Delage P, Karakostas F, Dhemaied A, et al. An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site[J]. Space Science Reviews, 2017, 211(1-4): 191–213. doi: 10.1007/s11214-017-0339-7.
    [17] Editorial. Mars gets geophysical[J]. Nature Geoscience, 2020, 13: 177. doi: 10.1038/s41561-020-0555-8
    [18] Fassett C, Needham D H, Watters W A, et al. 2017. Exploring regolith depth and cycling on Mars[C]//AGU Fall Meeting 2017. New Orleans: American Geophysical Union, abstract no. P41E-2866.
    [19] Fayon L, Knapmeyer-Endrun B, Lognonné P, et al. A numerical model of the SEIS leveling system transfer matrix and resonances: application to SEIS rotational seismology and dynamic ground interaction[J]. Space Science Reviews, 2018, 14: 119.
    [20] Garcia R F, Kenda B, Kawamura T, et al. Pressure effects on the SEIS‐InSight instrument, improvement of seismic records, and characterization of long period atmospheric waves from ground displacements[J]. Journal of Geophysical Research Planets, 2020, 125(7): e2019JE006278.
    [21] Giardini D, Lognonné P, Banerdt W B, et al. The seismicity of Mars[J]. Nature Geoscience, 2020, 13(3): 205–212. doi: 10.1038/s41561-020-0539-8
    [22] Golombek M P, Haldemann A F C, Simpson R A, et al. 2008. Martian Surface Properties from Joint Analysis of Orbital, Earth-based, and Surface Observations[M]//Bell J F.The Martian Surface: Composition, Mineralogy and Physical Properties. Cambridge, U K: Cambridge University Press, 468-498.
    [23] Golombek M, Kipp D, Warner N, et al. Selection of the InSight Landing Site[J]. Space Science Reviews, 2017, 211(1-4): 5-95. doi: 10.1007/s11214-016-0321-9
    [24] Golombek M, Grott M, Kargl G, et al. Geology and physical properties investigations by the InSight lander[J]. Space Science Reviews, 2018, 214(5): 84. doi: 10.1007/s11214-018-0512-7
    [25] Golombek M, Warner N H, Grant J A, et al. Geology of the InSight landing site on Mars[J]. Nature Communications, 2020, 11(1): 1014. doi: 10.1038/s41467-020-14679-1
    [26] Kedar S, Andrade J, Banerdt B, et al. Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator[J]. Space Science Reviews, 2017, 211(1-4): 315–337. doi: 10.1007/s11214-017-0391-3
    [27] Kenda B, Lognonné P, Spiga A, et al. Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion[J]. Space Science Reviews, 2017, 211(1-4): 501–524. doi: 10.1007/s11214-017-0378-0
    [28] Kenda B, Drilleau M, Garcia R F, et al. Subsurface structure at the InSight landing site from compliance measurements by seismic and meteorological experiments[J]. Journal of Geophysical Research Planets, 2020, 125(6): e2020JE006387.
    [29] Knapmeyer-Endrun B, Golombek M P, Ohrnberger M. Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars[J]. Space Science Reviews, 2017, 211(1): 339-382.
    [30] Knapmeyer-Endrun B, Murdoch N, Kenda B, et al. Influence of body waves, instrumentation resonances, and prior assumptions on Rayleigh wave ellipticity inversion for shallow structure at the InSight landing site[J]. Space Science Reviews, 2018, 214(5): 94. doi: 10.1007/s11214-018-0529-y
    [31] Landès M, Hubans F, Shapiro N M, et al. Origin of deep ocean microseisms by using teleseismic body waves[J]. Journal of Geophysical Research, 2010, 115: B05302.
    [32] Larose E, Khan A, Nakamura Y, et al. Lunar subsurface investigated from correlation of seismic noise[J]. Geophysical Research Letters, 2005, 32: L16201. doi: 10.1029/2005GL023518
    [33] 李春来, 刘建军, 耿言, 等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报, 2018, 5(5): 406-413.

    Li C L, Liu J J, Geng Y, et al. Scientific objectives and payload configuration of China’s first Mars exploration mission[J]. Journal of Deep Space Exploration, 2018, 5(5): 406-413 (in Chinese).
    [34] 刘澜波. “洞察”号能够完成火星内部结构探测的使命吗?[J]. 地球与行星物理论评, 2021, 52(1): 115-122. doi: 10.19975/j.dqyxx.2020-015.

    Liu L B. Will InSight be able to accomplish the task to image Mars interior?[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(1): 115-122 (in Chinese). doi: 10.19975/j.dqyxx.2020-015
    [35] Lognonné P, Mosser B. Planetary seismology[J]. Surveys in Geophysics, 1993, 14(3): 239-302. doi: 10.1007/BF00690946
    [36] Lognonné P, Banerdt W B, Giardini D, et al. SEIS: Insight’s Seismic Experiment for Internal Structure of Mars[J]. Space Science Reviews, 2019, 215(1): 12. doi: 10.1007/s11214-018-0574-6
    [37] Lognonné P, Banerdt W B, Pike W T, et al. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data[J]. Nature Geoscience, 2020, 13(3): 213–220. doi: 10.1038/s41561-020-0536-y
    [38] Longuet-Higgins M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1950, 243(857): 1-35. doi: 10.1098/rsta.1950.0012
    [39] Lorenz R D, Kedar S, Murdoch N, et al. Seismometer detection of dust devil vortices by ground tilt[J]. Bulletin of the Seismological Society of America, 2015, 105(6): 3015–3023. doi: 10.1785/0120150133
    [40] Mimoun D, Murdoch N, Lognonné P, et al. The noise model of the SEIS seismometer of the InSight mission to Mars[J]. Space Science Reviews, 2017, 211(1-4): 383–428. doi: 10.1007/s11214-017-0409-x
    [41] Morgan P, Grott M, Knapmeyer-Endrun B, et al. A pre-landing assessment of regolith properties at the InSight landing site[J]. Space Science Reviews, 2018, 214(6): 104. doi: 10.1007/s11214-018-0537-y
    [42] Murdoch N, Kenda B, Kawamura T, et al. Estimations of the seismic pressure noise on Mars determined from large eddy simulations and demonstration of pressure decorrelation techniques for the Insight mission[J]. Space Science Reviews, 2017a, 211(1-4): 457–483. doi: 10.1007/s11214-017-0343-y
    [43] Murdoch N, Mimoun D, Garcia R F, et al. Evaluating the wind-induced mechanical noise on the InSight seismometers[J]. Space Science Reviews, 2017b, 211(1-4), 429–455. doi: 10.1007/s11214-016-0311-y
    [44] Murdoch N, Alazard D, Knapmeyer-Endrun B, et al. Flexible mode modelling of the InSight lander and consequences for the SEIS instrument[J]. Space Science Reviews, 2018, 214(8): 117. doi: 10.1007/s11214-018-0553-y
    [45] Myhill R, Teanby N A, Wookey J, et al. Near-field seismic propagation and coupling through Mars’ regolith: Implications for the InSight mission[J]. Space Science Reviews, 2018, 214(5): 85. doi: 10.1007/s11214-018-0514-5
    [46] Panning M P, Lognonné P, Banerdt, W B, et al. Planned products of the Mars Structure Service for the InSight mission to Mars[J]. Space Science Reviews, 2017, 211(1-4): 611–650. doi: 10.1007/s11214-016-0317-5
    [47] Panning M P, Pike W T, Lognonné P, et al. On-deck seismology: lessons from InSight for future planetary seismology[J]. Journal of Geophysical Research: Planets, 2020, 125(4): e2019JE006353.
    [48] Peterson J. 1993. Observations and modeling of seismic background noise[R]. U. S. Geological Survey, 93-322.
    [49] Scholz J-R, Widmer-Schnidrig R, Davis P, et al. Detection, analysis and removal of glitches from InSight’s seismic data from Mars[J]. Earth and Space Science, 2020, 30. doi: 10.1002/essoar.10503314.2 (Preprint).
    [50] Schulte-Pelkum V, Earle P S, Vernon F L. Strong directivity of ocean-generated seismic noise[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(3): Q03004.
    [51] Sohl F, Spohn T. The interior structure of Mars: Implications from SNC meteorites[J]. Journal of Geophysical Research, 1997, 102(E1): 1613-1635. doi: 10.1029/96JE03419
    [52] Sorrells G G. A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field[J]. Geophysical Journal of the Royal Astronomical Society, 1971, 26(1-4): 71–82.
    [53] Spiga A, Banfield D, Teanby N A, et al. Atmospheric science with InSight[J]. Space Science Reviews, 2018, 214(7): 109. doi: 10.1007/s11214-018-0543-0
    [54] Stamenković V, Beegle L W, Zacny K, et al. The next frontier for planetary and human exploration[J]. Nature Astronomy, 2019, 3(2): 116-120. doi: 10.1038/s41550-018-0676-9
    [55] Stutzmann E, Schimmel M, Lognonné P, et al. Polarized ambient noise on Mars[J]. Earth and Space Science, 2020, 41. doi: 10.1002/essoar.10503376.1 (Preprint).
    [56] Tanimoto T, Ishimaru S, Alvizuri C. Seasonality in particle motion of microseisms[J]. Geophysical Journal International, 2006, 166(1): 253-266. doi: 10.1111/j.1365-246X.2006.02931.x
    [57] Teanby N A, Stevanović J, Wookey J, et al. Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander[J]. Space Science Reviews, 2017, 211(1-4): 485–500. doi: 10.1007/s11214-016-0310-z
    [58] Warner N H, Golombek M P, Bloom C, et al. 2014. Regolith thickness in Western Elysium Planitia: Constraints for the InSight mission[C]// The 45th Annual Lunar and Planetary Science Conference. The Woodlands, Texas: Lunar and Planetary Institute, abstract no. 2217.
    [59] Warner N H, Golombek M P, Sweeney J, et al. 2016. Regolith thickness estimates from the size frequency distribution of rocky ejecta craters in Southwestern Elysium Planitia, Mars[C]//The 47th Annual Lunar and Planetary Science Conference. The Woodlands, Texas: Lunar and Planetary Institute, abstract no. 2231.
    [60] Warner N H, Golombek M P, Sweeney J, et al. Near surface stratigraphy and regolith production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian terrains and the InSight lander mission[J]. Space Science Reviews, 2017, 211(1-4), 147-190. doi: 10.1007/s11214-017-0352-x
    [61] Zent A P. On the thickness of the oxidized layer of the Martian regolith[J]. Journal of Geophysical Research, 1998, 103(E13): 31491-31498. doi: 10.1029/98JE01895
    [62] Zheng Y, Nimmo F, Lay T. Seismological implications of a lithospheric low seismic velocity zone in Mars[J]. Physics of the Earth and Planetary Interiors, 2015, 240: 132-141. doi: 10.1016/j.pepi.2014.10.004
  • 加载中
图(9)
计量
  • 文章访问数:  1329
  • HTML全文浏览量:  671
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 录用日期:  2020-11-23
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回