• ISSN 2097-1893
  • CN 10-1855/P

汞异常与地震活动关系及预报效能研究进展

赵子科 陈春亮 柯盛 杨波

引用本文: 赵子科,陈春亮,柯盛,杨波. 2021. 汞异常与地震活动关系及预报效能研究进展. 地球与行星物理论评,52(3):341-347
Zhao Z K, Chen C L, Ke S, Yang B. 2021. Advances on the relationship between mercury anomaly and seismicity and earthquake prediction efficiency. Reviews of Geophysics and Planetary Physics, 52(3): 341-347

汞异常与地震活动关系及预报效能研究进展

doi: 10.19975/j.dqyxx.2020-021
基金项目: 湛江市科学技术局资助项目(2019B01009)
详细信息
    作者简介:

    赵子科(1989-),男,实验师,主要从事海洋环境中汞的研究. E-mail:932377192@qq.com

    通讯作者:

    杨波(1990-),男,研究助理,主要从事海洋生源要素的生物地球化学研究. E-mail:1968236304@qq.com

  • 中图分类号: P315.72

Advances on the relationship between mercury anomaly and seismicity and earthquake prediction efficiency

Funds: Supported by the Science and Technology Bureau of Zhanjiang of China (Grant No. 2019B01009)
  • 摘要: 汞主要来源于地球深部地幔岩石和岩浆,具有溶解度小、蒸气压低、穿透能力强等特点. 地震前,汞在高温和强压力梯度下穿过不同的介质到达地表,导致汞震前异常. 汞的前兆异常特征通常被用作地震前预测的重要指标. 本文综合国内应用汞的地震观测案例,得出以下结论:(1)与气态汞相比,水溶性汞具有收集方便、不易受传输介质干扰、前兆异常幅度大等特征,易震前观测;(2)水溶性汞观测异常结束到发震时间间隔较长,而气态汞异常一般持续到地震发生;(3)震前汞的异常幅度通常是本底值的数倍至几十倍,这往往与震中距离、震级大小及地质构造有关;(4)对于5级及以下地震,水溶性汞异常范围通常在200 km以内,5~6级地震映震范围在500 km以内. 此外,汞震前观测异常与孕震应力场作用下的地下流体活动有关,汞的同位素分馏技术提供了一种新的手段来解决断裂带汞的来源以及汞与地壳深部流体活动的关系.

     

  • 图  1  洱源20号井水汞日均值变化(高琼和邓嘉美,2015

    Figure  1.  Daily values of water-soluble mercury concentration in well 20 at Eryuan (Gao and Deng, 2015)

    图  2  弥渡数字化气汞小时值曲线(2012年1月至2013年3月)(褚金学等,2013

    Figure  2.  Hourly-values of gaseous-mercury concentration in wells at Midu (from January 2012 to March 2013) (Chu et al., 2013)

    图  3  热液系统中的汞同位素分馏过程(修改自Smith et al., 2005

    Figure  3.  Mercury isotope fractionation in hydrothermal systems(modified from Smith et al., 2005)

    表  1  汞浓度的地震异常特征

    Table  1.   Anomalies of mercury concentration in earthquakes

    地点 震级 发震时间 观测点 汞最大浓度/
    (ng·L−1
    异常形态 异常至结束发震
    时间/天
    震中距/
    km
    背景值/
    (ng·L−1
    衬值 观测形式
    山西大同 6.1 1989-10-09 怀来4井 1668.5 多点突跳 20 120 23.8 70 水汞
    云南洱源县 5.5 2013-03-03 洱源20号井 16.4 单点突跳和
    多点突跳
    17 27 10 1.64 水汞
    下关 404 单点突跳和
    多点突跳
    持续至地震当天 66 250 1.62 水汞
    弥渡 0.8 单点突跳 9 102 0.09 13.0 气汞
    北京妙峰山 4.1 1985-11-21 北京铁路分局热水井 629 多点突跳 1 40 14.0 45.0 水汞
    河北任县 5.1 1985-11-30 北京铁路分局热水井 - - 1 125 - - 水汞
    云南宁蒗 5.4 1988-01-10 四川盐源井 3000 多点突跳 10 70 100 30 水汞
    西昌太和井 3640 多点突跳 25 180 70.0 52 水汞
    四川会东 5.1 1988-04-15 西昌太和井 210 多点突跳 30 150 70.0 3 水汞
    盐源井 2500 多点突跳 5 170 25.0 100 水汞
    河北阳原 4.8 1988-07-23 河北怀4 2 000 多点突跳 21 125 100.0 20 水汞
    云南澜沧 7.6 1988-11-06 西昌太和 2500 多点突跳 6 610 50 50 水汞
    昭觉 1500 多点突跳 6 650 50 30 水汞
    盐源 2500 多点突跳 6 530 125 20 水汞
    云南宁蒗 5.7 2012-06-24 弥渡自流井 1.52 多点突跳 持续中爆发地震 260 0.15 10 气汞
    云南宁洱 4.5 2012-07-30 弥渡自流井 1.29 多点突跳 6 270 0.15 10 气汞
    云南彝良 5.6 2012-07-30 弥渡自流井 0.71 多点突跳 持续中爆发地震 - 0.15 0.5 气汞
    山西大同 4.1 1993-08-30 奇村地热田水井 203 多点突跳 持续中爆发地震 190 29.0 7 水汞
    山西五寨 4.8 1993-09-11 245 多点突跳 持续中爆发地震 110 29.0 8 水汞
    山西灵石 4.8 1994-04-26 128 多点突跳 持续中爆发地震 29.0 4 水汞
    青海门源 6.4 1986-08-26 壤气 0.18 持续中爆发地震 - - 气汞
    甘肃肃南 4.7 1988-12-04 古浪气体观测井 2.3 持续中爆发地震 10~20 气汞
    甘肃临泽 4.5 1988-12-26 古浪气体观测井 1.7 持续中爆发地震 10~20 气汞
    山东苍山 5.2 1995-09-20 十里泉电厂水源 333 多点突跳 持续中爆发地震 40 66.7 5.0 水汞
    新疆呼图壁 4.1 1991-10-06 乌鲁木齐10号泉水 70 单点突跳 1 87 20 3.5 水汞
    新疆和静 5.4 1993-02-03 乌鲁木齐10号泉水 240 单点突跳 5 210 34 7 水汞
    新疆若羌 6.6 1993-10-02 乌鲁木齐10号泉水 240 多点突跳 26 610 51 4.7 水汞
    云南姚安 6.5 2000-01-15 弥渡井 242 多点突跳 持续中爆发地震 70 90 2.7 水汞
    河北张北 6.2 1998-01-10 怀来4井 516.5 多点突跳 47 120 100 5.17 水汞
    河北张家口 3.7 2012-08-30 怀来4井 39.2 单点突跳 4 74 5.3 7.4 水汞
    怀来3井 0.005 单点突跳 持续中爆发地震 74 0.002 2.5 气汞
    下载: 导出CSV
  • [1] 常秋君, 何跟巧. 壤中气汞量测量方法在地震前兆观测中的应用[J]. 西北地震学报, 1990, 12(3): 79-85.

    Chang Q J, He G Q. Application of measuring method of mercury in gas of soil in precursor observation of earthquake [J]. Northwestern Seismological Journal, 1990, 12(3): 79-85 (in Chinese).
    [2] 车用太, 杨丽, 何镧, 等. 气汞的第一个同震效应记录[J]. 中国地震, 2015, 31(3): 602-604. doi: 10.3969/j.issn.1001-4683.2015.03.015

    Che Y T, Yang L, He L, et al. The first coseismic effect record of mercury in gas [J]. Earthquake Research in China, 2015, 31(3): 602-604 (in Chinese). doi: 10.3969/j.issn.1001-4683.2015.03.015
    [3] 褚金学, 张源, 杨晓莹, 等. 弥渡数字化气汞前兆异常分析[J]. 四川地震, 2013, (4): 41-45. doi: 10.3969/j.issn.1001-8115.2013.04.009

    Chu J X, Zhang Y, Yang X Y, et al. Analysis of precursor anomaly of mercury in gas from digital monitoring in Midu[J]. Earthquake Reseach In Sichuan, 2013, (4): 41-45 (in Chinese). doi: 10.3969/j.issn.1001-8115.2013.04.009
    [4] 冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 21(2): 436-457.

    Feng X B, Qiu G L, Fu X W, et al. Mercury pollution in environment[J]. Progress in Chemistry, 2009, 21(2): 436-457 (in Chinese).
    [5] Fursov V Z, Vol'fson N B, Khvalovskiy A G. Results of a study of mercury vapor in the Tashkent earthquake zone[J]. Doklady Akademii Nauk SSSR, 1968, 179: 208-210.
    [6] 高琼, 邓嘉美. 2013年洱源5.5级地震近源区多点水汞短临异常变化特征[J]. 国际地震动态, 2015, (12): 19-24. doi: 10.3969/j.issn.0235-4975.2015.12.005

    Gao Q, Deng J M. Variation characteristics of short-term and impending anomalies of mercury in water in the near-source area of the Eryuan M5.5 earthquake in 2013 [J]. Recent Developments in World Seismology, 2015, (12): 19-24 (in Chinese). doi: 10.3969/j.issn.0235-4975.2015.12.005
    [7] Gehrke G E, Blum J D, Marvin-DiPasquale M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica ET Cosmochimica Acta, 2011, 75(3): 691–705. doi: 10.1016/j.gca.2010.11.012
    [8] 郭丽爽, 刘耀炜, 张磊, 等. 地震地下流体汞前兆监测现状与发展方向[J]. 地震工程学报, 2016, 38(2): 303-308. doi: 10.3969/j.issn.1000-0844.2016.02.0303

    Guo L S, Liu Y W, Zhang L, et al. Present situation and future development of the mercury precursory monitoring in China [J]. China Earthquake Engineering Journal, 2016, 38 (2): 303-308 (in Chinese). doi: 10.3969/j.issn.1000-0844.2016.02.0303
    [9] 胡将军, 盘思伟, 唐念, 等. 2016. 烟气脱汞[M]. 北京: 中国电力出版社.

    Hu J J, Pan S W, Tang N, et al. 2016. Removal of Mercury in Flue Gas[M]. Beijing: China Electric Power Press (in Chinese).
    [10] 金仰芬, 伍宗华, 黄宏库. 汞量测量监测预报地震的前景[J]. 地震, 1987, (5): 8-16.

    Jin Y F, Wu Z H, Huang H K. The prospect of mercury measurement, monitoring and prediction of earthquakes[J]. Earthquake, 1987, (5): 8-16 (in Chinese).
    [11] Johannesson K H, Neumann K. Geochemical cycling of mercury in a deep, confined aquifer: Insights from biogeochemical reactive transport modeling[J]. Geochimica ET Cosmochimica Acta, 2013, 106: 25-43. doi: 10.1016/j.gca.2012.12.010
    [12] 康春丽, 杜建国. 汞的地球化学特征及其映震效能[J]. 地质地球化学, 1999, (1): 79-84.

    Kang C Y, Du J G. Geochemical characteristics of mercury and its seismic reflection efficiency[J]. Geolog -Geochemistry, 1999, (1): 79-84 (in Chinese).
    [13] 康春丽, 朱祥岩, 邓守琴, 等. 地下水中汞的赋存形式及其在地震监测中的应用[J]. 环境化学, 2002, 1(2): 205-206. doi: 10.3321/j.issn:0254-6108.2002.02.021

    Kang C L, Zhu X Y, Deng S Q, et al. The form of mercury in groundwater and its application in earthquake monitoring[J]. Environmental Chemistry, 2002, 1(2): 205-206 (in Chinese). doi: 10.3321/j.issn:0254-6108.2002.02.021
    [14] 李海孝, 宋晓冰. 怀4井汞量异常与地震的关系[J]. 华北地震科学, 1999, 17(3): 57-60.

    Li H X, Song X B. The relationship between abnormal concentration of mercury in Huai 4 well and earthquakes[J]. North China Earthquake Sciences, 1999, 17(3): 57-60 (in Chinese).
    [15] 刘菁华, 王祝文, 刘树田, 等. 城市活动断裂带的土壤氡、汞气评价方法[J]. 吉林大学学报(地球科学版), 2006, 36(2): 295-304.

    Liu J H, Wang Z W, Liu S T, et al. Evaluation method of radon and mercury in gas of soil in urban active fault zone[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(2): 295-304 (in Chinese).
    [16] 刘树田, 邓金宪. 活动断裂带的壤中气汞量测量研究[J]. 地质论评, 1998, 44(5): 547-552. doi: 10.3321/j.issn:0371-5736.1998.05.015

    Liu S T, Deng J X. Study on the measurement of mercury in gas of soil in active fault zone[J]. Geological Review, 1998, 44(5): 547-552 (in Chinese). doi: 10.3321/j.issn:0371-5736.1998.05.015
    [17] 罗岚. 地震机理理论的演变[J]. 国际地震动态, 1997, (1): 23-27.

    Luo L. The evolution of earthquake mechanism theory[J]. Recent Developments in World Seismology, 1997, (1): 23-27 (in Chinese).
    [18] 马志峰, 李金波. 山东苍山5.2级地震前十里泉电厂水汞异常特征[J]. 山西地震, 1999, (1): 44-45.

    Ma Z F, Li J B. Anomaly characteristics of mercury in water in Shiliquan Power Plant before Cangshan M5.2 earthquake in Shandong[J]. Earthquake Research in Shanxi, 1999, (1): 44-45 (in Chinese).
    [19] 孟广魁, 何开明. 氡、汞测量用于断裂活动性和分段的研究[J]. 中国地震, 1997, 13(1): 43-5.

    Meng G K, He K M. Radon and mercury measurement used in the study of fault activity and segmentation[J]. Earthquake Research in China, 1997, 13(1): 43-5 (in Chinese).
    [20] Papadopoulos G A, Charalampakis M, Fokaefs A, et al. Strong foreshock signal preceding the L'Aquila (Italy) earthquake (MW 6.3) of 6 April 2009[J]. Natural Hazards and Earth System ences, 2010, 10(1): 19-24. doi: 10.5194/nhess-10-19-2010
    [21] 平彩鹏, 张凤秋, 张常慧, 等. 张家口ML3.7地震前怀来水汞短临异常分析[J]. 地震地磁观测与研究, 2013, 34(5): 214-217. doi: 10.3969/j.issn.1003-3246.2013.05/06.038

    Ping C P, Zhang F Q, Zhang C H, et al. Analysis of short-term and impending anomaly of mercury in Huailai well before Zhangjiakou ML3.7 earthquake[J]. Seismological and Geomagnetic Observation and Research, 2013, 34(5): 214-217 (in Chinese). doi: 10.3969/j.issn.1003-3246.2013.05/06.038
    [22] Sherman L S, Blum J D, Johnson K P, et al. Massindependent fractionation of mercury isotopes in Arctic snow driven by sunlight[J]. Nature Geoscience, 2010, 3: 173–177. doi: 10.1038/ngeo758
    [23] Smith C N, Kesler S E, Klaue B, et al. Mercury isotope fractionation in fossil hydrothermal systems[J]. Geology, 2005, 33: 825–828. doi: 10.1130/G21863.1
    [24] Smith C N, Kesler S E, Blum J D, et al. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA[J]. Earth and Planetary Science Letters, 2008, 269(3-4): 398–406.
    [25] 宋贯一, 杨同林. 1989年10月19日山西大同—阳高6.1级地震前怀来四号井氢, 汞异常[J]. 华北地震科学, 1991, 9(1): 35-38.

    Song G Y, Yang T L. Hydrogen and mercury anomalies in Huailai No.4 well before the Datong Yanggao MS6.1 earthquake on October 19, 1989 [J]. North China Earthquake Science, 1991, 9 (1): 35-38 (in Chinese).
    [26] Wang B, Liu Y W, Sun X L, et al. Hydrogeological and Geochemical Observations for Earthquake Prediction Research in China: A brief overview[J]. Pure and Applied Geophysics, 2018, 175(2018): 2541-2555.
    [27] Wang G, Liu C, Wang J, et al. The use of soil mercury and radon gas surveys to assist the detection of concealed faults in Fuzhou City, China[J]. Environmental Geology, 2006, 51(1): 83-90. doi: 10.1007/s00254-006-0306-1
    [28] 王吉易, 郑云贞. 张北6.2级地震的水化前兆异常分析及有关问题讨论[J]. 华北地震科学, 1998, 16(3): 46-52.

    Wang J Y, Zheng Y ZH. Analysis of hydration precursor anomalies of Zhangbei M6.2 earthquake and discussion of related issues[J]. North China Earthquake Sciences, 1998, 16(3): 46-52 (in Chinese).
    [29] 王玉兰. 乌鲁木齐地震活动区的地下水汞测量[J]. 内陆地震, 1995, (2): 158-162.

    Wang Y L. Mercury in groundwater measurement in the seismically active area of Urumqi[J]. Inland Earthquake, 1995, (2): 158-162 (in Chinese).
    [30] 吴少武. 氡射气浓度和汞量测量技术的现状与应用[J]. 地球科学进展, 1989, (4): 16-20.

    Wu S W. Current status and the application of concentration of radon in gas and mercury measurement technology[J]. Advances in Earth Science, 1989, (4): 16-20 (in Chinese).
    [31] Wu Z, Ma T, Jiang H, et al. Multi-scale seismic hazard and risk in the China mainland with implication for the preparedness, mitigation, and management of earthquake disasters: An overview[J]. International Journal of Disaster Risk Reduction, 2013, 4: 21-33. doi: 10.1016/j.ijdrr.2013.03.002
    [32] 肖建华, 张瑞丰. 奇村地震水汞动态图象分析[J]. 地球学报: 中国地质科学院院报, 1997, (18): 412.

    Xiao J H, Zhang R F. Dynamic image analysis of mercury in water in the Qicun earthquake[J]. Acta Geoscientia Sinica: Bulletin of the Chinese Academy of Geological Sciences, 1997, (18): 412 (in Chinese).
    [33] 杨杰英. 云南水汞的远震和近震前兆异常特征分析[J]. 地震研究, 1999, 22(1): 64-70.

    Yang J Y. Analysis on the abnormal characteristics of the precursor of remote and local earthquakes of mercury in water in Yunnan[J]. Earthquake Research, 1999, 22(1): 64-70 (in Chinese).
    [34] 杨杰英. 云南水汞在姚安6.5级地震前的异常特征分析[J]. 高原地震, 2002, 14(4): 36-41. doi: 10.3969/j.issn.1005-586X.2002.04.006

    Yang J Y. Analysis on the abnormal characteristics of mercury in water in Yunnan before the Yao'an M6.5 earthquake[J]. Plateau Seismology, 2002, 14(4): 36-41 (in Chinese). doi: 10.3969/j.issn.1005-586X.2002.04.006
    [35] Zhang L, Liu Y W, Guo L S, et al. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1)[J]. Tectonophysics, 2014, 619-620: 79-85. doi: 10.1016/j.tecto.2013.08.025
    [36] 张磊, 刘耀炜, 包创, 等. 安宁河断裂带土壤汞的分布特征[J]. 地震学报, 2019, 41(2): 249-258. doi: 10.11939/jass.20180141

    Zhang L, Liu Y W, Bao C, et al. Distribution characteristics of soil mercury in Anninghe fault zone[J]. Acta Seismologica Sinica, 2019, 41(2): 249-258(in Chinese). doi: 10.11939/jass.20180141
    [37] 张炜, 巫英富. 地震短临异常新指标的探索—汞浓度探测[J]. 中国地震, 1989, 5(4): 13-19.

    Zhang W, Wu Y F. A new index of imminent earthquake anomalies—detection of mercury concentration[J]. Earthquake Research in China, 1989, 5(4): 13-19 (in Chinese).
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  689
  • HTML全文浏览量:  402
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 录用日期:  2020-12-02
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回