Research progress of Jiali fault activity
-
摘要: 嘉黎断裂是一条横贯青藏高原东南部的大型走滑断裂,在印度和欧亚板块碰撞前后通过调整应力平衡发挥着重要作用. 本文根据前人对嘉黎断裂的研究成果,从地质学和地球物理学的角度,系统地总结分析嘉黎断裂带构造背景、壳幔结构、晚第四纪和现今的活动性质和速率. 基于地质学方法,搜集前人在测年方面的研究结果,限定断裂的活动年限以及活动速率. 同时在东段的北侧分支嘎龙寺附近,采用光释光测年法增加两个测年点,完善活动速度资料,并对断裂自西向东不同部位的走滑速率和错动断距进行对比分析. 基于地球物理学观测资料,分析地震活动性和壳幔物质的速度结构、各向异性等参数,利用波形拟合方法,新增18个3~5级地震的震源机制解. 结果表明,嘉黎断裂现今的构造变形主要表现为右旋走滑运动,但是在不同的分段具有显著的差异性,新生的西兴拉—达木分支是地震最活跃的区域. 在此基础上,探讨青藏高原的构造演化过程,分析东构造结地区构造运动的稳定性,为川藏铁路雅安—林芝段工程建设地质灾害风险评估提供必要参考资料.Abstract: The Jiali fault is a large strike-slip fault that traverses the southeast of the Tibetan Plateau. It played an important role as an adjustment fault for adjusting stress balance both before and after the collision of the Indian and Eurasian plates. Based on early publications about the Jiali fault, this study systematically summarizes and analyzes its tectonic background, crustal and mantle structure, properties and rates of activity in the Late Quaternary and the present from the perspectives of geology and geophysics. Based on geological methods, we collected results related to dating in order to constrain the active age and rate of the fault. We newly tested optical stimulated luminescence dating for two areas near the Galong Temple, the northern branch of the eastern section of the Jiali fault to complement the measurement of activity rate. We compared the strike-slip rate and dislocation distance for different segments along the Jiali fault from west to east. Based on geophysical observations, we analyze the seismic activity, crustal and mantle velocity and seismic anisotropy. Using waveform modeling method, we newly determined focal mechanisms of 18 earthquakes with magnitudes between 3 and 5. We found that the current tectonic deformation of the Jiali fault is primarily the right-lateral strike-slip. However, there are different features at different segments. The newly activated Xixingla-Damu branch is the most active segment. On this basis, we discussed the tectonic evolution process of the Tibetan Plateau, and analyzed the structural stability of the eastern Himalaya syntaxis, which is needed for the geological hazard risk assessment of the Sichuan-Tibet railway engineering construction at the Yaan-Linzhi branch.
-
图 1 青藏高原东南缘地区构造地质图与嘉黎断裂的位置. 黑色曲线表示嘉黎断裂,Ⅰ:西段分支;Ⅱ:中段分支;Ⅲ:东段分支. 东段自北向南分为三个分支:Ⅲ-1:北部分支;Ⅲ-2:中部分支;Ⅲ-3:南部分支(修改自郑来林等, 2004)
Figure 1. Tectonic geological map of the southeastern Tibetan Plateau and the location of the Jiali fault. Black curves are the Jiali fault. Ⅰ: western branch; Ⅱ: central branch; Ⅲ: eastern branch. The eastern branch is further divided into three segments from north to south: Ⅲ-1: northern segment; Ⅲ-2: middle segment; Ⅲ-3: southern segment (modified from Zheng et al., 2004)
图 2 嘉黎断裂带不同段断裂性质以及第四纪沉积物的年龄分布. OSL表示光释光测年结果,TL表示热释光测年结果,背景图为地表地形起伏(修改自Amante and Eakins, 2009)
Figure 2. Fault properties and age distribution of Quaternary sediment in different sections of the Jiali fault. OSL represents the results of photoluminescence and TL represents the results of thermoluminescence dating. The background is the topography of the Earth's surface (modified from Amante and Eakins, 2009)
图 3 嘉黎断裂野外特征. (a)断裂导致易贡藏布形成的回头弯;(b)嘉黎断裂中支贡日嘎布曲形成的垭口地貌;(c)嘉黎断裂北支帕隆藏布;(d)北支帕隆藏布分支嘎龙寺附近垭口地貌;(e)嘉黎断裂错断嘎龙寺平面图;(f)嘉黎断裂南东段错断终碛垄
Figure 3. Field characteristics of Jiali fault. (a) the turning back curve caused by the fault; (b) the geomorphology of the pass formed by Gongri-gapu Qu of the central branch of the Jiali fault; (c) the Palongzangbu in the northern branch of the Jiali fault; (d) the geomorphology near Galong Temple of the northern Palongzangbu branch; (e) the map view of Galong Temple broken by the Jiali fault; (f) the terminal moraine broken by the southeastern segment of the Jiali fault
图 4 东构造结地震活动性. 灰色小圆圈表示1970年以来发生的4.5级以上地震,红色大圆圈表示1900年以来发生的6.0级以上地震(USGS 地震目录:https://earthquake.usgs.gov/). 黑色震源机制解来源于gCMT地震目录(Ekstrom et al., 2012; https://www.globalcmt.org/),橙色震源机制解为本研究获得的结果,黑色虚线表示地震分布揭示的新兴的西兴拉—达木断层分支
Figure 4. Seismicity in the eastern Himalayan syntaxis. Small gray circles are earthquakes of M≥4.5 since 1970, large red circles are earthquakes of M≥6.0 since 1900 (USGS catalog: https://earthquake.usgs.gov/). The black focal mechanism solutions come from gCMT earthquake catalogue (Ekstrom et al., 2012; https://www.globalcmt.org/), and the orange focal mechanism solutions are the results obtained in this study. Black dotted line shows that new Xixingla-Damu fault branch estimated from the earthquake distribution
表 1 嘉黎断裂第四纪测年结果
Table 1. Quaternary dating results of the Jiali fault
表 2 东构造结地区发生的18个3~5级地震震源机制解
Table 2. Focal mechanisms of 18 earthquakes with magnitudes of 3~5 occurred at the eastern Himalayan syntaxis
序号 发震日期年-月-日 时:分:秒 经度/N° 纬度/E° 深度/km 震级(MW) 节面1走向/倾向/滑动角/(°) 节面2走向/倾向/滑动角/(°) 来源 1 2010-07-28 00:38:52.68 94.86 30.25 4 3.85 150/53/−90 330/37/−90 本文 2 2011-04-12 20:03:06.80 96.92 29.95 6 3.97 21/25/−116 229/67/−78 本文 3 2012-08-07 08:17:54.74 94.89 30.33 12 3.96 7/45/150 119/69/49 本文 4 2013-08-12 06:30:11.31 97.94 30.08 6 4.11 100/56/−38 213/59/93 本文 5 2013-08-12 16:09:35.49 97.97 30.10 6 4.93 200/72/−152 100/63/−20 本文 6 2013-11-13 04:41:32.46 97.20 29.98 10 3.88 280/56/23 176/71/143 本文 7 2015-07-18 13:41:23.45 94.84 30.32 5 4.20 340/39/−76 142/52/−101 本文 8 2015-07-23 06:00:32.80 94.86 30.36 5 3.98 287/38/−91 108/52/−89 本文 9 2015-07-28 17:40:45.94 94.89 30.41 5 4.48 334/41/−86 148/49/−93 本文 10 2015-07-31 11:18:14.48 94.85 30.32 4 4.09 140/39/86 325/51/93 本文 11 2015-08-02 13:57:59.70 94.89 30.36 4 4.18 285/37/−94 110/53/−86 本文 12 2015-08-06 20:34:01.60 94.89 30.33 4 3.95 330/35/111 124/57/75 本文 13 2015-08-12 03:13:07.61 94.87 30.37 5 4.16 330/39/−86 144/51/−93 本文 14 2015-08-13 10:00.25.45 94.91 30.34 4 3.98 330/41/−81 138/49/−97 本文 15 2015-10-03 13:26:13.40 98.37 30.95 5 4.14 209/59/−146 99/61/−35 本文 16 2015-10-27 02:11:23.52 97.98 30.11 9 4.54 285/51/−50 51/53/−128 本文 17 2016-03-15 12:28:21.75 98.00 29.74 4 4.25 66/26/−101 258/64/−84 本文 18 2016-03-21 00:54:10.42 93.17 29.84 6 4.33 30/39/−85 203/51/−94 本文 -
[1] Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24[R]. National Geophysical Data Center, NOAA. doi: 10.7289/V5C8276M. [2] Bai L, Zhang T. Complex deformation pattern of the Pamir-Hindu Kush region inferred from multi-scale double-difference earthquake relocations[J]. Tectonophysics, 2015, 638: 177-184. doi: 10.1016/j.tecto.2014.11.006 [3] Bai L, Li G, Khan N G, et al. Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region[J]. Gondwana Research, 2017, 41: 390-399. [4] 白玲, 李国辉, 宋博文. 2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 2017, 60(12): 4956-4963. doi: 10.6038/cjg20171234Bai L, Li G H, Song B W. The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 2017, 60(12): 4956-4963(in Chinese). doi: 10.6038/cjg20171234 [5] Bai L, Klemperer S L, Mori J, et al. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal[J]. Science Advances, 2019, 5, eaav0723. [6] Bao X, Song X, Eaton, D W. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophysical Research Letters, 2020.47, e2019GL085721. [7] Ben-Menahem A, Aboodi E, Schild R. The source of the great Assam earthquake-an interplate wedge motion[J]. Physics of the Earth and Planetary Interiors, 1974, 9(4): 265-289. doi: 10.1016/0031-9201(74)90056-9 [8] 常利军, 王椿镛, 丁志峰, 等. 喜马拉雅东构造结及周边地区上地幔各向异性[J]. 中国科学: 地球科学, 2015, 45(5): 577-588.Chang L J, Wang C Y, Ding Z F, et al. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis[J]. Science China: Earth Sciences, 2015, 45(5): 577-588(in Chinese). [9] 程成, 白玲, 丁林, 等. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构[J]. 地球物理学报, 2017, 60(8): 2969-2979. doi: 10.6038/cjg20170806Cheng C, Bai L, Ding L, et al. Crustal structure of Eastern Himalayan Syntaxis revealed by receiver function method[J]. Chinese Journal of Geophysics, 2017, 60(8): 2969-2979 (in Chinese). doi: 10.6038/cjg20170806 [10] Chung L, Chen Y, Lai K, et al, Is Jiali Fault still an active fault in the late Pleistocene? [J]. American Geophysical Union, 2007, T31D-0676. [11] Coudurier-Curveur A, Tapponnier P, Okal E, et al. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis[J]. Earth and Planetary Science Letters, 2020.531, 115928. doi: 10.1016/j.jpgl.2019.115928 [12] 崔仲雄, 裴顺平. 青藏高原东构造结及周边地区上地幔顶部Pn速度结构和各向异性研究[J]. 地球物理学报, 2009, 52(09): 2245-2254. doi: 10.3969/j.issn.0001-5733.2009.09.008Cui Z X, Pei S P. Study on Pn velocity and anisotropy in the uppermost mantle of Eastern Himalayan Syntaxis and surrounding region[J]. Chinese Journal of Geophysics, 2009, 52(09): 2245-2254 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.09.008 [13] Ding L, Zhong D, Yin A, et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and Planetary Science Letters, 2001, 192: 423-438. doi: 10.1016/S0012-821X(01)00463-0 [14] 丁林, 来庆洲. 冈底斯地壳碰撞前增厚及隆升的地质证据: 岛弧拼贴对青藏高原隆升及扩展历史的制约[J]. 科学通报, 2003, 08: 836-842. doi: 10.3321/j.issn:0023-074X.2003.08.018Ding L, Lai Q Z. Geological evidence of thickening and uplift of the Gangdese crust before collision: the constraints of island arc collage on the uplift and expansion history of the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2003, 08: 836-842 (in Chinese). doi: 10.3321/j.issn:0023-074X.2003.08.018 [15] 丁林, 钟大赉. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学, 2013, 48(02): 317-333. doi: 10.3969/j.issn.0563-5020.2013.02.001Ding L, Zhong D L. The tectonic evolution of the eastern Himalayan syntaxis since the collision of the Indian and Eurasian plates[J]. Chinese Journal of Geology, 2013, 48(02): 317-333 (in Chinese). doi: 10.3969/j.issn.0563-5020.2013.02.001 [16] Dong H, Wei W, Jin S, et al. Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data[J]. Earth and Planetary Science Letters, 2016, 454: 78-85. doi: 10.1016/j.jpgl.2016.07.043 [17] Ekstrom G, Nettles M, Dziewonski A M. The global CMT project 2004-2010: Centroid-moment tensors for 13, 017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 2012, 200: 1-9. [18] England P, McKenzie D P. A thin viscous sheet model for continental deformation[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 73(2): 523-532. [19] Friedrich A M, Wernicke B P, Niemi N A. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years[J]. Journal of Geophysical Research, 2003, 108, B42199. [20] Fu Y V, Li A, Chen Y J. Crustal and upper mantle structure of southeast Tibet from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12323. doi: 10.1029/2009JB007160 [21] Gan W, Zhang P, Shen Z. et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 2007, 112, B08416. [22] Haproff P J, Odlum M L, Zuza A V, et al. Structural and thermochronologic constraints on the Cenozoic tectonic development of the northern Indo-Burma Ranges[J]. Tectonics, 2020, 39, e2020TC006231. [23] He J, Vernant P, Chery J, et al. Nailing down the slip rate of the Altyn Tagh fault[J]. Geophysical Research Letters, 2013, 40: 5382-5386. doi: 10.1002/2013GL057497 [24] 胡波, 李泊洋, 张明, 等. 西藏门巴地区嘉黎断裂带变形特征及演化[J]. 世界地质, 2011, 30(04): 585-592. doi: 10.3969/j.issn.1004-5589.2011.04.012Hu B, Li B Y, Zhang M, et al. Deformation characteristics and evolution of Jiali fault belt in Menba area, Tibet [J]. Global Geology, 2011, 30(04): 585-592 (in Chinese). doi: 10.3969/j.issn.1004-5589.2011.04.012 [25] 姜枚, 彭淼, 王有学, 等. 喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据[J]. 岩石学报, 2012, 28(06): 1755-1764.Jiang M, Peng M, Wang Y X, et al. Geophysical evidence for deep subduction of Indian lithospheric plate beneath Eastern Himalayan Syntaxis[J]. Acta Petrological Sinica, 2012, 28(06): 1755-1764 (in Chinese). [26] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0-A 1-degree Global Model of Earth's Crust[J]. Geophysical Research Abstracts, 2013, 15, Abstract EGU2013-2658. [27] 李保昆, 刁桂苓, 徐锡伟, 等. 1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报, 2015, 58(11): 4254-4265.Li B K, Diao G L, Xu X W, et al. Redetermination of the source parameters of the Zayü, Tibet M8.6 earthquake sequence in 1950[J]. Chinese Journal of Geophysics, 2015, 58(11): 4254-4265 (in Chinese). [28] 李国辉, 白玲, 丁林, 等. 2019年西藏墨脱MS 6.3级地震震源参数及其构造意义[J]. 地球物理学报, 2020, 63(3): 1214-1223.Li G H, Bai L, Ding L, et al. Source parameters of the 2019 MS 6.3 earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 2020, 63(3): 1214-1223 (in Chinese). [29] Li K, Xu X, Kirby E, et al. Late Quaternary paleoseismology of the Milin fault: Implications for active tectonics along the Yarlung Zangbo Suture, Southeastern Tibet Plateau[J]. Tectonophysics, 2018, 731-732: 64-72. doi: 10.1016/j.tecto.2017.12.026 [30] Peng C Y, Yang J S, Wang W P, et al. The Namche Barwa temporary seismic network (NBTSN) and its application in monitoring the 18 November 2017 M 6.9 Mainling, Tibet, China, earthquake[J]. Seismological Research Letters, 2018, 89(5): 1730-1740. doi: 10.1785/0220180001 [31] 彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 2020, 39(12): 2377-2389.Peng J B, Cui P, Zhuang J Q. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2377-2389 (in Chinese). [32] 彭淼, 谭捍东, 姜枚, 等. 利用接收函数和大地电磁数据联合反演南迦巴瓦构造结中部地区壳幔结构[J]. 地球物理学报, 2012, 55(07): 2281-2291.Structure beneath central Namche Barwa, eastern Himalayan Syntaxis[J]. Chinese Journal of Geophysics, 2012, 55(07): 2281-2291 (in Chinese). [33] 任金卫, 沈军, 曹忠权, 等. 西藏东南部嘉黎断裂新知[J]. 地震地质, 2000, (04): 344-350. doi: 10.3969/j.issn.0253-4967.2000.04.002Ren J W, Shen J, Cao Z Q, et al. Quaternary faulting of Jiali fault, southeast Tiberan Plateau[J]. Seismology and Geology, 2000, (04): 344-350 (in Chinese). doi: 10.3969/j.issn.0253-4967.2000.04.002 [34] Ren Y, Shen Y. Finite frequency tomography in southeastern Tibet: Evidence for the causal relationship between mantle lithosphere delamination and the north–south trending rifts[J]. Journal of Geophysical Research, 2008, 113(B10): B10316. doi: 10.1029/2008JB005615 [35] 邵翠茹. 2009. 雅鲁藏布大峡谷地区地震活动性研究[D]. 北京: 中国地震局地球物理研究所.Shao C R. 2009. Research on seismicity in Yarlung Zangbo Grand Canyon[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese). [36] Sol S, Meltzer A, Bürgmann R, et al. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy[J]. Geology, 2007, 35(6): 563-566. doi: 10.1130/G23408A.1 [37] 宋键, 唐方头, 邓志辉, 等. 青藏高原嘉黎断裂晚第四纪运动特征[J]. 北京大学学报(自然科学版), 2013, 49(06): 973-980.Song J, Tang F T, Deng Z H, et al. Late quaternary movement characteristic of Jiali fault in Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 973-980(in Chinese). [38] 唐方头, 宋键, 曹忠权, 等. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J]. 地球物理学报, 2010, 53(09): 2119-2128. doi: 10.3969/j.issn.0001-5733.2010.09.012Tang F T, Song J, Cao Z Q, et al. The movement characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS data[J]. Chinese Journal of Geophysics, 2010, 53(09): 2119-2128 (in Chinese). doi: 10.3969/j.issn.0001-5733.2010.09.012 [39] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insight from simple experiments with plasticine[J]. Geology, 1982, 10(12): 305-325. [40] Wang C Y, Mooney W D, Zhu L, et al. Deep structure of the eastern Himalayan collision zone: Evidence for underthrusting and delamination in the postcollisional stage[J]. Tectonics, 2019, 38(10): 3614-3628. doi: 10.1029/2019TC005483 [41] 王国灿, 曹凯, 张克信, 等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学: 地球科学, 2011, 41(3): 332-349.Wang G C, Cao K, Zhang K X, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J]. Science China: Earth Sciences, 2011, 41(3): 332-349 (in Chinese). [42] 王凯悦, 常利军, 丁志峰. 喜马拉雅东构造结上地壳各向异性特征[J]. 地震学报, 2020, 出版中. doi: 10.11939/jass.20200104Wang K Y, Chang L J, Ding Z F. Upper crustal anisotropy observed in the eastern Himalayan syntaxis[J]. Acta Seismological Sinica, 2020, publishing (in Chinese). doi: 10.11939/jass.20200104 [43] 王晓楠, 唐方头, 邵翠茹. 南迦巴瓦构造结周边地区主要断裂现今运动特征[J]. 震灾防御技术, 2018, 13(02): 267-275.Wang X N, Tang F T, Shao C R. The Current Movement Characters of Main Faults Surrounding the Namcha Barwa Syntaxis[J] Technology for Earthquake Disaster Prevention, 2018, 13(02): 267-275 (in Chinese). [44] Xiong W, Chen W, Wen Y, et al. Insight into the 2017 Mainling MW 6.5 earthquake: a complicated thrust event beneath the Namche Barwa syntaxis[J]. Earth Planets Space, 2019, 71: 71-87. doi: 10.1186/s40623-019-1050-6 [45] Xu Q, Zhao J, Pei S, et al. Imaging lithospheric structure of the eastern Himalayan syntaxis: New insights from receiver function analysis[J]. Journal of Geophysical Research Solid Earth, 2013, 118(5): 2323-2332. doi: 10.1002/jgrb.50162 [46] 许志琴, 蔡志慧, 张泽明, 等. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学[J]. 岩石学报, 2008, 24(07): 1463-1476.Xu Z Q, Cai Z H, Li H Q, et al. Tectonics and fabric kinematics of the Mamche Barwa terrane, Eastern Himalayan Syntaxis[J]. Acta Petrologica Sinica, 2008, 24(07): 1463-1476 (in Chinese). [47] 杨建亚, 白玲, 李国辉, 等. 东喜马拉雅构造结地区地震活动及其构造意义[J]. 国际地震动态, 2017, (06): 12-18. doi: 10.3969/j.issn.0253-4975.2017.06.004Yang J Y, Bai L, Li G H, et al. Seismicity and its tectonic implications in the eastern Himalayan syntaxis area[J]. Recent Developments in World Seismology, 2017, (06): 12-18 (in Chinese). doi: 10.3969/j.issn.0253-4975.2017.06.004 [48] 杨旭, 李永华, 盖增喜. 机器学习在地震学中的应用进展[J]. 地球与行星物理论评, 2021, 52(1): 76-88. doi: 10.19975/j.dqyxx.2020-006Yang X, Li Y H, Ge Z X. Machine learning and its application in seismology. Reviews of Geophysics and Planetary Physics, 2021, 52(1): 76-88. doi: 10.19975/j.dqyxx.2020-006 (in Chinese). [49] 叶进, 赵俊猛, 刘红兵, 等. 西藏米林MS6.9级地震余震定位和地壳浅层速度结构[J]. 科学通报, 2020, 65: 1496–1505. doi: 10.1360/TB-2019-0545Ye J, Zhao J M, Liu H B, et al. Aftershocks localization and shallow crustal velocity structure following the MS6.9 Mainling earthquake in Tibet, China[J]. Chinese Science Bulletin, 2020, 65: 1496–1505 (in Chinese). doi: 10.1360/TB-2019-0545 [50] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211–280. doi: 10.1146/annurev.earth.28.1.211 [51] 尹凤玲, 蒋长胜, 姜丛. 年尺度地震预测模型的国际研究现状[J]. 地球与行星物理论评, 2020, 52(1): 54-60. doi: 10.19975/j.dqyxx.2020-002Yin F L, Jiang C S, Jiang C. Research progress of next-year earthquake forecasts in the world. Reviews of Geophysics and Planetary Physics, 2021, 52(1): 54-60. doi: 10.19975/j.dqyxx.2020-002 (in Chinese). [52] 曾融生, 孙为国. 青藏高原及其邻区的地震活动性和震源机制以及高原物质东流的讨论[J]. 地震学报, 1992, 11: 532-563.Zeng R S, Sun W G. Discussion on the seismic activity and focal mechanism of the Qinghai-Tibet Plateau and its neighboring areas and the eastward flow of material from the plateau[J]. Acta Seismological Sinica, 1992, 11: 532-563 (in Chinese). [53] Zeitler P K. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet[J]. Special Paper of the Geological Society of America, 2014, 507: 23-58. [54] Zhang B, Cai F, Chen S, et al. Sinistral strike-slip shearing along the Jiali shear zone around the Eastern Himalaya syntaxis region: Evidences for oligocene eastward limited translation of Tibet[J]. Journal of Structural Geology, 2020, 139, 104136. doi: 10.1016/j.jsg.2020.104136 [55] 张进江, 季建清, 钟大赉, 等. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑: 地球科学), 2003, 33(4): 373-383.Zhang J J, Ji J Q, Zhong D L. Discussion on the tectonic pattern and formation process of the Nanga Bawa tectonic node in Eastern Himalayas[J]. Science China: Earth Sciences, 2003, 33(4): 373-383 (in Chinese). [56] 张培震, 王敏, 甘卫军, 等. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 2003, (S1): 81-92.Zhang P Z, Wang M, Gan W J, et al. GPS-observed sliding rate of active faults and its constraints on the current continental dynamics[J]. Earth Science Frontiers, 2003, (S1): 81-92 (in Chinese). [57] Zhao L, Helmberger D V. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1994, 84(1): 91-104. [58] 郑来林, 廖光宇, 耿全如. 墨脱县幅地质调查新成果及主要进展[J]. 地质通报, 2004, 23: 458-462. doi: 10.3969/j.issn.1671-2552.2004.05.009Zheng L L, Liao G Y, Geng Q R. New results and major progress in regional geological survey of the M(e)dog County Sheet[J]. Geological Bulletin of China, 2004, 23: 458-462 (in Chinese). doi: 10.3969/j.issn.1671-2552.2004.05.009 [59] Zheng X, Yao Z, Liang J, et al. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches[J]. Bulletin of the Seismological Society of America, 2010, 100: 2866-2872. doi: 10.1785/0120090257 [60] 钟大赉. 1998. 滇川西部古特提斯造山带[M]. 北京: 科学出版社.Zhong D L. 1998. Paleo-Tethys Orogenic Belt in Western Yunnan and Sichuan[M]. Beijing: Science Press. [61] Zhu L, Helmberger D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1634-1641. [62] Zhu L, Ben-Zion Y. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophysical Journal International, 2013, 194(2): 839-843. doi: 10.1093/gji/ggt137 -