• ISSN 2097-1893
  • CN 10-1855/P

基于横波分裂的青藏高原多圈层各向异性研究进展

黄臣宇 常利军

引用本文: 黄臣宇,常利军. 2021. 基于横波分裂的青藏高原多圈层各向异性研究进展. 地球与行星物理论评,52(2):164-181
Huang C Y, Chang L J. 2021. Reviews on seismic anisotropy based on shear-wave splitting in the Tibetan Plateau. Reviews of Geophysics and Planetary Physics, 52(2): 164-181

基于横波分裂的青藏高原多圈层各向异性研究进展

doi: 10.19975/j.dqyxx.2020-017
基金项目: 中国地震局地球物理研究所基本业务专项资助项目(DQJB19B30);国家自然科学基金资助项目(41774061,42074053,41941016)
详细信息
    作者简介:

    黄臣宇(1996-),男,硕士研究生,主要从事地壳各向异性方面的研究. E-mail:449392772@qq.com

    通讯作者:

    常利军(1978-),男,研究员,博士生导师,主要从事地球深部构造、地震各向异性和地球动力学方面的研究工作. E-mail:ljchang@cea-igp.ac.cn

  • 中图分类号: P315

Reviews on seismic anisotropy based on shear-wave splitting in the Tibetan Plateau

Funds: Supported by the Special Fund of the Institute of Geophysics, China Earthquake Administration (Grant No. DQJB19B30), and the National Natural Science Foundation of China (Grant Nos. 41774061, 4207453 and 41941016)
  • 摘要: 有关青藏高原横波分裂的各向异性研究已经开展了近30年,在理论方法和实际应用方面取得了重要进展,并获取了大量的横波分裂测量结果,为认识青藏高原壳幔各向异性变形特征和动力学机制提供了重要的依据. 本文首先介绍了地震各向异性的来源与应用,随后回顾了横波分裂分析方法的发展,简述了各种横波分裂方法的原理,最后通过总结近30年来青藏高原上地壳、整个地壳和上地幔横波分裂各向异性研究成果,系统分析了青藏高原壳幔各向异性变形特征. 基于各横波分裂结果的对比分析来看,XKS波分裂测量结果最为稳定,近震直达S波分裂测量结果次之,而Pms波分裂测量结果相对离散,往往相同区域内不同的研究结果差异较大,主要原因可能是相比XKS波和近震直达S波,Pms波的信噪比较低,次要原因可能是各研究在方法和处理分析等方面的差异.

     

  • 图  1  青藏高原及邻区地质构造图(修改自滕吉文等,2019). MBT:主边界逆冲断裂;IYS:雅鲁藏布江缝合带;BNS:班公—怒江缝合带;JS:金沙江缝合带;AKMS:阿尼玛卿—昆仑—慕孜塔格缝合带;SQS:南祁连缝合带;NQS:北祁连缝合带;HB:喜马拉雅块体;LB:拉萨块体;QB:羌塘块体;SB:松潘—甘孜块体;KB:昆仑—柴达木块体

    Figure  1.  Geological structure map of the Tibetan Plateau and surrounding areas (modified from Teng et al., 2019). MBT: Main Boundary Thrust; IYS: Indus-Yarlung Suture; BNS: Bangong-Nujiang Suture; JS: Jinshajiang Suture; AKMS: Anyimaqen-Kunlun-Mutztagh Suture; SQS: South Qilian Suture; NQS: North Qilian Suture; HB: Himalayan Block; LB: Lhasa Block; QB: Qiangtang Block; SB: Songpan-Ganzi Block; KB: Kunlun-Qaidam Block

    图  2  横波穿过各向异性介质分裂现象示意图(修改自Crampin and Chastin, 2003

    Figure  2.  Schematic of shear wave splitting (modified from Crampin and Chastin, 2003)

    图  3  互相关函数分析法横波分裂测量示例(修改自Bowman and Ando, 1987). (a)水平面内的质点原始运动轨迹;(b)按照(a)中确定的快波方向旋转的地震波形图;(c)慢波波形前移0.54 s后的波形图,这时两水平分量的互相关系数达到最大;(d)各向异性校正后的质点运动轨迹

    Figure  3.  An example of the cross-correlation analysis technique (modified from Bowman and Ando, 1987). (a) Original horizontal particle motion; (b) Seismograms rotated by angle determined in (a); (c) Rotated seismograms with upper trace advanced by 0.54 s, the time shift which gives maximum absolute value of cross-correlation coefficient between traces; (d) Particle motion corrected for anisotropy

    图  4  可视化测量方法横波分裂测量示例(修改自常利军,2014).(a)原始波形的三分量记录图; (b)两个水平分量的地震记录图; (c)水平面内的横波质点运动轨迹; (d)将水平向地震记录旋转至快、慢波方向的地震图

    Figure  4.  An example of the visual measurement technique (modified from Chang, 2014). (a) Three-component records of original seismic waveform; (b) Two horizontal components of seismograms; (c) Shear wave particle motion in horizontal; (d) Seismograms rotated to the fast and slow shear wave directions

    图  5  最小切向能量方法横波分裂测量示例(修改自Teanby et al., 2004).(a)原始波形旋转至径向、切向和垂向上的三分量波形图,A和F限定了横波分裂窗口;(b)稳定解的收敛置信区间,最优解用十字标记;(c)快、慢波坐标系下,时间校正前后的快、慢波波形和质点运动轨迹,快、慢波波形相似,质点运动图由时间校正前的椭圆变为校正后的线性;(d)径向和切向坐标系下,分裂校正前后的波形图,校正前的切向分量明显,校正后的切向分量变得很小.

    Figure  5.  An example of shear-wave splitting measurement results with minimum tangential energy method (modified from Teanby et al., 2004). (a) Raw data rotated to the radial and tangential directions; A and F are the beginning and end of the shear-wave analysis window; (b) A grid search over the shear wave splitting parameters is performed to find the parameters that best linearize the particle motion; (c) Fast and slow shear waveforms and particle motion before and after the shear- wave splitting correction. The fast and slow waves have similar waveforms, and the particle motion has been linearized after the correction; (d) Radial and transverse components before and after the splitting correction. The energy should be minimized on the corrected transverse component in the shear-wave analysis window

    图  6  横波穿过双层各向异性介质分裂现象示意图(修改自Silver and Savage, 1994

    Figure  6.  Schematic of shear wave splitting in the case of two anisotropic layers (modified from Silver and Savage, 1994)

    图  7  青藏高原近震直达S波和Pms波分裂测量结果分布图. 红色线段为近震直达S波分裂结果,蓝色线段为Pms波分裂结果,线段方向代表快波偏振方向,长度代表延迟时间(近震直达S波分裂延迟时间按上地壳厚度为25 km计算)

    Figure  7.  Distribution of local seismic S wave and Pms wave splitting measurement results in the Tibetan Plateau.The red lines are the results of local seismic S wave splitting, and the blue lines are the results of Pms wave splitting. The direction of the line represents the polarization direction of the fast wave and the length represents the delay time (The local seismic S wave delay time is calculated based on the upper crust thickness of 25 km)

    图  8  青藏高原Pms波和XKS波分裂测量结果分布图. 红色线段为XKS波分裂结果,蓝色线段为Pms波分裂结果. 线段方向代表快波偏振方向,长度代表延迟时间

    Figure  8.  Distribution of Pms wave and XKS wave splitting measurement results in the Tibetan Plateau.The red lines are the results of XKS wave splitting, and the blue lines are the results of Pms wave splitting. The direction of the line represents the polarization direction of the fast wave and the length represents the delay time

  • [1] Anderson D L. 1961. Elastic wave propagation in layered anisotropic media[J]. Journal of Geophysical Research, 66(9): 2953-2963.
    [2] Ando M, Ishikawa Y, Yamazaki F, et al. 1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan[J]. Journal of Geophysical Research: Solid Earth, 88(B7): 5850-5864.
    [3] Barruol G, Mainprice D. 1993. A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves[J]. Physics of the Earth and Planetary Interiors, 78(3-4): 281-300.
    [4] Bowman J R, Ando M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone[J]. Geophysical Journal International, 88(1): 25-41.
    [5] Cai Y, Wu J P, Fang L H, et al. 2016. Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau reveled by Pms splitting[J]. Journal of Asian Earth Sciences, 121: 120-126.
    [6] 常利军, 王椿镛, 丁志峰. 2006. 云南地区SKS波分裂研究[J]. 地球物理学报, 49(01): 197-204. doi: 10.3321/j.issn:0001-5733.2006.01.026

    Chang L J, Wang C Y, Ding Z F. 2006. A study on SKS splitting beneath the Yunnan region[J]. Chinese Journal of Geophysics, 49(01): 197-204 (in Chinese). doi: 10.3321/j.issn:0001-5733.2006.01.026
    [7] 常利军, 王椿镛, 丁志峰, 等. 2008. 青藏高原东北缘上地幔各向异性研究[J]. 地球物理学报, 51(02): 431-438. doi: 10.3321/j.issn:0001-5733.2008.02.015

    Chang L J, Wang C Y, Ding Z F, et al. 2008. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 51(02): 431-438 (in Chinese). doi: 10.3321/j.issn:0001-5733.2008.02.015
    [8] 常利军, 丁志峰, 王椿镛. 2010. 2010年玉树7.1级地震震源区横波分裂的变化特征[J]. 地球物理学报, 53(11): 2613-2619.

    Chang L J, Ding Z F, Wang C Y. 2010. Variations of shear wave splitting in the 2010 Yushu MS7.1 earthquake region[J]. Chinese Journal of Geophysics, 53(11): 2613-2619(in Chinese).
    [9] 常利军. 2014. 基于横波分裂、GPS和断裂第四纪滑动速率数据研究中国大陆及邻区岩石圈/软流圈动力学特征[D]. 北京: 中国地震局地球物理研究所.

    Chang L J. 2014. Constraining the dynamic characteristics of lithosphere and asthenosphere in Mainland China and its adjacent regions using GPS, Quaternary fault slip rates and shear wave splitting data[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese).
    [10] 常利军, 丁志峰, 王椿镛. 2015a. 2013年芦山MS7.0地震震源区横波分裂的变化特征[J]. 中国科学: 地球科学, 45(2): 161-168.

    Chang L J, Ding Z F, Wang C Y. 2015a. Variations of shear wave splitting in the 2013 Lushan MS7.0 earthquake region[J]. Science China: Earth Sciences, 57(9): 2045-2052 (in Chinese).
    [11] 常利军, 丁志峰, 王椿镛. 2015b. 南北构造带南段上地幔各向异性特征[J]. 地球物理学报, 58(11): 4052-4067.

    Chang L J, Ding Z F, Wang C Y. 2015b. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China[J]. Chinese Journal of Geophysics, 58(11): 4052-4067 (in Chinese).
    [12] Chang L, Flesch L M, Wang C, et al. 2015. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data[J]. Geophysical Research Letters, 42(14): 5813-5819.
    [13] 常利军, 丁志峰, 王椿镛. 2016. 南北构造带北段上地幔各向异性特征[J]. 地球物理学报, 59(11): 4035-4047. doi: 10.6038/cjg20161109

    Chang L J, Ding Z F, Wang C Y. Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China[J]. Chinese Journal of Geophysics, 2016, 59(11): 4035-4047 (in Chinese). doi: 10.6038/cjg20161109
    [14] Chang L, Ding Z, Wang C, et al. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data[J]. Tectonophysics, 699: 93-101.
    [15] 陈安国, 高原, 石玉涛. 2019. 龙门山断裂带域上地壳各向异性及其变化[J]. 地球物理学报, 62(8): 2959-2981. doi: 10.6038/cjg2019M0179

    Chen A G, Gao Y, Shi Y T. 2019. Seismic anisotropy and its variation in the upper crust beneath the Longmen Shan fault zone[J]. Chinese Journal of Geophysics, 62(8): 2959-2981 (in Chinese) . doi: 10.6038/cjg2019M0179
    [16] Chen T, Booth D C, Crampin S, et al. 1987. Shear-wave polarizations near the North Anatolian Fault – III. Observations of temporal changes[J]. Geophysical Journal International, 91(2): 287-311.
    [17] Chen W, Martin M B, Tseng T, et al. 2010. Shear-wave brief ringence and current configuration of converging lithosphere under Tibet[J]. Earth and Planetary Science Letters, 295(1): 297-304.
    [18] Chen Y, Zhang Z, Sun C, et al. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 24(3): 946-957.
    [19] Chen Y, Li W, Yuan X, et al. 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 413: 13-24.
    [20] Christensen N I. 1984. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites[J]. Geophysical Journal International, 76(1): 89-111.
    [21] Crampin S, King D W. 1977. Evidence for anisotropy in the upper mantle beneath Eurasia from the polarization of higher mode seismic surface waves[J]. Geophysical Journal International, 49(1): 59-85.
    [22] Crampin S. 1981. A review of wave motion in anisotropic and cracked elastic-media[J]. Elsevier, 3(4):343-391.
    [23] Crampin S, Evans R, Ucer S B, et al. 1985. Analysis of records of local earthquakes: the Turkish Dilatancy Projects (TDP1 and TDP2)[J]. Geophysical Journal International, 83(1): 1-16.
    [24] Crampin S, Volti T, Stefansson R, et al. 1999. A successfully stress-forecast earthquake[J]. Geophysical Journal International, 138(1): F1-F5.
    [25] Crampin S, Chastin S F. 2003. A review of shear wave splitting in the crack-critical crust[J]. Geophysical Journal International, 155(1): 221-240.
    [26] Crampin S, Peacock S. 2008. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation[J]. Wave Motion, 45(6): 675-722.
    [27] 丁志峰, 曾融生. 1996. 青藏高原横波分裂的观测研究[J]. 地球物理学报, 39(02): 211-220. doi: 10.3321/j.issn:0001-5733.1996.02.008

    Ding Z F, Zeng R S. 1996. Observation and study of shear wave anisotropy in Tibetan Plateau[J]. Chinese Journal of Geophysics, 39(02): 211-220 (in Chinese) . doi: 10.3321/j.issn:0001-5733.1996.02.008
    [28] 丁志峰, 武岩, 王辉, 等. 2008. 2008年汶川地震震源区横波分裂的变化特征[J]. 中国科学(D辑:地球科学), 51(12): 1600-1604.

    Ding Z F, Wu Y, Wang H, et al. 2008. Variations of shear wave splitting in the 2008 Wen-chuan earthquake region[J]. Science China: Earth Sciences, 51(12) : 1600-1604 (in Chinese) .
    [29] Eken T, Tilmann F, Mechie J, et al. 2013. Seismic anisotropy from SKS splitting beneath northeastern Tibet[J]. Bulletin of the Seismological Society of America, 103(6): 3362-3371.
    [30] Flesch L M, Holt W E, Silver P G, et al. 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data[J]. Earth and Planetary Science Letters, 238(1): 248-268.
    [31] Fu Y V, Chen Y J, Li A, et al. 2008. Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements[J]. Geophysical Research Letters, 35(2):1731-1735.
    [32] Fukao Y. 1984. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle[J]. Nature, 309(5970): 695-698.
    [33] Gan W, Zhang P, Shen Z, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8), B08416.
    [34] 高原, 刘希强, 梁维, 等. 2004. 剪切波分裂系统分析方法(SAM)软件系统[J]. 中国地震, (1): 101-107. doi: 10.3969/j.issn.1001-4683.2004.01.012

    Gao Y, Liu X Q, Liang W, et al. 2004. Systematic analysis method of shear-wave splitting: SAM software system[J]. Earthquake Research in China, (1): 101-107 (in Chinese). doi: 10.3969/j.issn.1001-4683.2004.01.012
    [35] 高原,石玉涛,陈安国. 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响[J].科学通报, 63(19):1934-1948.

    Gao Y, Shi Y T, Chen A G. 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake[J]. Chinese Science Bulletin, 63(19): 1934-1948 (in Chinese).
    [36] Gerst A, Savage M K. 2004. Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool[J]. Science, 306(5701): 1543-1547.
    [37] 郭桂红, 张智, 程建武,等. 2015. 青藏高原东北缘地壳各向异性的构造含义[J]. 地球物理学报, 58(11): 4092-4105.

    Guo G H, Zhang Z, Cheng J W, et al. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication[J]. Chinese Journal of Geophysics, 58(11): 4092-4105 (in Chinese) .
    [38] 郭桂红, 武澄泷, 唐国彬, 等. 2019. 青藏高原东北缘壳幔各向异性研究:基于SKS和Pms震相分析[J]. 地球物理学报, 62(5): 1650-1662. doi: 10.6038/cjg2019N0093

    Guo G H, Wu C L, Tang G B, et al. 2019. Seismic anisotropy of the northeastern margin of the Tibetan Plateau derived from analysis of SKS and Pms seismic phases[J]. Chinese Journal of Geophysics, 62(5): 1650-1662 (in Chinese) . doi: 10.6038/cjg2019N0093
    [39] 郭铁龙, 高原. 2020. 剪切波分裂揭示的青藏高原上地壳地震各向异性基本特征[J]. 地球物理学报, 63(3): 1085-1103. doi: 10.6038/cjg2020N0156

    Guo T L, Gao Y. 2020. Seismic anisotropy in the upper crust within Tibetan Plateau revealed by shear-wave splitting[J]. Chinese Journal of Geophysics, 63(3): 1085-1103 (in Chinese) . doi: 10.6038/cjg2020N0156
    [40] 韩明, 李建有 ,徐晓雅, 等. 2017. 按方位叠加接收函数分析青藏高原东南缘的地壳各向异性[J]. 地球物理学报, 60(12): 4537-4556. doi: 10.6038/cjg20171202

    Han M, Li J Y, Xu X Y, et al. 2017. Analysis for crustal anisotropy beneath the southeastern margin of Tibet by stacking azimuthal receiver functions[J]. Chinese Journal of Geophysics, 60(12): 4537-4556 (in Chinese) . doi: 10.6038/cjg20171202
    [41] Hazarika D, Yadav D K, Sriram V, et al. 2013. Upper mantle anisotropy beneath northeast India–Asia collision zone from shear-wave splitting analysis[J]. International Journal of Earth Sciences, 102(7): 2061-2076.
    [42] Herquel G, Tapponnier P, Wittlinger G, et al. 1999. Teleseismic Shear wave splitting and lithospheric anisotropy beneath and across the Altyn Tagh Fault[J]. Geophysical Research Letters, 26(21): 3225-3228.
    [43] 侯增谦, 赵志丹, 高永丰, 等. 2006. 印度大陆板片前缘撕裂与分段俯冲——来自冈底斯新生代火山岩浆作用证据. 岩石学报, 22(4): 1-14.

    Hou Z X, Zhao Z D, Gao Y F, et al. 2006. Tearing and dischronal subduction of the India continental slab: Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet[J]. Acta Petrologica Sinica, 22(4): 1-14 (in Chinese) .
    [44] 黄臣宇, 常利军,丁志峰. 2020. 喜马拉雅东构造结地壳各向异性特征及动力学意义[J]. 地球物理学报,已提交. doi: 10.6038/cjg2020O0321

    Huang C Y, Chang L J, Ding Z F. 2020. Crustal anisotropy characteristics and dynamic significance in the Eastern Himalayan Syntaxis[J]. Chinese Journal of Geophysics, submitted (in Chinese) . doi: 10.6038/cjg2020O0321
    [45] Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 111(B9):B09305.
    [46] Huang W, Ni J, Tilmann F, et al. 2000. Seismic polarization anisotropy beneath the central Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 105(B12):27979-27989.
    [47] Huang Z, Wang L, Xu M, et al. 2007. Shear wave splitting across the Ailao Shan-Red River fault zone, SW China[J]. Geophysical Research Letters, 34(20): 102-120.
    [48] Huang Z, Xu M, Wang L, et al. 2008. Shear wave splitting in the southern margin of the Ordos Block, north China[J]. Geophysical Research Letters, 35(19): 402-411.
    [49] Huang Z, Wang L, Xu M, et al. 2015. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation[J]. Earth and Planetary Science Letters, 432: 354-362.
    [50] 姜枚, 吕庆田, 史大年, 等. 1996. 用天然地震探测青藏高原中部地壳、上地幔结构[J]. 地球物理学报, 39(4): 438-439.

    Jiang M, Lü Q T, Shi D N, et al. 1996. The study on the structure of crust and upper mantle with natural earthquakes in central Tibetan Plateau[J]. Chinese Journal of Geophysics, 39(4): 438-439 (in Chinese) .
    [51] Kind R, Kosarev G L, Makeyeva L, et al. 1985. Observations of laterally inhomogeneous anisotropy in the continental lithosphere[J]. Nature, 318(6044): 358-361.
    [52] Kong F, Wu J, Liu K H, et al. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas[J]. Earth and Planetary Science Letters, 442: 72-79.
    [53] Lei J, Zhao D, Xu X, et al. 2019. Is there a big mantle wedge under eastern Tibet[J]. Physics of the Earth and Planetary Interiors, 292: 100-113.
    [54] Lev E, Long M D, Der Hilst R D, et al. 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation[J]. Earth and Planetary Science Letters, 251(3): 293-304.
    [55] Levin V, Roecker S W, Graham P S, et al. 2008. Seismic anisotropy indicators in Western Tibet: Shear wave splitting and receiver function analysis[J]. Tectonophysics, 462(1): 99-108.
    [56] 李秋生, 高原, 王绪本, 等. 2020. 青藏高原地球物理与大陆动力学研究的新进展[J]. 地球物理学报, 63(3): 789-801. doi: 10.6038/cjg2020O0063

    Li Q S, Gao Y, Wang X B, et al. 2020. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3): 789-801 (in Chinese) . doi: 10.6038/cjg2020O0063
    [57] 廖武林, 丁志峰, 曾融生, 等. 2007. 喜马拉雅地区S波分裂研究[J]. 地球物理学报, 50(5): 1437-1447. doi: 10.3321/j.issn:0001-5733.2007.05.019

    Liao W L,Ding Z F, Zeng R S, et al. 2007. Shear wave splitting in Himalaya[J]. Chinese Journal of Geophysics, 50(5): 1437-1447 (in Chinese) . doi: 10.3321/j.issn:0001-5733.2007.05.019
    [58] Liu H, Niu F. 2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data[J]. Geophysical Journal International, 188(1): 144-164.
    [59] 刘希康, 李媛, 丁志峰, 等. 2020. 2012年9月7日彝良地震震源区横波分裂变化特征分析[J]. 地震, 40(1): 73-83.

    Liu X K; Li Y, Ding Z F, et al. 2020. A study on variation characteristics of shear-wave splitting in the September 7, 2012 Yiliang earthquake region[J]. Earthquake, 40(1): 73-83 (in Chinese).
    [60] 吕庆田, 马开义, 姜枚. 1996. 青藏高原南部下的横波各向异性[J].地震学报, 18(2): 215-223.

    Lü Q T, Ma K Y, Jiang M. 1996. Seismic anisotropy beneathSouthern Tibet[J]. Acta Seismologica Sinica, 18(2): 215-223 (in Chinese).
    [61] Mcnamara D E, Owens T J. 1993. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using moho Ps converted phases [J]. Journal of Geophysical Research: Solid Earth, 98(B7): 12003-12017.
    [62] Mcnamara D E, Owens T J, Silver P G, et al. 1994. Shear wave anisotropy beneath the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 99(B7): 13655-13665.
    [63] 钱旗伟, 吴晶, 刘庚, 等. 2017. 青藏高原东北缘中上地壳介质各向异性及其构造意义[J]. 地球物理学报, 60(6): 2338-2349. doi: 10.6038/cjg20170625

    Qian Q W, Wu J, Liu G, et al. 2017. Anisotropy of middle-upper crust derived from shear-wave splitting in the northeastern Tibetan plateau and tectonic implications[J]. Chinese Journal of Geophysics, 60(6): 2338-2349 (in Chinese). doi: 10.6038/cjg20170625
    [64] Roy S K, Kumar M R, Srinagesh D, et al. 2014. Upper and lower mantle anisotropy inferred from comprehensive SKS and SKKS splitting measurements from India[J]. Earth and Planetary Science Letters, 392: 192-206.
    [65] Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788-790.
    [66] Saikia D, Kumar M R, Singh A, et al. 2018. Mantle deformation in the eastern Himalaya, Burmese arc and adjoining regions[J]. Geochemistry Geophysics Geosystems, 19(11): 4420-4432.
    [67] Sandvol E, Ni J, Kind R, et al. 1997. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone[J]. Journal of Geophysical Research:Solid Earth, 102(B8): 17813-17823.
    [68] Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?[J]. Reviews of Geophysics, 37(1): 65-106.
    [69] Savage M K, Wessel A, Teanby N A, et al. 2010. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand[J]. Journal of Geophysical Research:Solid Earth, 115(B12): B12321.
    [70] 邵若潼, 沈旭章, 张元生. 2019. 青藏高原东北缘甘东南地区地壳各向异性特征及构造意义[J]. 地球物理学报, 62(9): 3340-3353. doi: 10.6038/cjg2019M0635

    Shao R T, Shen X Z, Zhang Y S. 2019. Crustal anisotropy and tectonic implications beneath southeastern Gansu province in northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 62(9): 3340-3353 (in Chinese). doi: 10.6038/cjg2019M0635
    [71] 邵玉平,高原, 戴仕贵, 等. 2017. 四川锦屏水库地区地壳剪切波分裂特征及蓄水影响初探[J]. 地球物理学报, 60(12): 4557-4568. doi: 10.6038/cjg20171203

    Shao Y P, Gao Y, Dai S G, et al. 2017. Seismic shear-wave splitting characteristics in the crust in the area of Jinping reservoir of Sichuan and influences from water impoundment[J]. Chinese Journal of Geophysics, 60(12): 4557-4568(in Chinese). doi: 10.6038/cjg20171203
    [72] 史大年, 董英君, 姜枚,等. 1996. 西藏定日—青海格尔木上地幔各向异性研究[J]. 地质学报, 70(4): 291-297. doi: 10.3321/j.issn:0001-5717.1996.04.001

    Shi D N, Dong Y J, Jiang M,et al. 1996. Shear wave anisotropy of the upper mantle beneath the Tingri of Tibet to Golmud of Qinghai[J]. Acta Geologica Sinica, 70(4): 291-297 (in Chinese). doi: 10.3321/j.issn:0001-5717.1996.04.001
    [73] Shi Y, Gao Y, Wu J, et al. 2009. Crustal seismic anisotropy in Yunnan, Southwestern China[J]. Journal of Seismology, 13(2): 287-299.
    [74] Shi Y, Gao Y, Su Y, et al. 2012. Shear-wave splitting beneath Yunnan area of Southwest China[J]. Earthquake Science, 25(1): 25-34.
    [75] 石玉涛, 高原, 张永久, 等. 2013. 松潘—甘孜地块东部、川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报, 56(2): 481-494. doi: 10.6038/cjg20130212

    Shi Y T, Gao Y, Zhang Y J, et al. 2013. Shear-wave splitting in the crust in Eastern Songpan-Garzê block, Sichuan-Yunnan block and Western Sichuan Basin[J]. Chinese Journal of Geophysics, 56(2): 481-494 (in Chinese). doi: 10.6038/cjg20130212
    [76] Shi Y T, Gao Y, Shen X Z, et al. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics, 774: 228274.
    [77] Silver P G, Chan W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research:Solid Earth, 96(10): 16429-16454.
    [78] Silver P G, Savage M K. 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers[J]. Geophysical Journal International, 119(3): 949-963.
    [79] Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology[J]. Annual Review of Earth and Planetary Sciences, 24(1): 385-432.
    [80] Silver P G, Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy[J]. Nature, 335(6185): 34-39.
    [81] Singh A, Kumar M R, Raju P S, et al. 2006. Shear wave anisotropy of the northeast Indian lithosphere[J]. Geophysical Research Letters, 33(16): 627-642.
    [82] Sol S, Meltzer A, Burgmann R, et al. 2007. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy[J]. Geology, 35(6): 563-566.
    [83] Soto G L, Sandvol E, Ni J, et al. 2012. Significant and vertically coherent seismic anisotropy beneath eastern Tibet[J]. Journal of Geophysical Research:Solid Earth, 117(B5): B05308.
    [84] 孙长青, 陈赟, 高尔根. 2011. 青藏高原东缘强烈盆山相互作用区的地壳各向异性特征及其动力学意义探讨[J]. 地球物理学报, 54(5): 1205-1214. doi: 10.3969/j.issn.0001-5733.2011.05.009

    Sun C Q, Chen Y, GAO E G. 2011. The crustal anisotropy and its geodynamical significance of the strong basin-range interaction zone beneath the east margin of Qinghai-Tibet plateau[J]. Chinese Journal of Geophysics, 54(5): 1205-1214 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.05.009
    [85] 孙长青,雷建设,李聪,等. 2013. 云南地区地壳各向异性及其动力学意义[J].地球物理学报, 56(12):4095-4105. doi: 10.6038/cjg20131214

    Sun C Q, Lei J S, Li C, et al. 2013. Crustal anisotropy beneath the Yunnan region and dynamic implications[J]. Chinese Journal of Geophysics, 56(12): 4095-4105 (in Chinese). doi: 10.6038/cjg20131214
    [86] Sun C Q, Lei J S. 2019. Frequency-dependent Pms splitting measurements across the Longmenshan thrust belt in the eastern Tibetan Plateau[J]. Journal of Asian earth Sciences, 185:104027.1-104027.11.
    [87] Sun Y, Niu F, Liu H, et al. 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 349-350: 186-197.
    [88] Sun Y, Liu J, Zhou K, et al. 2015. Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data[J]. Physics of the Earth and Planetary Interiors, 244: 11-22.
    [89] 太龄雪, 高原, 刘庚, 等. 2015. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性:第一期观测资料的剪切波分裂特征[J]. 地球物理学报, 58(11): 4079-4091.

    Tai L X, Gao Y, Liu G, et al. 2015. Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data: shear-wave splitting from temporary observations of the first phase[J]. Chinese Journal of Geophysics, 58(11): 4079-4091 (in Chinese).
    [90] Teanby N A, Kendall J M, Der Baan M V, et al. 2004. Automation of shear-wave splitting measurements using cluster analysis[J]. Bulletin of the Seismological Society of America, 94(2): 453-463.
    [91] 滕吉文,阮小敏, 张永谦, 等. 2012. 青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹[J]. 岩石学报, 28(12): 4077-4100.

    Teng J W, Yuan X M, Zhang Y Q, et al. 2012. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau[J]. Acta Petrologica Sinica, 28 (12): 4077-4100 (in Chinese).
    [92] 滕吉文, 杨顶辉, 田小波, 等. 2019. 青藏高原深部地球物理探测70年[J]. 中国科学: 地球科学, 49(10): 1546-1564.

    Teng J W, YangD H, Tian X B, et al. 2019. Geophysical investigation progreses of the Qinghai Tibetan plateau in the past 70 years[J]. Scientia Sinica Terrae, 49(10): 1546-1564 (in Chinese).
    [93] 王椿镛, 常利军, 吕智勇, 等. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J]. 中国科学:地球科学, 2007, 37(4): 495-503.

    Wang C Y, Chang L J, Lü Z Y, et al. 2007. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern[J]. Science in China: Earth Sciences, 50(8): 1150~1160 (in Chinese).
    [94] Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications[J]. Geology, 36(5): 363-366.
    [95] 王椿镛, 楼海, 吕智勇, 等. 2008. 青藏高原东部地壳上地幔S波速度结构—下地壳流的深部环境[J]. 中国科学(D辑:地球科学), 38(1): 22-32.

    Wang C Y, Lou H, Lü Z Y, et al. 2008. S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau―Deep environment of lower crustal flow[J]. Science in China Series D: Earth Sciences, 51(2):263-274 (in Chinese).
    [96] Wang C Y, Zhu L, Lou H, et al. 2010. Crustal thicknesses and Poisson’s ratios in the eastern Tibetan Plateau and their tectonic implications[J]. Journal of Geophysical Research:Solid Earth, 115(B11): B11301.
    [97] Wang C Y, Flesch L M, Chang L, et al. 2013. Evidence of active mantle flow beneath South China[J]. Geophysical Research Letters, 40(19): 5137-5141.
    [98] 王椿镛, 李永华, 楼海. 2016. 与青藏高原东北部地球动力学相关的深部构造问题[J]. 科学通报, 61: 2239–2263.

    Wang C Y, Li Y H, Lou H. 2016. Issues on crustal and upper-mantle structures associated with geodynamics in the northeastern Tibetan Plateau[J]. Chinese Science Bulletin, 61: 2239–2263 (in Chinese).
    [99] 王凯悦, 常利军, 丁志峰.喜马拉雅东构造结上地壳各向异性特征[J].地震学报, 2020,出版中. doi: 10.11939/jass.20190074

    Wang K Y, Chang L J, Ding Z F. 2020. Upper crustal anisotropy observed in the eastern Himalayan syntaxis[J]. Acta Seismologica Sinica, in press (in Chinese). doi: 10.11939/jass.20190074
    [100] 王琼, 高原, 石玉涛, 等. 2013. 青藏高原东北缘上地幔地震各向异性:来自SKS、PKS和SKKS震相分裂的证据[J]. 地球物理学报, 56(3): 892-905. doi: 10.6038/cjg20130318

    Wang Q, Gao Y, Shi Y T, et al. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS[J]. Chinese Journal of Geophysics, 56(3): 892-905(in Chinese). doi: 10.6038/cjg20130318
    [101] Wang Q, Niu F, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data[J]. Geophysical Journal International, 204(1): 167-179.
    [102] Weiss T, Siegesmund S, Rabbel W, et al. 1999. Seismic velocities and anisotropy of the lowercontinental crust: A review[J]. Pure and Applied Geophysics, 156(1): 97-122.
    [103] Wolfe C J, Silver P G. 1998. Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations[J]. Journal of Geophysical Research:Solid Earth, 103(B1): 749-771.
    [104] Wu C, Xu T, Badal J, et al. 2015a. Seismic anisotropy across the Kunlun fault and their implications for northward transforming lithospheric deformation in northeastern Tibet[J]. Tectonophysics, 659: 91-101.
    [105] Wu C, Tian X, Xu T, et al. 2019a. Upper-crustal anisotropy of the conjugate strike-slip fault zone in central Tibet analyzed Using local earthquakes and shear-wave splitting upper-crustal anisotropy of the conjugate strike-slip fault zone[J]. Bulletin of the Seismological Society of America, 109(5): 1968-1984.
    [106] Wu C, Tian X, Xu T, et al. 2019b. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere: New evidence based on shear wave splitting measurements[J]. Earth and Planetary Science Letters, 514: 75-83.
    [107] Wu J, Zhang Z, Kong F, et al. 2015b. Complex seismic anisotropy beneath western Tibet and its geodynamic implications[J]. Earth and Planetary Science Letters, 413: 167-175.
    [108] 吴鹏, 高原, 陈安国, 等. 2020. 青藏高原东南缘三江地区上地壳各向异性初步研究[J]. 地球物理学报, 63(3): 1104-1116. doi: 10.6038/cjg2020N0232

    Wu P, Gao Y, Chen A G, et al. 2020. Preliminary study on the anisotropy of the upper crust in the Sanjiang area, southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3): 1104-1116 (in Chinese). doi: 10.6038/cjg2020N0232
    [109] 谢振新, 吴庆举, 张瑞青. 2017. 青藏高原东北缘地壳各向异性及其动力学意义[J]. 地球物理学报, 60(6): 2315-2325. doi: 10.6038/cjg20170623

    Xie Z X, Wu Q J, Zhang R Q. 2017. Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications[J]. Chinese Journal of Geophysics, 60(6): 2315-2325 (in Chinese). doi: 10.6038/cjg20170623
    [110] 徐震, 徐鸣洁, 王良书, 等. 2006. 用接收函数Ps转换波研究地壳各向异性——以哀牢山—红河断裂带为例[J]. 地球物理学报, 49(2): 438-448

    Xu Z, Xu M J, Wang L S, et al. 2006. A study on crustal anisotropy using P to S converted phase of the receiver function: Application to Ailaoshan-Red River fault zone[J]. Chinese Journal of Geophysics, 49 (2): 438-448(in Chinese).
    [111] Yang Y, Zhu L, Su Y, et al. 2015. Crustal anisotropy estimated by splitting of Ps-converted waves on seismogram and an application to SE Tibetan plateau[J]. Journal of Asian Earth Sciences, 106: 216-228.
    [112] 杨溢, 常利军. 2018. 2017年九寨沟MS7.0地震震源区横波分裂变化特征[J]. 地球物理学报, 61(5): 2088-2098. doi: 10.6038/cjg2018M0174

    Yang Y, Chang L J. 2018. Variations of shear wave splitting in the source region of the 2017 Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics, 61(5): 2088-2098(in Chinese). doi: 10.6038/cjg2018M0174
    [113] Yao H, Der Hilst R D, Montagner J, et al. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research:Solid Earth, 115(B12): B12307.
    [114] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibet orogen. Annual Review of Earth and Planet Sciences, 28: 211–280.
    [115] Yu Y, Song J, Liu K H, et al. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. Journal of Geophysical Research:Solid Earth, 120(5): 3208-3218.
    [116] Yu Y, Chen Y J. 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos[J]. Earth and Planetary Science Letters, 455: 1-6.
    [117] 张辉, 高原, 石玉涛, 等. 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报, 55(1): 95-104. doi: 10.6038/j.issn.0001-5733.2012.01.009

    Zhang H, Gao Y, Shi Y T, et al. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau[J]. Chinese Journal of Geophysics, 55(1): 95-104 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.01.009
    [118] Zhao D, Maruyama S, Omori S. 2007. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics[J]. Gondwana Res, 11: 120-131.
    [119] Zhao D. 2009. Multiscale seismic tomography and mantle dynamics[J]. Gondwana Res, 15: 297-323.
    [120] Zhao D, Yu S, Liu X, et al. 2016. Seismic anisotropy tomography: New insight into subduction dynamics[J]. Gondwana Research, 33: 24-43.
    [121] Zhao J, Murodov D, Huang Y, et al. 2014. Upper mantle deformation beneath central-southern Tibet revealed by shear wave splitting measurements[J]. Tectonophysics, 627: 135-140.
    [122] 郑斯华, 高原. 1994. 中国大陆岩石层的方位各向异性[J]. 地震学报, 16 (2): 131-140.

    Zheng S H, Gao Y. 1994. Azimuthal anisotropy of lithosphere in the Chinese continent[J]. Acta Seismologica Sinica, 16(2): 131-140(in Chinese).
    [123] 郑拓, 丁志峰, 常利军, 等. 2017. 汶川地震断裂带科学深钻WFSD-3附近上地壳S波分裂特征[J]. 地球物理学报, 60(5): 1690-1702. doi: 10.6038/cjg20170507

    Zheng T, Ding Z F, Chang L J, et al. 2017. S-wave splitting in upper crust near the scientific drilling WFSD-3 at the Wenchuan earthquake fault zone[J]. Chinese Journal of Geophysics, 60(5): 1690-1702 (in Chinese) . doi: 10.6038/cjg20170507
    [124] 郑拓, 丁志峰, 常利军, 等. 2018. 龙门山断裂带北段南坝地区上地壳S波分裂特征[J]. 地球物理学报, 61(5): 2054-2065. doi: 10.6038/cjg2018L0610

    Zheng T, Ding Z F, Chang L J, et al. 2018. Characteristics of S-wave splitting in upper crust of the Nanba region in the northern Longmenshan fault[J]. Chinese Journal of Geophysics, 61(5): 2054-2065 (in Chinese) . doi: 10.6038/cjg2018L0610
    [125] Zheng T, Ding Z, Gao S S, et al. 2020. Crustal azimuthal anisotropy and deformation beneath the northeastern Tibetan Plateau and adjacent areas: Insights from receiver function analysis[J].Earth and Planetary Science Letters, submitted.
    [126] Zhou Z, Lei J. 2016. Pn anisotropic tomography and mantle dynamics beneath China[J]. Physics of the Earth and Planetary Interiors, 257: 193-204.
  • 加载中
图(8)
计量
  • 文章访问数:  774
  • HTML全文浏览量:  439
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2020-12-07
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回