[1]
|
Abdel-Hamid O, Mohamed A R, Jiang H, et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014, 22(10): 1533-1545. doi: 10.1109/TASLP.2014.2339736
|
[2]
|
Afonso J C, Salajegheh F, Szwillus W, et al. A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets[J]. Geophysical Journal International, 2019, 217(3): 1602-1628. doi: 10.1093/gji/ggz094
|
[3]
|
Ait Laasri E H, Akhouayri E S, Agliz D, et al. Seismic signal classification using multi-layer perceptron neural network[J]. International Journal of Computer Applications, 2013, 79(15): 35-43. doi: 10.5120/13821-1950
|
[4]
|
Akhtar N, Mian A. Nonparametric coupled Bayesian dictionary andclassifier learning for hyperspectral classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 4038-4050. doi: 10.1109/TNNLS.2017.2742528
|
[5]
|
Alavi A H, Gandomi A H. Prediction of principal groundmotion parameters using a hybrid method coupling artificial neural networks and simulated annealing[J]. Computers and Structures, 2011, 89(23): 2176-2194.
|
[6]
|
Araya-Polo M, Jennings J, Adler A, et al. Deep-learning tomography[J]. The Leading Edge, 2018, 37(1): 58-66. doi: 10.1190/tle37010058.1
|
[7]
|
Asencio-Cortés G, Martínez-Álvarez F, Troncoso A, et al. Medium-large earthquake magnitude prediction in Tokyo with artificial neural networks[J]. Neural Computing and Applications, 2017, 28: 1043-1055.
|
[8]
|
Asim K M, Martinezalvarez F, Basit A W, et al. Earthquake magnitude prediction in Hindukush region using machine learning techniques[J]. Natural Hazards, 2017, 85(1): 471-486. doi: 10.1007/s11069-016-2579-3
|
[9]
|
Beckouche S, Ma J. Simultaneous dictionary learning and denoising for seismic data[J]. Geophysics, 2014, 79: A27-A31. doi: 10.1190/geo2013-0382.1
|
[10]
|
Bergen K J, Johnson P A, de Hoop M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323. doi: 10.1126/science.aau0323
|
[11]
|
Bishop C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006: 205-213.
|
[12]
|
Bobin J, Moudden Y, Starck J L, et al. SZ and CMB reconstruction using generalized morphological component analysis[J]. Statistical Methodology, 2008, 5: 307-317. doi: 10.1016/j.stamet.2007.10.003
|
[13]
|
Bobin J, Starck J-L, Sureau F, et al. Sparse component separation for accurate cosmic microwave background estimation[J]. Astronomy and Astrophysics, 2013, 550, A73. doi: 10.1051/0004-6361/201219781
|
[14]
|
Böhning D. Multinomial logistic regression algorithm[J]. Annals of the Institute of Statistical Mathematics, 1992, 44(1): 197-200. doi: 10.1007/BF00048682
|
[15]
|
Böse M, Wenzel F, Erdik M. PreSEIS: a neural network-based approach to earthquake early warning for finite faults[J]. Bulletin of the Seismological Society of America, 2008, 98(1): 366-382. doi: 10.1785/0120070002
|
[16]
|
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
[17]
|
Chen Y K. Automatic microseismic event picking via unsupervised machine learning[J]. Geophysical Journal International, 2020, 222(3): 1750-1764. doi: 10.1093/gji/ggaa186
|
[18]
|
Chen Y K, Ma J, Fomel S. Double-sparsity dictionary for seismic noise attenuation[J]. Geophysics, 2016, 81(2): V103-V116. doi: 10.1190/geo2014-0525.1
|
[19]
|
Cheng M Y, Wu Y W, Syu R F. Seismic assessment of bridge diagnostic in Taiwan using the evolutionary support vector machine inference model ESIM[J]. Applied Artificial Intelligence, 2014, 28(5): 449-469. doi: 10.1080/08839514.2014.905818
|
[20]
|
Contreras-Reyes E, Muñoz-Linford P, Cortés-Rivas V, et al. Structure of the collision zone between the Nazca Ridge and the Peruvian convergent margin: Geodynamic and seismotectonic implications[J]. Tectonics, 2019, 38(9): 3416-3435. doi: 10.1029/2019TC005637
|
[21]
|
Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
|
[22]
|
Cox D R. The Regression Analysis of Binary Sequences[J]. Journal of the Royal Statistical Society,Series B (Methodological), 1958, 21(1): 215-232.
|
[23]
|
Cracknell M J, Reading A M. The upside of uncertainty: Identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines[J]. Geophysics, 2013, 78: WB113-WB126. doi: 10.1190/geo2012-0411.1
|
[24]
|
Cristianini N, Shaw-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[M]. New York: Cambridge University Press, 2000.
|
[25]
|
De Matos M, Osorio P, Johann P. Unsupervised seismic facies analysis using wavelet transform and self-organizing maps[J]. Geophysics, 2007, 72: 9-21.
|
[26]
|
Dokht R M, Kao H, Visser R, et al. Seismic event and phase detection using time-frequency representation and convolutional neural networks[J]. Seismological Research Letters, 2019, 90(2A): 481-490. doi: 10.1785/0220180308
|
[27]
|
Dowla F U, Taylor S R, Anderson R W. Seismic discrimination with artificial neural networks: preliminary results with regional spectral data[J]. Bulletin of the Seismological Society of America, 1990, 80(5): 1346-1373.
|
[28]
|
Draelos T J, Peterson M G, Knox H A, et al. Dynamic tuning of seismic signal detector trigger levels for local networks[J]. Bulletin of the Seismological Society of America, 2018, 108: 1346-1354. doi: 10.1785/0120170200
|
[29]
|
Duda R O, Hart P E, Stork D G. Pattern Classification[M]. Hoboken, New Jersey, USA:Wiley Interscience, 2000.
|
[30]
|
Dysart P S, Pulli J J. Regional seismic event classification at the NORESS array: Seismological measurements and the use of trained neural networks[J]. Bulletin of the Seismological Society of America, 1990, 80(6B): 1910-1933.
|
[31]
|
Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15: 3736-3745. doi: 10.1109/TIP.2006.881969
|
[32]
|
Engan K, Aase S O, Hakon Husoy J. Method of optimal directions for frame design[C]// 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP99 (Cat. No.99CH36258), Phoenix, AZ, USA, 1999, 5: 2443-2446.
|
[33]
|
Esposito A M, D'Auria L, Giudicepietro F, et al. Neural analysis of seismic data: Applications to the monitoring of Mt. Vesuvius[J]. Annals of Geophysics, 2013, 56(4), S0446.
|
[34]
|
Esposito A M, Giudicepietro F, D’Auria L, et al. Unsupervised neural analysis of very-long-period events at Stromboli volcano using the self-organizing maps[J]. Bulletin of the Seismological Society of America, 2008, 98(5): 2449-2459. doi: 10.1785/0120070110
|
[35]
|
Esposito A M, Giudicepietro F, Scarpetta S, et al. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli volcano using neural networks[J]. Bulletin of the Seismological Society of America, 2006, 96(4A): 1230-1240. doi: 10.1785/0120050097
|
[36]
|
Essenreiter R, Karrenbach M, Treitel S. Identification and classification of multiple reflections with self-organizing maps[J]. Geophysical Prospecting, 2001, 49(3): 341-352. doi: 10.1046/j.1365-2478.2001.00261.x
|
[37]
|
Fang L H, Wu Z L, Song K. SeismOlympics[J]. Seismological Research Letters, 2017, 88(6):1429-1430. doi: 10.1785/0220170134
|
[38]
|
Fedorenko Y V, Husebye E S, Ruud B O. Explosion site recognition; neural net discriminator using single three-component stations[J]. Physics of the Earth and Planetary Interiors, 1999, 113(1): 131-142.
|
[39]
|
Fernández-Delgado M, Cernadas E, Barro S, et al. Do we need hundreds of classifiers to solve real world classification problems[J]. Journal of Machine Learning Research, 2014, 15(1): 3133-3181.
|
[40]
|
Galvis I S, Villa Y, Duarte C, et al. Seismic attribute selection and clustering to detect and classify surface waves in multicomponent seismic data by using k-means algorithm[J]. The Leading Edge, 2017, 36: 239-248. doi: 10.1190/tle36030239.1
|
[41]
|
García S R, Romo M P, Mayoral J M. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks[J]. Geofísica Internacional, 2006, 46(1): 51-63.
|
[42]
|
Geng Y, Su L, Jia Y, et al. Seismic events prediction using deep temporal convolution networks[J]. Journal of Electrical and Computer Engineering, 2019, 2019: 1-14.
|
[43]
|
Gentili S, Michelini A. Automatic picking of P- and S-phases using a neural tree[J]. Journal of Seismology, 2006, 10(1): 39-63. doi: 10.1007/s10950-006-2296-6
|
[44]
|
Giacco F, Esposito A M, Scarpetta S, et al. Support vector machines and MLP for automatic classification of seismic signals at stromboli volcano[C] // Neural Nets WIRN09 - Proceedings of the 19th Italian Workshop on Neural Nets. Vietri sul Mare, Salerno, Italy: IOS Press, 2009: 116-123.
|
[45]
|
Goodfellow I, Bengio Y, Courville A, et al. Deep Learning[M]. Cambridge, Massachusetts: MIT Press, 2016.
|
[46]
|
Gutierrez L H, Vasquez L F, Jimenez C A. Fast determination of earthquake depth using seismic records of a single station, implementing machine learning techniques[J]. Revista Ingenieria E Investigacion, 2018, 38(2): 97-103.
|
[47]
|
Haykin S. Neural Networks: A Comprehensive Foundation (2nd Edition)[M]. Upper Saddle River: Prentice Hall, 1998.
|
[48]
|
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, 2016: 770-778.
|
[49]
|
Hibert C, Provost F, Malet J-P, et al. Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm[J]. Journal of Volcanology and Geothermal Research, 2017, 340: 130-142. doi: 10.1016/j.jvolgeores.2017.04.015
|
[50]
|
Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
|
[51]
|
Ho T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832–844. doi: 10.1109/34.709601
|
[52]
|
Hosmer D W, Lemeshow S. Applied Logistic Regression[M]. Hoboken, New Jersey, USA: John Wiley and Sons, Inc., 1989.
|
[53]
|
Jain A K, Murty M N, Flynn P J. Data clustering: A review[J]. ACM Computing Surveys, 1999, 31(3): 264−323. doi: 10.1145/331499.331504
|
[54]
|
Jollife I. Principal Component Analysis[M]. New York: Springer, 1986.
|
[55]
|
Kalyani P. Approaches to partition medical data using clustering algorithms[J]. International Journal of Computer Applications, 2013, 49(23): 7-10.
|
[56]
|
Kaur K, Wadhwa M, Park E K. Detection and identification of seismic P-waves using artificial neural networks[C]// The 2013 International Joint Conference on Neural Networks (IJCNN). Dallas, TX, USA, 2013: 1-6.
|
[57]
|
Kingma D P, Ba J. Adam: A method for stochastic optimization[C]// Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA, USA. 2015.
|
[58]
|
Kleinbaum D G, Klein M. Logistic Regression: A Self Learning Text[M]. New York: Springer, 2010.
|
[59]
|
Klose C. Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data[J]. Computers and Geosciences, 2006, 10(3): 265-277. doi: 10.1007/s10596-006-9022-x
|
[60]
|
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C] // The 14th International Joint Conference on Artificial Intelligence. Montreal: Morgan Kaufmann Publishers Inc, 1995, 14: 1137-1143.
|
[61]
|
Köhler A, Ohrnberger M, Scherbaum F. Unsupervised feature selection and general pattern discovery using Self-Organizing Maps for gaining insights into the nature of seismic wavefields[J]. Computers and Geosciences, 2009, 35(9): 1757-1767. doi: 10.1016/j.cageo.2009.02.004
|
[62]
|
Köhler A, Ohrnberger M, Scherbaum F. Unsupervised pattern recognition in continuous seismic wavefield records using Self-Organizing Maps[J]. Geophysical Journal International, 2010, 182(3): 1619-1630, doi: 10.1111/j.1365-246X.2010.04709.x.
|
[63]
|
Kohonen T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43(1): 59-69. doi: 10.1007/BF00337288
|
[64]
|
Kohonen T, Somervuo P. How to make large self-organizing maps for nonvectorial data[J]. Neural Networks, 2002, 15(114): 945-952.
|
[65]
|
Kong Q K, Allen R M, Schreier L, et al. MyShake: A smartphone seismic network for earthquake early warning and beyond[J]. Science Advances, 2016, 2: e1501055. doi: 10.1126/sciadv.1501055
|
[66]
|
Kong Q K, Trugman D T, Ross Z E, et al. Machine learning in seismology: turning data into insights[J]. Seismological Research Letters, 2019, 90(1): 3-14. doi: 10.1785/0220180259
|
[67]
|
Kriegerowski M, Petersen G M, Vasyura-Bathke H, et al. A deep convolutional neural network for localization of clustered earthquakes based on multistation full waveforms[J]. Seismological Research Letters, 2019, 90(2A): 510-516. doi: 10.1785/0220180320
|
[68]
|
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, 2012: 1097-1105.
|
[69]
|
Kros J F, Lin M, Brown M L. Effects of the neural network s-Sigmoid function on KDD in the presence of imprecise data[J]. Computers and Operations Research, 2006, 33(11): 3136-3149. doi: 10.1016/j.cor.2005.01.024
|
[70]
|
LeCessie S, Van Houwelingen J C. Ridge estimators in logistic regression[J]. Applied Statistics, 1992, 41(1): 191-201. doi: 10.2307/2347628
|
[71]
|
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[C]// Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[72]
|
Li Z, Meier M A, Hauksson E, et al. Machine learning seismic wave discrimination: Application to earthquake early warning[J]. Geophysical Research Letters, 2018, 45: 4773-4779. doi: 10.1029/2018GL077870
|
[73]
|
Li Z H, Tian K, Wang F S, et al. Home damage estimation after disasters using crowdsourcing ideas and convolutional neural networks[C]// 5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016). Shenzhen, 2016: 857-860.
|
[74]
|
刘芳, 蒋一然, 宁杰远, 等. 结合台阵策略的震相拾取深度学习方法[J]. 科学通报, 2020, 65(11):1016-1026. doi: 10.1360/TB-2019-0608Liu F, Jiang Y R, Ning J Y, et al. An array-assisted deep learning approach to seismic phase-picking[J]. Chinese Science Bulletin, 2020: 65(11):1016-1026 (in Chinese). doi: 10.1360/TB-2019-0608
|
[75]
|
Lomax A, Michelini A, Jozinovic D. An investigation of rapid earthquake characterization using single‐station waveforms and a convolutional neural network[J]. Seismological Research Letters, 2019, 90(2A): 517-529. doi: 10.1785/0220180311
|
[76]
|
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Regression. Boston, MA, USA: IEEE Computer Society, 2015: 3431-3440.
|
[77]
|
Maceda L, Llovido J, Satuito A. Categorization of earthquake-related tweets using machine learning approaches [C]// 2018 International Symposium on Computer, Consumer and Control (IS3C). Taichung, Taiwan, 2018:229-232.
|
[78]
|
Malfante M, Mura M D, Metaxian J, et al. Machine learning for volcano-seismic signals: Challenges and perspectives[J]. IEEE Signal Processing Magazine, 2018, 35(2): 20-30. doi: 10.1109/MSP.2017.2779166
|
[79]
|
Martínez-Alvarez J J, Garrigós J, Toledo J, et al. A scalable CNN architecture and its application to short exposure stellar images processing on a HPRC[J]. Neurocomputing, 2015, 151: 91-100. doi: 10.1016/j.neucom.2014.09.071
|
[80]
|
Masotti M, Falsaperla S, Langer H, et al. Application of support vector machine to the classification of volcanic tremor at Etna, Italy[J]. Geophysical Research Letters, 2006, 33: L20304. doi: 10.1029/2006GL027441
|
[81]
|
Maurer W, Dowla F, Jarpe S. Seismic event interpretation using self-organizing neural networks[J]. The International Society for Optical Engineering (SPIE), 1992, 1709: 950-958.
|
[82]
|
McLachlan G J, Krishnan T. The EM Algorithm and Extensions, Second Edition[M]. Hoboken, New Jersey, USA: John Wiley and Sons, Inc., 2007: 77-103.
|
[83]
|
Mojarab M, Memarian H, Zare M, et al. Modeling of the seismotectonic provinces of Iran using the self-organizing map algorithm[J]. Computers and Geosciences, 2014, 67: 150-162. doi: 10.1016/j.cageo.2013.12.007
|
[84]
|
Mousavi S M, Beroza G C. A machine-learning approach for earthquake magnitude estimation[J]. Geophysical Research Letters, 2020, 47: e2019GL085976.
|
[85]
|
Mousavi S M, Horton S P, Langston C A, et al. Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression[J]. Geophysical Journal International, 2016, 207(1): 29-46. doi: 10.1093/gji/ggw258
|
[86]
|
Mousavi S M, Zhu W Q, Ellsworth W, et al. Unsupervised clustering of seismic signals using deep convolutional autoencoders[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1693-1697. doi: 10.1109/LGRS.2019.2909218
|
[87]
|
Moya A, Irikura K. Inversion of a velocity model using artificial neural networks[J]. Computers and Geosciences, 2010, 36(12): 1474-1483. doi: 10.1016/j.cageo.2009.08.010
|
[88]
|
Murat M E, Rudman A J. Automated first arrival picking: a neural network approach[J]. Geophysical Prospecting, 1992, 40(6): 587-604. doi: 10.1111/j.1365-2478.1992.tb00543.x
|
[89]
|
Murphy K P. Machine Learning: A Probabilistic Perspective[M]. Cambridge, Massachusetts: MIT Press, 2012.
|
[90]
|
Musil M, Plešinger A. Discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and Kohonen maps[J]. Bulletin of the Seismological Society of America, 1996, 86(4): 1077-1090.
|
[91]
|
Obara K, Kasahara K, Hori S, et al. A densely distributed high-sensitivity seismograph network in Japan: hi-net by National Research Institute for Earth Science and Disaster Prevention[J]. Review of Scientific Instruments, 2005, 76(2): 021301. doi: 10.1063/1.1854197
|
[92]
|
Ochoa L H, Niño L F, Vargas C A. Fast magnitude determination using a single seismological station record implementing machine learning techniques[J]. Geodesy and Geodynamics, 2018, 9: 34-41. doi: 10.1016/j.geog.2017.03.010
|
[93]
|
Okada Y, Kasahara K, Hori S, et al. Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net—[J]. Earth Planet Space, 2004, 56, xv–xxviii. doi: 10.1186/BF03353076
|
[94]
|
Paitz P, Gokhberg A, Fichtner A. A neural network for noise correlation classification[J]. Geophysical Journal International, 2018, 212(2): 1468-1474. doi: 10.1093/gji/ggx495
|
[95]
|
Patyra M J, Kwon T M. Processing of incomplete fuzzy data using artificial neural networks [C]// Proceedings of the Second IEEE International Conference on Fuzzy Systems. San Francisco, CA, USA, 1993, 1: 429-434.
|
[96]
|
Perol T, Gharbi M, Denolle M. Convolutional neural network for earthquake detection and location[J]. Science Advances, 2018, 4(2), e1700578. doi: 10.1126/sciadv.1700578
|
[97]
|
Plešinger A, Rǔžek B, Boušková A. Statistical interpretation of WEBNET seismograms by artificial neural nets[J]. Studia Geophysica et Geodaetica, 2000, 44(2): 251-271. doi: 10.1023/A:1022119011057
|
[98]
|
Press S J, Wilson S. Choosing between logistic regression and discriminant analysis[J]. Journal of the American Statistical Association, 1978, 73: 699-705. doi: 10.1080/01621459.1978.10480080
|
[99]
|
Provost F, Hibert C, Malet J P. Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier[J]. Geophysical Research Letters, 2017, 44: 113-120. doi: 10.1002/2016GL070709
|
[100]
|
Poulton M M. Neural networks as an intelligence amplification tool: A review of applications[J]. Geophysics, 2002, 67: 979-993. doi: 10.1190/1.1484539
|
[101]
|
Rabin N, Bregman Y, Lindenbaum O, et al. Earthquake-explosion discrimination using diffusion maps[J]. Geophysical Journal International, 2016, 207(3): 1484-1492. doi: 10.1093/gji/ggw348
|
[102]
|
Reddy R, Nair R R. The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan[J]. Journal of Earth System Science, 2013, 122: 1423-1434. doi: 10.1007/s12040-013-0346-3
|
[103]
|
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. doi: 10.1038/s41586-019-0912-1
|
[104]
|
Reynen A, Audet P. Supervised machine learning on a network scale: Application to seismic event classification and detection[J]. Geophysical Journal International, 2017, 210(3): 1394-1409. doi: 10.1093/gji/ggx238
|
[105]
|
Roden R, Smith T, Sacrey D. Geologic pattern recognition from seismic attributes: Principal component analysis and self-organizing maps[J]. Interpretation, 2015, 3(4): SAE59-SAE83. doi: 10.1190/INT-2015-0037.1
|
[106]
|
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234-241.
|
[107]
|
Ross Z E, Meier M, Hauksson E. P-wave arrival picking and first-motion polarity determination with deep learning[J]. Journal of Geophysical Research, 2018, 123(6): 5120-5129.
|
[108]
|
Rouet-Leduc B, Hulbert C, Lubbers N, et al. Machine Learning Predicts Laboratory Earthquakes[J]. Geophysical Research Letters, 2017, 44: 9276-9282. doi: 10.1002/2017GL074677
|
[109]
|
Ruano A E, Madureira G, Barros O, et al. Seismic detection using support vector machines[J]. Neurocomputing, 2014, 135: 273-283. doi: 10.1016/j.neucom.2013.12.020
|
[110]
|
Rubin M J, Camp T, Herwijnen A V, et al. Automatically detecting avalanche events in passive seismic data[C] // 2012 11th International Conference on Machine Learning and Applications. Boca Raton, FL: IEEE, 2012: 13-20.
|
[111]
|
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagation errors[J]. Nature, 1986, 323:533-536. doi: 10.1038/323533a0
|
[112]
|
Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation[J]. Readings in Cognitive Science, 1988, 323(6088): 399-421.
|
[113]
|
Sadeghi M, Babaie-Zadeh M, Jutten C. Dictionary Llearning for sparse representation: A novel approach[J]. IEEE Signal Processing Letters, 2013, 20(12): 1195-1198. doi: 10.1109/LSP.2013.2285218
|
[114]
|
Safavian S R, Landgrebe D. A survey of decision tree classifier methodology[J]. IEEE Transactions on Systems, Man and Cybernetics, 1991, 21(3): 660-674. doi: 10.1109/21.97458
|
[115]
|
Sermanet P, Kavukcuoglu K, Chintala S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013: 3626-3633.
|
[116]
|
Shahnas M H, Yuen D A, Pysklywec R N. Inverse Problems in Geodynamics Using Machine Learning Algorithms[J]. Journal of Geophysical Research: Solid Earth, 2018, 123: 296-310, doi: 10.1002/2017JB014846.
|
[117]
|
Sharma M L, Arora M K. Prediction of seismicity cycles in the Himalayas using artificial neural networks[J]. Acta Geophysica Polonica, 2005, 53(3): 299-309.
|
[118]
|
Sick B, Guggenmos M, Joswig M. Chances and limits of single-station seismic event clustering by unsupervised pattern recognition[J]. Geophysical Journal International, 2015, 201(3): 1801-1813. doi: 10.1093/gji/ggv126
|
[119]
|
Spampinato S, Langer H, Messina A, et al. Short-term detection of volcanic unrest at Mt. Etna by means of a multi-station warning system[J]. Scientific Reports, 2019, 9: 6506. doi: 10.1038/s41598-019-42930-3
|
[120]
|
Tang L, Zhang M, Wen L. Support vector machine classification of seismic events in the Tianshan orogenic belt[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018132.
|
[121]
|
Tarvainen M. Recognizing explosion sites with a self-organizing network for unsupervised learning[J]. Physics of the Earth and Planetary Interiors, 1999, 113(1-4): 143-154. doi: 10.1016/S0031-9201(99)00019-9
|
[122]
|
Titos M, Bueno A, García L, et al. A deep neural networks approach to automatic recognition systems for volcano-seismic events[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1533-1544. doi: 10.1109/JSTARS.2018.2803198
|
[123]
|
Trugman D T, Shearer P M. Strong correlation between stress drop and peak ground acceleration for recent M1-4 earthquakes in the San Francisco bay area[J]. Bulletin of the Seismological Society of America, 2018, 108(2): 929-945. doi: 10.1785/0120170245
|
[124]
|
Ursino A, Langer H, Scarfì L, et al. Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean plateau (southeastern Sicily)[J]. Annals of Geophysics, 2001, 44(4): 703-722.
|
[125]
|
Van der Baan M, Jutten C. Neural networks in geophysical applications[J]. Geophysics, 2000, 65 (4): 1032-1047 doi: 10.1190/1.1444797
|
[126]
|
Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995.
|
[127]
|
Vapnik V. Statistical Learning Theory[M]. New York: John Wiley, 1998.
|
[128]
|
Wang X J, Ma J W. Adaptive dictionary learning for blind seismic data denoising[J]. IEEE Geoence and Remote Sensing Letters, 2019, 99: 1-5.
|
[129]
|
Wang J, Teng T L. Artificial neural network-based seismic detector[J]. Bulletin of the Seismological Society of America, 1995, 85(1): 308-319.
|
[130]
|
Werbos P J. Backpropagation through time: what it does and how to do it[C]. Proceedings of the IEEE, 1990, 78(10): 1550-1560.
|
[131]
|
Werbos P J. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting[M]. New York, USA: John Wiley, 1994.
|
[132]
|
Wu Y, Lin Y Z, Zhou Z, et al. DeepDetect: A cascaded region-based densely connected network for seismic event detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 62-75.
|
[133]
|
奚先, 黄江清. 复杂散射波场的深度学习反演成像法[J]. 地球物理学进展, 2018, 33(6): 2483-2489.Xi X, Huang J Q. Deep learning inversion imaging method for scattered wavefield[J]. Progress in Geophysics, 2018, 33(6): 2483-2489 (in Chinese).
|
[134]
|
奚先, 黄江清. 基于卷积神经网络的地震偏移剖面中散射体的定位和成像[J]. 地球物理学报, 2020, 63(2): 687-714.Xi X, Huang J Q. Location and imaging of scatterers in seismic migration profiles based on convolution neural network[J]. Chinese Journal of Geophysics, 2020, 63(2): 687-714 (in Chinese).
|
[135]
|
Xia K Y, Hilterman F, Hu H. Unsupervised machine learning algorithm for detecting and outlining surface waves on seismic shot gathers[J]. Journal of Applied Geophysics, 2018, 157(2018): 73-86.
|
[136]
|
Xu D, Tian Y. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2: 165-193. doi: 10.1007/s40745-015-0040-1
|
[137]
|
Xu C, Xu X W, Dai F C, et al. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China[J]. Computers and Geosciences, 2012, 46: 317-329. doi: 10.1016/j.cageo.2012.01.002
|
[138]
|
Yilmaz I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Sciences, 2010, 61(4): 821-836. doi: 10.1007/s12665-009-0394-9
|
[139]
|
于子叶, 储日升, 盛敏汉. 深度神经网络拾取地震P波和S波到时[J]. 地球物理学报, 2018, 61(12): 4873-4886.Yu Z Y, Chu R S, Sheng M H. Pick onset time of P and S phase by deep neural network[J]. Chinese Journal of Geophysics, 2018, 61(12): 4873-4886(in Chinese).
|
[140]
|
张正一, 范建柯, 白永良, 等. 中国海—西太平洋地区典型剖面的重-磁-震联合反演研究[J]. 地球物理学报, 2018, 61(7): 2871-2891.Zhang Z Y, Fan J K, Bai Y L, et al. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area[J]. Chinese Journal of Geophysics, 2018, 61(7): 2871-2891.(in Chinese).
|
[141]
|
Zhang G Y, Wang Z Z, Chen Y K. Deep learning for seismic lithology prediction[J]. Geophysical Journal International, 2018, 215(2): 1368-1387.
|
[142]
|
赵明, 陈石, 房立华, 等. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报, 2019, 62(8): 3034-3042.Zhao M, Chen S, Fang L H, et al. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics, 2019, 62(8): 3034-3042(in Chinese).
|
[143]
|
Zhao R, Ouyang W L, Li H S, et al. Saliency detection by multi-context deep learning[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, 2015: 1265-1274.
|
[144]
|
Zhao Y, Takano K. An artificial neural network-based seismic detector[J]. Bulletin of the Seismological Society of America, 1999, 77: 670-680.
|
[145]
|
Zhou Y J, Yue H, Kong Q K, et al. Hybrid event detection and phase-picking algorithm using convolutional and recurrent neural networks[J]. Seismological Research Letters, 2019, 90: 1079-1087. doi: 10.1785/0220180319
|
[146]
|
Zhu W Q, Beroza G C. PhaseNet: A deep-neural-network-based seismic arrival-time picking method[J]. Geophysical Journal International, 2019, 216(1): 261-273.
|
[147]
|
Zhu L C, Liu E T, McClellan J H. Seismic data denoising through multiscale and sparsity-promoting dictionary learning[J]. Geophysics, 2015, 80(6): WD45-WD57. doi: 10.1190/geo2015-0047.1
|
[148]
|
Zhu L C, Liu E T, McClellan J H. Joint seismic data denoising and interpolation with double-sparsity dictionary learning[J]. Journal of Geophysics and Engineering, 2017, 14(4): 802-810. doi: 10.1088/1742-2140/aa6491
|
[149]
|
Zhu W, Mousavi S M, Beroza G C. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9476-9488. doi: 10.1109/TGRS.2019.2926772
|