• ISSN 2097-1893
  • CN 10-1855/P


张贝 Gabriele Morra David A.Yuen HenryM. Tufo MatthewG. Knepley 陈石

引用本文: 张贝, Gabriele Morra, David A.Yuen,Henry M. Tufo,Matthew G. Knepley,陈石. 大数据时代的地球动力学数值计算方法回顾与展望. 地球与行星物理论评,2021,52(1):89-105
Zhang B, Morra G, Yuen D A, Tufo H R, Knepley M G, Chen S. Numerical methods of geodynamics in big data era: Review and outlook. Reviews of Geophysics and Planetary Physics, 2021, 52(1):89-105


doi: 10.19975/j.dqyxx.2020-004
基金项目: 科技部重点研发专项资助项目(2018YFC1504506;2018YFC0603502);中国地震局地球物理研究所基本科研业务费专项资助项目(DQJB20X09);国家自然科学基金资助项目(41774090;U1939205)

    张贝(1985-),男,助理研究员,主要从事计算地球动力学与数值模拟. E-mail:rular099@qq.com

  • 中图分类号: P315

Numerical methods of geodynamics in big data era: Review and outlook

Funds: Supported by the National Key R&D Program of China (2018YFC1504506; 2018YFC0603502) and the Special Fund of the Institute of Geophyiscs, China Earthquake Administration (Grand DQJB20X09) and the National Natural Science Foundation of China (Grand 41774090, U1939205)
  • 摘要: 随着大数据时代的到来,计算地球动力学数值计算方法体系更加完善. 本文系统地回顾了传统数值模拟方法在计算地球动力学领域的应用进展,包括:有限差分法、有限单元法、谱方法和谱元法;并对近年来一些新发展的算法和应用前景进行了综述,如:不连续Galerkin法、小波方法和格子玻尔兹曼方法等. 本综述有助于读者以整体视角了解地球动力学数值计算方法的发展脉络,并对大数据时代下研究适应日益丰富的数据和新算法提供有益参考.


  • 图  1  有限元法模拟的Central Andes俯冲过程(修改自Salomon, 2018).图中有限元法可以使用非规则网格,灵活设置计算模型,其中展示模型计算50000年之后的结果,分别是(a)位移(km);(b)压力(MPa);(c)热流(mW/m2);(d)温度(K)

    Figure  1.  Central Andes subduction process simulated by finite element method (modified from Salomon, 2018). The finite element method can use irregular grid to flexibly set the calculation model, in which the results calculated by the model after 50000 years are shown, respectively: (a) displacement (km); (b) Pressure (MPa); (c) Heat flow (mW/m2); (d) Temperature (K)

    图  2  DGM模拟声波—弹性波传播(修改自Hecht-Nielsen, 1992

    Figure  2.  DGM simulates acoustic wave-elastic wave propagation (modified from Hecht-Nielsen, 1992)

    图  3  小波方法表示的二维图像(Mallat, 1999). (a)原始图像f(N),分辨率N=256×256;(b)原始图像用正交小波分解的系数矩阵<f,Ψkj,n>,k=1,2,3,4,小波尺度因子为2j,大于阈值T的系数用黑点表示;(c)使用尺度因子最大的3组小波系数(N/16个)重建图像;(d)使用最大的N/16个系数重建图像

    Figure  3.  The wavelet method represents a two-dimensional image (Mallat, 1999). (a) Original image f(N), resolution N=256×256; (b) the original image using orthogonal wavelet decomposition coefficient matrix <f,Ψkj,n>, k = 1, 2, 3, 4, wavelet scale factor is 2j, is greater than the threshold value of T coefficient with black spots; (c) Three sets of wavelet coefficients (N/16) with the largest scale factor were used to reconstruct the image; (d) Reconstruct the image using the maximum N/16 coefficients

    图  4  火星表面重力和地形的小波展示(修改自Kido and Yuen, 2003).(a)原始重力;(b)原始地形;(c)不同尺度小波重建的重力;(d)不同尺度小波重建的地形. lw=8、16、32、64对应的尺度分别是424 km、212 km、106 km、53 km

    Figure  4.  A wavelet display for the gravity and topography of Mars (modified from Kido and Yuen, 2003). (a) Original gravity; (b) Original topography; (c) The gravity reconstruction by wavelets of different scales; (d) The topography reconstruction by wavelets of different scales. The corresponding scales of lw=8, 16, 32 and 64 are 424 km, 212 km, 106 km and 53 km respectively.

  • [1] Abboud T, Barbier D. Hi-BoX: A generic library of fast solvers for boundary element methods[C]// 2016 IEEE Conference on Antenna Measurements Applications (CAMA). Syracuse NY USA, 2016: 1-4.
    [2] Asgari A, Moresi L. Multiscale particle-in-cell method: from fluid to solid mechanics. In: Advanced Methods for Practical Applications in Fluid Mechanics[M]. InTech, Croatia, 2012: 185-208.
    [3] Audet P, Mareschal J -C. Wavelet analysis of the coherence between Bouguer gravity and topography: application to the elastic thickness anisotropy in the Canadian Shield[J]. Geophysical Journal International, 2007, 168(1): 287-298. doi: 10.1111/j.1365-246X.2006.03231.x
    [4] Balachandar S, Yuen D A. Three-dimensional fully spectral numerical method for mantle convection with depth-dependent properties[J]. Journal of computational physics, 1994, 113(1): 62-74. doi: 10.1006/jcph.1994.1118
    [5] Balay S, Abhyankar S, Adams M, et al. PETSc Users Manual Revision 3.7[M]. Argonne National Laboratory ANL, Lemont, IL, 2016.
    [6] Barnes J, Hut P. A hierarchical O(NlogN) force-calculation algorithm[J]. Nature, 1986, 324(6096): 446-449. doi: 10.1038/324446a0
    [7] Bauer S, Huber M, Ghelichkhan S, et al. Large-scale simulation of mantle convection based on a new matrix-free approach[J]. Journal of computational science, 2019, 31: 60-76. doi: 10.1016/j.jocs.2018.12.006
    [8] Benedetti I, Aliabadi M H, Davì G. 45. A fast 3D dual boundary element method based on hierarchical matrices[J]. International Journal of Solids and Structures, 2008(7-8): 2355-2376.
    [9] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physics Review, American Physical Society, 1954, 94(3): 511-525.
    [10] Bozdağ E, Peter D, Lefebvre M, et al. Global adjoint tomography: first-generation model[J]. Geophysical Journal International, 2016, 207(3): 1739-1766. doi: 10.1093/gji/ggw356
    [11] Braeck S, Podladchikov Y Y, Medvedev S. Spontaneous dissipation of elastic energy by self-localizing thermal runaway[J]. Physical review. E, Statistical, nonlinear, and soft matter physics, 2009, 80(4 Pt 2): 046105.
    [12] Brogi F, Ripepe M, Bonadonna C. Lattice Boltzmann modeling to explain volcano acoustic source[J]. Scientific reports, 2018, 8(1): 9537. doi: 10.1038/s41598-018-27387-0
    [13] Brune P R, Knepley M G, Smith B F, et al. Composing Scalable Nonlinear Algebraic Solvers[J]. SIAM Review, Society for Industrial and Applied Mathematics, 2015, 57(4): 535-565.
    [14] Buffett B A, Becker T W. Bending stress and dissipation in subducted lithosphere[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B05413.
    [15] Buffett B, Rowley D. Plate bending at subduction zones: Consequences for the direction of plate motions[J]. Earth and Planetary Science Letters, 2006, 245(1-2): 359-364. doi: 10.1016/j.jpgl.2006.03.011
    [16] Burstedde C, Ghattas O, Gurnis M, et al. Scalable adaptive mantle convection simulation on petascale supercomputers[C]// SC'08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, Austin Texas, 2008: 1-15.
    [17] Burstedde C, Stadler G, Alisic L, et al. Large-scale adaptive mantle convection simulation[J]. Geophysical Journal International, 2013, 192(3): 889-906. doi: 10.1093/gji/ggs070
    [18] Cai X-C, Keyes D E. Nonlinearly preconditioned inexact Newton algorithms[J]. SIAM Journal of Scientific Computing, Society for Industrial and Applied Mathematics, 2002, 24(1): 183-200. doi: 10.1137/S106482750037620X
    [19] Capitanio F A, Morra G, Goes S. Dynamics of plate bending at the trench and slab-plate coupling[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(4): 1-15.
    [20] Cazeaux P, Zahm O. A fast boundary element method for the solution of periodic many-inclusion problems via hierarchical matrix techniques[J]. ESAIM: Proceedings and Surveys, 2015, 48: 156-168. doi: 10.1051/proc/201448006
    [21] Chaillat S, Bonnet M. Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics[J]. Wave Motion, 2013, 50(7): 1090-1104. doi: 10.1016/j.wavemoti.2013.03.008
    [22] Chaillat S, Semblat J-F, Bonnet M. A preconditioned 3-D multi-region fast multipole solver for seismic wave propagation in complex geometries[J]. Communications in computational physics, 2012, 11(2): 594-609. doi: 10.4208/cicp.231209.030111s
    [23] Chen Y, Li Y, Valocchi A J, et al. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions[J]. Journal of Contaminant Hydrology, 2018, 212: 14-27. doi: 10.1016/j.jconhyd.2017.09.005
    [24] Choblet G, Čadek O, Couturier F, et al. OEDIPUS: a new tool to study the dynamics of planetary interiors[J]. Geophysical Journal International, 2007, 170(1): 9-30. doi: 10.1111/j.1365-246X.2007.03419.x
    [25] Chorin A J. Numerical study of slightly viscous flow[J]. Journal of fluid mechanics, 1973, 57(4): 785-796. doi: 10.1017/S0022112073002016
    [26] Chorin A J. A numerical method for solving incompressible viscous flow problems[J]. Journal of computational physics, 1997, 135(2): 118-125. doi: 10.1006/jcph.1997.5716
    [27] Christensen U. Convection with pressure- and temperature-dependent non-Newtonian rheology[J]. Geophysical Journal International, 1984, 77(2): 343-384. doi: 10.1111/j.1365-246X.1984.tb01939.x
    [28] Cockburn B, Karniadakis G E, Shu C-W. Discontinuous Galerkin Methods: Theory, Computation and Applications[M]. Berlin: Springer Science & Business Media, 2012.
    [29] Colella P, Woodward P R. The Piecewise Parabolic Method (PPM) for gas-dynamical simulations[J]. Journal of computational physics, 1984, 54(1): 174-201. doi: 10.1016/0021-9991(84)90143-8
    [30] Conrad C P, Hager B H. Effects of plate bending and fault strength at subduction zones on plate dynamics[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17551-17571. doi: 10.1029/1999JB900149
    [31] Dabrowski M, Krotkiewski M, Schmid D W. MILAMIN: MATLAB-based finite element method solver for large problems[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): 1-24.
    [32] Dangla P, Semblat J-F, Xiao H, et al. A simple and efficient regularization method for 3D BEM: Application to frequency-domain elastodynamics[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1916-1927. doi: 10.1785/0120050012
    [33] Davies D R, Wilson C R, Kramer S C. Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q06001.
    [34] Di Ilio G, Chiappini D, Ubertini S, et al. Hybrid lattice Boltzmann method on overlapping grids[J]. Physical Review E, 2017, 95(1-1): 013309.
    [35] Dupont T, Hoffman J, Johnson C, et al. The Fenics Project[M]. Chalmers Finite Element Centre, Chalmers University of Technology, 2003.
    [36] Duretz T, Räss L, Podladchikov Y Y, et al. Resolving thermomechanical coupling in two and three dimensions: spontaneous strain localization owing to shear heating[J]. Geophysical Journal International, 2019, 216(1): 365-379. doi: 10.1093/gji/ggy434
    [37] Duretz T, Souche A, Borst R, et al. The benefits of using a consistent tangent operator for viscoelastoplastic computations in geodynamics[J]. Geochemistry, Geophysics, Geosystems, 2018, 171: 374.
    [38] Erlebacher G, Yuen D A, Dubuffet F. Case study: Visualization and analysis of high Rayleigh number-3D convection in the Earth’s mantle[C]// IEEE Visualization, 2002: 493-496.
    [39] Fang H-R, Saad Y. Two classes of multisecant methods for nonlinear acceleration[J]. Numerical Linear Algebra with Applications, 2009, 16(3): 197-221. doi: 10.1002/nla.617
    [40] Feichtinger C, Donath S, Köstler H, et al. WaLBerla: HPC software design for computational engineering simulations[J]. Journal of Computational Science, 2011, 2(2): 105-112. doi: 10.1016/j.jocs.2011.01.004
    [41] Fichtner A. Full Seismic Waveform Modelling and Inversion[M]. Berlin: Springer Science & Business Media, 2010.
    [42] Fischer P F, Kruse G W, Loth F. Spectral elementmethods for transitional flows in complex geometries[J]. Journal of scientific computing, 2002, 17(1): 81-98.
    [43] Fornberg B. A Practical Guide to Pseudospectral Methods[M]. Cambridge: Cambridge University Press, 1998.
    [44] Fowler A C. A mathematical model of magma transport in the asthenosphere[J]. Geophysical and Astrophysical Fluid Dynamics, 1985, 33(1-4): 63-96. doi: 10.1080/03091928508245423
    [45] Frankel S P. Convergence rates of iterative treatments of partial differential equations[J]. Mathematical Tables and Other Aids to Computation, 1950, 4(30): 65-75. doi: 10.2307/2002770
    [46] Fraters M, Thieulot C, van den Berg A, et al. The Geodynamic World Builder: a solution for complex initial conditions in numerical modeling[J]. Solid Earth Discussions, 2019, 10(5): 1785-1807. doi: 10.5194/se-10-1785-2019
    [47] Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation[J]. Physical review letters, 1986, 56(14): 1505-1508. doi: 10.1103/PhysRevLett.56.1505
    [48] Gerardi G, Ribe N M. Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the aleutian subduction zone[J]. Journal of Geophysical Research, 2018, 123(6): 5227-5248.
    [49] Gerardi G, Ribe N M, Tackley P J. Plate bending, energetics of subduction and modeling of mantle convection: A boundary element approach[J]. Earth and Planetary Science Letters, 2019, 515: 47-57. doi: 10.1016/j.jpgl.2019.03.010
    [50] Gerya T. Introduction to Numerical Geodynamic Modelling[M]. Cambridge: Cambridge University Press, 2019.
    [51] Gharti H N, Langer L, Tromp J. Spectral-infinite-element simulations of earthquake-induced gravity perturbations[J]. Geophysical Journal Internationala, 2019a, 217(1): 451-468. doi: 10.1093/gji/ggz028
    [52] Gharti H N, Langer L, Tromp J. Spectral-infinite-element simulations of coseismic and post-earthquake deformation[J]. Geophysical Journal Internationalb, 2019b, 216(2): 1364-1393. doi: 10.1093/gji/ggy495
    [53] Gharti H N, Tromp J. Spectral-infinite-element simulations of magnetic anomalies[J]. Geophysical Journal International, 2019, 217(3): 1656-1667. doi: 10.1093/gji/ggz107
    [54] Glatzmaier G A. Numerical simulations of mantle convection: Time-dependent, three-dimensional, compressible, spherical shell[J]. Geophysical and Astrophysical Fluid Dynamics, 1988, 43(2): 223-264. doi: 10.1080/03091928808213626
    [55] Glatzmaier G A. Introduction to Modeling Convection in Planets and Stars: Magnetic Field, Density Stratification, Rotation[M]. New Jersey: Princeton University Press, 2013.
    [56] Gmeiner B, Rüde U, Stengel H, et al. Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems[J]. SIAM Journal of Scientific Computing, 2015, 37(2): C143-C168. doi: 10.1137/130941353
    [57] Griffiths D V, Smith I M. Numerical Methods for Engineers, Second Edition[M]. Boca Raton: CRC Press, 2006.
    [58] Guo Z, Shi B, Zheng C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical, 2002, 39(4): 325-342.
    [59] Guzina B B, Pak R Y S. On the analysis of wave motions in a multi-layered solid[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 2001, 54(1): 13-37. doi: 10.1093/qjmam/54.1.13
    [60] Harder H, Hansen U. A finite-volume solution method for thermal convection and dynamo problems in spherical shells[J]. Geophysical Journal International, 2005, 161(2): 522-532. doi: 10.1111/j.1365-246X.2005.02560.x
    [61] He X, Chen S, Doolen G D. A novel thermal model for the lattice boltzmann method in incompressible limit[J]. Journal of computational physics, 1998, 146(1): 282-300. doi: 10.1006/jcph.1998.6057
    [62] Hecht-Nielsen R. Theory of the backpropagation neural network[J]. Neural Networks, 1992: 65-93.
    [63] Hennenfent G, Herrmann F J. Seismic Denoising with nonuniformly sampled curvelets[J]. Computing in Science & Engineering, 2006, 8(3): 16-25.
    [64] Hennenfent G, Herrmann F J. Simply denoise: Wavefield reconstruction via jittered undersampling[J]. Geophysics, 2008, 73(3): V19-V28. doi: 10.1190/1.2841038
    [65] Herman F, Seward D, Valla P G, et al. Worldwide acceleration of mountain erosion under a cooling climate[J]. Nature, 2013, 504(7480): 423-426. doi: 10.1038/nature12877
    [66] Hesthaven J S, Warburton T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[M]. Berlin: Springer Science & Business Media, 2007.
    [67] Heuveline V, Latt J. THE OPENLB PROJECT: AN OPEN SOURCE AND OBJECT ORIENTED IMPLEMENTATION OF LATTICE BOLTZMANN METHODS[J]. International Journal of Modern Physics C, 2007, 18(04): 627-634. doi: 10.1142/S0129183107010875
    [68] Higuera F J, Jiménez J. Boltzmann Approach to Lattice gas simulations[J]. Europhysics Letters, 1989, 9(7): 663-668. doi: 10.1209/0295-5075/9/7/009
    [69] Huang H, Sukop M C, Lu X-Y. Multiphase lattice Boltzmann methods: Theory and application[M]. Wiley-Blackwell, 2015.
    [70] Hwang F-N, Cai X-C. Improving robustness and parallel scalability of Newton method through nonlinear preconditioning[C]// Domain Decomposition Methods in Science and Engineering. Springer Berlin Heidelberg, 2005: 201-208.
    [71] Hwang F-N, Su Y-C, Cai X-C. A parallel adaptive nonlinear elimination preconditioned inexact Newton method for transonic full potential equation[J]. Computers & fluids, 2015, 110: 96-107.
    [72] Igel H. Computational Seismology: A Practical Introduction[M]. Oxford: Oxford University Press, 2017.
    [73] Ismail-Zadeh A, Tackley P. Computational Methods for Geodynamics[M]. Cambridge: Cambridge University Press, 2010.
    [74] Jadamec M A, Billen M I. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge[J]. Nature, 2010, 465(7296): 338-341. doi: 10.1038/nature09053
    [75] Jain C, Rozel A B, Tackley P J, et al. Growing primordial continental crust self-consistently in global mantle convection models[J]. Gondwana Research, 2019, 73: 96-122. doi: 10.1016/j.gr.2019.03.015
    [76] Jarvis G T, Mckenzie D P. Convection in a compressible fluid with infinite Prandtl number[J]. Journal of fluid mechanics, 1980, 96(3): 515-583. doi: 10.1017/S002211208000225X
    [77] Jing G, Zheng Y, Wang L. Consensus of multiagent systems with distance-dependent communication networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2712-2726. doi: 10.1109/TNNLS.2016.2598355
    [78] John V, Knobloch P, Novo J. Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?[J]. Computing and Visualization in Science, 2018, 19(5): 47-63.
    [79] Jolliffe I. Principal component analysis[M]. Berlin Heidelberg: Springer, 2011.
    [80] Kageyama A, Sato T. “Yin-Yang grid”: An overset grid in spherical geometry[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(9): Q09005.
    [81] Kameyama M, Kageyama A, Sato T. Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity[J]. Journal of computational physics, 2005, 206(1): 162-181. doi: 10.1016/j.jcp.2004.11.030
    [82] Kameyama M, Kageyama A, Sato T. Multigrid-based simulation code for mantle convection in spherical shell using Yin–Yang grid[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1): 19-32.
    [83] Kang Q, Lichtner P C, Zhang D. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B05203.
    [84] Kido M, Yuen D A. Mapping the admittance and correlation functions on the Martian surface using a spherical wavelet fiido MJ][J]. Physics of the Earth and Planetary Interiors, 2003, 135(1): 1-16. doi: 10.1016/S0031-9201(02)00176-0
    [85] Kiss D, Podladchikov Y, Duretz T, et al. Spontaneous generation of ductile shear zones by thermal softening: Localization criterion, 1D to 3D modelling and application to the lithosphere[J]. Earth and planetary science letters, 2019, 519: 284-296. doi: 10.1016/j.jpgl.2019.05.026
    [86] Klawonn A, Lanser M, Rheinbach O, et al. Nonlinear FETI-DP and BDDC methods: Aunified framework and parallel results[J]. SIAM Journal of Scientific Computing, 2017, 39(6): C417-C451. doi: 10.1137/16M1102495
    [87] Kohl N, Thönnes D, Drzisga D, et al. The HyTeG finite-element software framework for scalable multigrid solvers[J]. International Journal of Parallel, 2019, 34(5): 477-496.
    [88] Komatitsch D, Vilotte J-P. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 1998, 88(2): 368-392.
    [89] Kronbichler M, Heister T, Bangerth W. High accuracy mantle convection simulation through modern numerical methods[J]. Geophysics Journal International, 2012, 191: 12-29. doi: 10.1111/j.1365-246X.2012.05609.x
    [90] Krüger T, Kusumaatmaja H, Kuzmin A, et al. The lattice Boltzmann method[J]. Springer International Publishing, 2017, 10(978-3): 4-15.
    [91] Lagrava D, Malaspinas O, Latt J, et al. Advances in multi-domain lattice Boltzmann grid refinement[J]. Journal of Computational Physics, 2012, 231(14): 4808-4822. doi: 10.1016/j.jcp.2012.03.015
    [92] Lanzkron P J, Rose D J, Wilkes J T. An analysis of approximate nonlinear elimination[J]. SIAM Journal of Scientific Computing, 1996, 17(2): 538-559. doi: 10.1137/S106482759325154X
    [93] Larsen T B, Yuen D A, Moser J, et al. A high-order finite-difference method applied to large Rayleigh number mantle convection[J]. Geophysical and Astrophysical Fluid Dynamics, 1997, 84(1-2): 53-83. doi: 10.1080/03091929708208973
    [94] Leclaire S, Parmigiani A, Malaspinas O, et al. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media[J]. Physical Review E, 2017, 95(3-1): 033306.
    [95] Leng W, Zhong S. Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(4): Q04006.
    [96] Li Z H, Di Leo J F, Ribe N M. Subduction-induced mantle flow, finite strain, and seismic anisotropy: Numerical modeling[J]. Journal of geophysical research, 2014, 119(6): 5052-5076.
    [97] Li Z-H, Ribe N M. Dynamics of free subduction from 3-D boundary element modeling[J]. Journal of Geophysical Research, 2012, 117: B06408.
    [98] Liu S, Zhong Z, Takbiri-Borujeni A, et al. A case study on homogeneous and heterogeneous reservoir porous media reconstruction by using generative adversarial networks[J]. Energy Procedia, 2019, 158: 6164-6169. doi: 10.1016/j.egypro.2019.01.493
    [99] Luo H, Luo L Q, Nourgaliev R, et al. A reconstructed discontinuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids[J]. Journal of Computational Physics, 2010, 229(19): 6961-6978.
    [100] Luporini F, Louboutin M, Lange M, et al. Architecture and performance of Devito, a system for automated stencil computation[J]. ACM Transactions on Mathematical Software, 2020, 46(1): 1-28.
    [101] Lynch D R. Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course[M]. Berlin: Springer Science & Business Media, 2004.
    [102] Machetel P, Yuen D A. The onset of time-dependent convection in spherical shells as a clue to chaotic convection in the Earth's mantle[J]. Geophysical Research Letters, 1986, 13(13): 1470-1473. doi: 10.1029/GL013i013p01470
    [103] MacNeice P, Olson K M, Mobarry C, et al. PARAMESH: A parallel adaptive mesh refinement community toolkit[J]. Computer Physics Communications, 2000, 126(3): 330-354. doi: 10.1016/S0010-4655(99)00501-9
    [104] Mai P M, Schorlemmer D, Page M, et al. The earthquake-source inversion validation (SIV) project[J]. Seismological Research Letters, 2016, 87(3): 690-708. doi: 10.1785/0220150231
    [105] Malevsky A V. Spline-characteristic method for simulation of convective turbulence[J]. Journal of Computational Physics, 1996, 123(2): 466-475. doi: 10.1006/jcph.1996.0037
    [106] Malevsky A V, Yuen D A. Plume structures in the hard-turbulent regime of three-dimensional infinite Prandtl number convection[J]. Geophysical Research Letters, 1993, 20(5): 383-386. doi: 10.1029/93GL00293
    [107] Mallat S. A Wavelet Tour of Signal Processing[M]. Elsevier, 1999.
    [108] Manga M, Stone H A. Low Reynolds number motion of bubbles, drops and rigid spheres through fluid-fluid interfaces[J]. Journal of Fluid Mechanics, 1995, 287: 279-298. doi: 10.1017/S0022112095000954
    [109] Margrave G F, Lamoureux M P. Numerical methods of exploration seismology: with algorithms in MATLAB[M]. Cambridge: Cambridge University Press, 2019.
    [110] May D A, Moresi L. Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1): 33-47.
    [111] May D A, Schellart W P, Moresi L. Overview of adaptive finite element analysis in computational geodynamics[J]. Journal of Geodynamics, Elsevier, 2013, 70: 1-20. doi: 10.1016/j.jog.2013.04.002
    [112] McKENZIE D A N. The Generation and Compaction of Partially Molten Rock[J]. Journal of Petrology, 1984, 25(3): 713-765. doi: 10.1093/petrology/25.3.713
    [113] McKenzie D P, Roberts J M, Weiss N O. Convection in the Earth's mantle: towards a numerical simulation[J]. Journal of fluid mechanics, 1974, 62(3): 465-538. doi: 10.1017/S0022112074000784
    [114] Middleton R S, William Carey J, Currier R P, et al. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015, 147: 500-509. doi: 10.1016/j.apenergy.2015.03.023
    [115] Mora P, Morra G, Yuen D A. A concise python implementation of the lattice Boltzmann method on HPC for geo-fluid flow[J]. Geophysical Journal International, 2020, 220(1): 682-702. doi: 10.1093/gji/ggz423
    [116] Mora P, Yuen D A. Simulation of plume dynamics by the Lattice Boltzmann Method[J]. Geophysical Journal International, 2017, 210(3): 1932-1937. doi: 10.1093/gji/ggx279
    [117] Mora P, Yuen D A. Comparison of convection for Reynolds and Arrhenius temperature dependent viscosities[J]. Fluid Mechanics Research International Journal, 2018, 2(3): 99-107.
    [118] Moresi L, Dufour F, Mühlhaus H-B. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[J]. Journal of computational physics, 2003, 184(2): 476-497. doi: 10.1016/S0021-9991(02)00031-1
    [119] Moresi L-N, Solomatov V S. Numerical investigation of 2D convection with extremely large viscosity variations[J]. Physics of Fluids, 1995, 7(9): 2154-2162. doi: 10.1063/1.868465
    [120] Morra G. Pythonic Geodynamics[M].Springer, 2018.
    [121] Morra G, Chatelain P, Tackley P, et al. Large scale three-dimensional boundary element simulation of subduction[J]. Computational Science, 2007: 1122-1129.
    [122] Morra G, Chatelain P, Tackley P, et al. Earth curvature effects on subduction morphology: Modeling subduction in a spherical setting[J]. Acta Geotechnica, 2009, 4(2): 95-105. doi: 10.1007/s11440-008-0060-5
    [123] Morra G, Regenauer-Lieb K. A coupled solid–fluid method for modelling subduction[J]. Philosophical Magazine, 2006, 86(21-22): 3307-3323. doi: 10.1080/14786430500256359
    [124] Morra G, Yuen D A, Lee S-M, et al. Source of the cenozoic volcanism in central Asia. In: AGU Geophysical Monograph(ed) Subduction Dynamics: From Mantle Flow to Mega Disasters[M]. John Wiley & Sons, Inc., 2015, 211: 97-113.
    [125] Ogawa M, Schubert G, Zebib A. Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity[J]. Journal of Fluid Mechanics, 1991, 233: 299-328. doi: 10.1017/S0022112091000496
    [126] Omlin S, Räss L, Podladchikov Y Y. Simulation of three-dimensional viscoelastic deformation coupled to porous fluid flow[J]. Tectonophysics, 2018, 746: 695-701. doi: 10.1016/j.tecto.2017.08.012
    [127] Oosterlee C W, Lorenz F J G. Multigrid methods for the Stokes system[J]. Computing in Science Engineering, 2006, 8(6): 34-43. doi: 10.1109/MCSE.2006.115
    [128] Oosterlee C W, Washio T. Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows[J]. SIAM Journal of Scientific Computing, 2000, 21(5): 1670-1690. doi: 10.1137/S1064827598338093
    [129] Parmentier E M, Turcotte D L, Torrance K E. Numerical experiments on the structure of mantle plumes[J]. Journal of Geophysical Research, 1975, 80(32): 4417-4424. doi: 10.1029/JB080i032p04417
    [130] Parmigiani A, Degruyter W, Leclaire S, et al. The mechanics of shallow magma reservoir outgassing[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2887-2905. doi: 10.1002/2017GC006912
    [131] Parmigiani A, Faroughi S, Huber C, et al. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust[J]. Nature, 2016, 532(7600): 492-495. doi: 10.1038/nature17401
    [132] Patankar S. Numerical Heat Transfer and Fluid Flow[M]. Taylor & Francis, 2018.
    [133] Phillips P J. Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results[D]. Austin, TX, USA: University of Texas at Austin, 2005.
    [134] Phillips T N, Davies J H, Oldham D. Towards global SEM mantle convection simulations on polyhedral-based grids[J]. Journal of Computational and Applied Mathematics, 2019, 348: 48-57. doi: 10.1016/j.cam.2018.08.042
    [135] Popov A, Kaus B. LaMEM (Lithosphere and Mantle Evolution Model): advancing a staggered-grid finite difference version of the code[A]. ui.adsabs.harvard.edu, 2013: EGU2013-7761.
    [136] Pozrikidis C. A Practical Guide to Boundary Element Methods with the Software Library BEMLIB[M]. CRC Press, 2002.
    [137] Pradana B, Fauzi U. Three-dimensional modeling of multiphase fluid flow with linear temperature gradients in porous media using lattice Boltzmann method Rothman-Keller[J]. Journal of Physics, 2019, 1245: 012026.
    [138] Prieto G A, Florez M, Barrett S A, et al. Seismic evidence for thermal runaway during intermediate-depth earthquake rupture[J]. Geophysical Research Letters, 2013, 40(23): 6064-6068. doi: 10.1002/2013GL058109
    [139] Qian Y H, D'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. EPL, IOP Publishing, 1992, 17(6): 479-484.
    [140] Räss L, Duretz T, Podladchikov Y Y, et al. M2Di: Concise and efficient MATLAB 2-DS tokes solvers using the Finite Difference Method[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(2): 755-768. doi: 10.1002/2016GC006727
    [141] Räss L, Simon N S C, Podladchikov Y Y. Spontaneous formation of fluid escape pipes from subsurface reservoirs[J]. Scientific Reports, 2018, 8(1): 11116. doi: 10.1038/s41598-018-29485-5
    [142] Räss L, Duretz T, Podladchikov Y Y. Resolving hydromechanical coupling in two and three dimensions: spontaneous channelling of porous fluids owing to decompaction weakening[J]. Geophysical Journal International, 2019, 218(3): 1591-1616. doi: 10.1093/gji/ggz239
    [143] Ratcliff J T, Schubert G, Zebib A. Steady tetrahedral and cubic patterns of spherical shell convection with temperature-dependent viscosity[J]. Journal of Geophysical Research, 1996, 101(B11): 25473-25484. doi: 10.1029/96JB02097
    [144] Regenauer-Lieb K, Yuen D A. Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere[J]. Geophysical Research Letters, 1998, 25(14): 2737-2740. doi: 10.1029/98GL02056
    [145] Regenauer-Lieb K, Yuen D A, Branlund J. The initiation of subduction: criticality by addition of water?[J]. Science, 2001, 294(5542): 578-580. doi: 10.1126/science.1063891
    [146] Reis T. The Lattice Boltzmann Method for Fluid Flows[D]. University of Wales Aberystwyth, 2003.
    [147] Richtmyer R D, Morton K W. Difference Methods for Initial-value Problems[J]. Interscience, New York, 1967.
    [148] Rozel A, Golabek G J, Näf R, et al. Formation of ridges in a stable lithosphere in mantle convection models with a viscoplastic rheology[J]. Geophysical research letters, 2015, 42(12): 4770-4777. doi: 10.1002/2015GL063483
    [149] Saad Y, Schultz M H. Conjugate gradient-like algorithms for solving nonsymmetric linear systems[J]. Mathematics of Computation, 1985, 44(170): 417-424. doi: 10.1090/S0025-5718-1985-0777273-9
    [150] Salomon C. Finite element modelling of the geodynamic processes of the Central Andes subduction zone: A reference model[J]. Geodesy and Geodynamics, 2018, 9(3): 246-251. doi: 10.1016/j.geog.2017.11.007
    [151] Salvadori A. Analytical integrations in 3D BEM for elliptic problems: Evaluation and implementation[J]. International Journal for Numerical Methods in Engineering, 2010, 84(5): 505-542. doi: 10.1002/nme.2906
    [152] Schaefer L, Ikeda M, Bao J. The Lattice Boltzmann Equation Method for Complex Flows[C]// ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers Digital Collection, 2013: 687-699.
    [153] Schmalholz S M, Duretz T. Impact of grain size evolution on necking in calcite layers deforming by combined diffusion and dislocation creep[J]. Journal of Structural Geology, 2017, 103: 37-56. doi: 10.1016/j.jsg.2017.08.007
    [154] Schmieschek S, Shamardin L, Frijters S, et al. LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids[J]. Computer Physics Communications, 2017, 217: 149-161. doi: 10.1016/j.cpc.2017.03.013
    [155] Schornbaum F, Rüde U. Massively Parallel Algorithms for the Lattice Boltzmann Method on NonUniform Grids[J]. SIAM Journal on Scientific Computing, 2016, 38(2): C96-C126. doi: 10.1137/15M1035240
    [156] Scott D R, Stevenson D J. Magma ascent by porous flow[J]. Journal of Geophysical Research, 1986, 91(B9): 9283. doi: 10.1029/JB091iB09p09283
    [157] Semblat J. F. Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media[J]. International Journal of Geomechanics, 2011, 11(6): 440-448. doi: 10.1061/(ASCE)GM.1943-5622.0000023
    [158] Shahnas M H, Yuen D A, Pysklywec R N. Inverse problems in geodynamics using machine learning llgorithms[J]. Journal of Geophysical Research, 2018, 123(1): 296-310.
    [159] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. doi: 10.1103/PhysRevE.47.1815
    [160] Shan X. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J]. Physical Review E, 1997, 55(3): 2780-2788. doi: 10.1103/PhysRevE.55.2780
    [161] Shearer P M. Introduction to Seismology[M]. Cambridge: Cambridge University Press, 2019.
    [162] Shukla K, Chan J, Maarten V, et al. A weight-adjusted discontinuous Galerkin method for the poroelastic wave equation: Penalty fluxes and micro-heterogeneities[J]. Journal of Computational Physics, 2020, 43: 109061.
    [163] Simo J C, Hughes T J R. Computational Inelasticity[M]. New York: Springer, 2000.
    [164] Sioshansi R, Conejo A J. Optimization in Engineering: Models and Algorithms[M]. Springer, 2019.
    [165] Sizova E, Gerya T, Stüwe K, et al. Generation of felsic crust in the Archean: a geodynamic modeling perspective[J]. Precambrian Research, 2015, 271: 198-224. doi: 10.1016/j.precamres.2015.10.005
    [166] Skarbek R M, Rempel A W. Dehydration-induced porosity waves and episodic tremor and slip[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 442-469. doi: 10.1002/2015GC006155
    [167] So B D, Yuen D A, Lee S M. An efficient implicit-explicit adaptive time stepping scheme for multiple-time scale problems in shear zone development[J]. Geochemistry, Geophysics, Geosystems, Wiley Online Library, 2013, 14(9): 3462-3478. doi: 10.1002/ggge.20216
    [168] Spiegelman M, Cox K G, McKenzie D P, et al. Physics of melt extraction: theory, implications and applications[J]. Philosophical Transactions of the Royal Society of London, 1993, 342(1663): 23-41.
    [169] Stadler G, Gurnis M, Burstedde C, et al. The dynamics of plate tectonics and mantle flow: from local to global scales[J]. Science, 2010, 329(5995): 1033-1038. doi: 10.1126/science.1191223
    [170] Stein S, Wysession M. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. John Wiley & Sons, 2009.
    [171] Stemmer K, Harder H, Hansen U. A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle[J]. Physics of the Earth and Planetary Interiors, 2006, 157(3): 223-249.
    [172] Succi S, Succi S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter[M]. Oxford: Oxford University Press, 2018.
    [173] Sulsky D, Chen Z, Schreyer H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1): 179-196.
    [174] Tackley P J. Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection[J]. Geophysical Research Letters, 1993, 20(20): 2187-2190. doi: 10.1029/93GL02317
    [175] Tackley P J. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(8): 2000GC000043.
    [176] Tackley P J. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1): 7-18.
    [177] Thielmann M, Rozel A, Kaus B J P, et al. Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating[J]. Geology, 2015, 43(9): 791-794. doi: 10.1130/G36864.1
    [178] Thompson T B, Meade B J. Boundary element methods for earthquake modeling with realistic 3D geometries[J]. EarthArXiv, 2019a.
    [179] Thompson T B, Meade B J. Earthquake cycle modeling of the Cascadia subduction zone[J]. EarthArXiv, 2019b.
    [180] Tornberg A-K, Greengard L. A fast multipole method for the three-dimensional Stokes equations[J]. Journal of Computational Physics, 2008, 227(3): 1613-1619. doi: 10.1016/j.jcp.2007.06.029
    [181] Torrance K E, Turcotte D L. Thermal convection with large viscosity variations[J]. Journal of Fluid Mechanics, 1971, 47(1): 113-125. doi: 10.1017/S002211207100096X
    [182] Tsuchiya J, Umemoto K. First-Principles Determination of the Dissociation Phase Boundary of Phase H MgSiO4H2[J]. Geophysical Research Letters, 2019, 46(13): 7333-7336. doi: 10.1029/2019GL083472
    [183] Tsuboi S, Ando K, Miyoshi T, et al. A 1.8 trillion degrees-of-freedom, 1.24 petaflops global seismic wave simulation on the K computer[J]. The International Journal of High Performance Computing Applications, 2016, 30(4): 411-422. doi: 10.1177/1094342016632596
    [184] Turcotte D L, Schubert G. Geodynamics[M]. Cambridge: Cambridge University Press, 2002.
    [185] Turcotte D L, Torrance K E, Hsui A T. Convection in the Earth's mantle[J]. Methods in Computational Physics, 1973, 13: 431-454.
    [186] Udias A, Buforn E. Principles of seismology[M]. Cambridge: Cambridge University Press, 2017.
    [187] Umemoto K, Wentzcovitch R M, Allen P B. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets[J]. Science, 2006, 311(5763): 983-986. doi: 10.1126/science.1120865
    [188] van den Berg A, Segal G, Yuen D A. SEPRAN: A versatile finite-element package for a wide variety of problems in geosciences[J]. Journal of Earth Science, 2015, 26(1): 89-95. doi: 10.1007/s12583-015-0508-0
    [189] van den Berg A P, Yuen D A, Umemoto K, et al. Mass-dependent dynamics of terrestrial exoplanets using ab initio mineral properties[J]. Icarus, 2019, 317: 412-426. doi: 10.1016/j.icarus.2018.08.016
    [190] Van Kan J, Segal A, Vermolen F. Numerical Methods in Scientific Computing. Department of Applied Mathematics[M]. Netherlands: Delft University of Technology, 2008.
    [191] Wang J, Wang D, Lallemand P, et al. Lattice Boltzmann simulations of thermal convective flows in two dimensions[J]. Computers & Mathematics with Applications, 2013, 65(2): 262-286.
    [192] Xie C, Raeini A Q, Wang Y, et al. An improved pore-network model including viscous coupling effects using direct simulation by the lattice Boltzmann method[J]. Advances in Water Resources, 2017, 100: 26-34. doi: 10.1016/j.advwatres.2016.11.017
    [193] Yarushina V M, Podladchikov Y Y. (De) compaction of porous viscoelastoplastic media: Model formulation[J]. Journal of Geophysical Research, 2015, 120(6): 4146-4170.
    [194] Yarushina Viktoriya M., Podladchikov Yuri Y., Minakov Alexander, et al. On the mechanisms of stress-triggered seismic events during fluid injection[J]. Poromechanics VI, 2017: 795-800.
    [195] Yavneh I. Why multigrid methods are so efficient[J]. Computing in Science & Engineering, aip.scitation.org, 2006, 8(6): 12-22.
    [196] Ye R, de Hoop M V, Petrovitch C L, et al. A discontinuous Galerkin method with a modified penalty flux for the propagation and scattering of acousto-elastic waves[J]. Geophysical Journal International, 2016, 205(2): 1267-1289. doi: 10.1093/gji/ggw070
    [197] Yoshida M, Kageyama A. Application of the Yin-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell[J]. Geophysical Research Letters, 2004, 31(12): L12609.
    [198] Zhang S, Yuen D A. The influences of lower mantle viscosity stratification on 3D spherical-shell mantle convection[J]. Earth and Planetary Science Letters, 1995, 132(1): 157-166.
    [199] Zhang S, Yuen D A. Intense local toroidal motion generated by variable viscosity compressible convection in 3-D spherical-shell[J]. Geophysical Research Lettersa, 1996a, 23(22): 3135-3138. doi: 10.1029/96GL03029
    [200] Zhang S, Yuen D A. Various influences on plumes and dynamics in time-dependent, compressible mantle convection in 3-D spherical shell[J]. Physics of the Earth and Planetary Interiorsb, 1996b, 94(3): 241-267.
    [201] Zhao B, MacMinn C W, Primkulov B K, et al. Comprehensive comparison of pore-scale models for multiphase flow in porous media[C]// Proceedings of the National Academy of Sciences of the United States of America. National Acad Sciences, 2019, 116(28): 13799-13806.
    [202] Zhong S, Yuen D A, Moresi L N, et al. Numerical methods for mantle convection[J]. Treatise on Geophysics, 2007, 7: 227-252. doi: 10.1016/B978-044452748-6/00118-8
    [203] Zhong S, Zuber M T, Moresi L, et al. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection[J]. Journal of Geophysical Research, 2000, 105(B5): 11063-11082. doi: 10.1029/2000JB900003
    [204] Zhu B, Yan H, Zhong Y, et al. Relativistic HPIC-LBM and its application in large temporal-spatial turbulent magnetic reconnection. Part I. model development and validation[J]. Applied Mathematical Modelling, 2020a, 78: 932-967. doi: 10.1016/j.apm.2019.09.043
    [205] Zhu B, Yan H, Zhong Y, et al. Relativistic HPIC-LBM and its application in large temporal-spatial turbulent magnetic reconnection. Part II. Role of turbulence in the flux rope interaction[J]. Applied Mathematical Modelling, 2020b, 78: 968-988. doi: 10.1016/j.apm.2019.05.027
    [206] Zienkiewicz O C, Taylor R L, Sherwin S J, et al. On discontinuous Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 2003, 58(8): 1119-1148. doi: 10.1002/nme.884
    [207] Zobin V M. Introduction to Volcanic Seismology[M]. Elsevier, 2012.
    [208] Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598. doi: 10.1063/1.869307
  • 加载中
  • 文章访问数:  2816
  • HTML全文浏览量:  1245
  • PDF下载量:  332
  • 被引次数: 0
  • 收稿日期:  2020-06-25
  • 录用日期:  2020-09-09
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-01-01