• ISSN 2097-1893
  • CN 10-1855/P

年尺度地震预测模型的国际研究现状

尹凤玲 蒋长胜 姜丛

引用本文: 尹凤玲,蒋长胜,姜丛. 年尺度地震预测模型的国际研究现状. 地球与行星物理论评,2021,52(1):54-60
Yin F L, Jiang C S, Jiang C. Research progress of next-year earthquake forecasts in the world. Reviews of Geophysics and Planetary Physics, 2021, 52(1):54-60

年尺度地震预测模型的国际研究现状

doi: 10.19975/j.dqyxx.2020-002
基金项目: 国家重点研发计划课题资助项目(2018YFC1503400);中国地震局重大政策理论与实践问题研究课题资助(CEAZY2020ZL06)
详细信息
    作者简介:

    尹凤玲(1984-),女,副研究员,主要从事地球动力学数值模拟和地震危险性分析研究. E-mail:yinfengling@cea-igp.ac.cn

    通讯作者:

    蒋长胜(1979-),男,博士生导师、研究员,主要从事地震监测技术和地震预测理论研究. E-mail:jiangcs@cea-igp.ac.cn

  • 中图分类号: P315.75

Research progress of next-year earthquake forecasts in the world

Funds: Supported by the National Key R&D Program of China (Grant No. 2018YFC1503400) and Program of Major Policy Theory and Practice Issues of China Earthquake Administration (Grant No. CEAZY2020ZL06)
  • 摘要: 对未来1年内发生强震的预测在做好备灾应急准备和防震减灾工作上具有重要的现实需求.为反映近年来国际上关于1年尺度地震预测模型研究的进展,本文系统地整理了地震的统计概率预测模型、物理预测模型和混合预测模型,并从方法原理、预测效能评价、部署应用等角度进行了梳理.研究表明,目前国际上发展的1年尺度地震预测模型及其效能评价使用的参考模型的总体数量较少、建模原理主要基于G-R关系等统计学基本定律,显示该领域在基础理论架构、关键技术体系上并未足够成熟,这可能与相应的地震发生机理解释尚不完善、建立数理化的预测模型尚有困难等因素有关.

     

  • [1] Bach C, Hainzl S. Improving empirical aftershock modeling based on additional source information[J]. Journal of Geophysical Research, 2012, 117: B04312.
    [2] Cattania C, Hainzl S, Wang L, et al. Propagation of Coulomb stress uncertainties in physics-based aftershock models[J]. Jounal of Geophysical Research, 2014, 119(10): 7846-7864.
    [3] Cattania C, Werner M J, Marzocchi W, et al. The forecasting skill of physics-based seismicity models during the 2010-2012 Canterbury, New Zealand, earthquake sequence[J]. Seismological Research Letters, 2018, 89: 1238-1250. doi: 10.1785/0220180033
    [4] Clarke B S, Clarke J L. Predictive statistics: Analysis and inference beyond models[M]. Cambridge: Cambridge University Press, 2018: 34-86.
    [5] Gerstenberger M C, Wiemer S, Jones L M, et al. Real-time forecasts of tomorrow’s earthquakes in California[J]. Nature, 2005, 435(7040): 328-331. doi: 10.1038/nature03622
    [6] Gulia L, Wiemer S, Schorlemmer D. Asperity-based earthquake likelihood models for Italy[J]. Annals of Geophysics, 2010, 53(3): 63-75.
    [7] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34: 185-188.
    [8] Healy J H, Kossobokov V, Dewey J W. A test to evaluate the earthquake prediction algorithm M8[R]. U.S. Geological Survey Open-File Report 92-401, 1992.
    [9] Helmstetter A, Kagan Y Y, Jackson D D. High-resolution time-independent grid-based forecast for M≥5 earthquakes in California[J]. Seismological Research Letters, 2007, 78(1): 78-86. doi: 10.1785/gssrl.78.1.78
    [10] Hirose F, Maeda K. Earthquake forecast models for inland Japan based on the GR law and the modified GR law[J]. Earth, Planets and Space, 2011, 63(3): 239-260. doi: 10.5047/eps.2010.10.002
    [11] Holliday J R, Chen C, Tiampo K F, et al. A RELM earthquake forecast based on pattern informatics[J]. Seismological Research Letters, 2007, 78(1): 87-93. doi: 10.1785/gssrl.78.1.87
    [12] Holliday J R, Nanjo K Z, Tiampo K F, et al. Earthquake forecasting and its verification[J]. Nonlinear Processes in Geophysics, 2005, 12: 965-977. doi: 10.5194/npg-12-965-2005
    [13] Kagan Y Y, Jackson D D. Probabilistic forecasting of earthquakes[J]. Geophysical Journal International, 2000, 143: 438-453. doi: 10.1046/j.1365-246X.2000.01267.x
    [14] Kagan Y Y, Jackson D D. Earthquake forecasting in diverse tectonic zones of the globe[J]. Pure and Applied Geophysics, 2010, 167: 709-719. doi: 10.1007/s00024-010-0074-4
    [15] Keilis-Borok V I, Rotwaain I M. Diagnosis of time of increased probability of strong earthquakes in different regions of the world: Algorithm CN[J]. Physics of the Earth and Planetary Interiors, 1990, 61(1-2): 57-72. doi: 10.1016/0031-9201(90)90095-F
    [16] Lombardi A M, Marzocchi W. Double branching model to forecast the next M ≥ 5.5 earthquakes in Italy[J]. Tectonophysics, 2009, 475(3-4): 514-523.
    [17] Lombardi A M, Marzocchi W. A double-branching model applied to long-term forecasting of Italian seismicity (ML≥ 5.0) within the CSEP project[J]. Annals of Geophysics, 2010, 53(3): 31-39.
    [18] Lombardi A M, Marzoccha W. The double branching model for earthquake forecast applied to the Japanese seismicity[J]. Earth, Planets and Space, 2011, 63(3): 187-195. doi: 10.5047/eps.2011.02.001
    [19] Marzoccha W, Lombardi A M. A double branching model for earthquake occurrence[J]. Journal of Geophysical Research, 2008, 113: B08317.
    [20] Mignan A, Jiang, C S, Zechar, J D, et al. Completeness of the mainland China earthquake catalog and implications for the setup of the China earthquake forecast testing center[J]. Bulletin of the Seismological Society of America, 2013, 103(2A): 845-859. doi: 10.1785/0120120052
    [21] Nagao T, Takeuchi A, Nakamura K. A new algorithm for the detection of seismic quiescence: introduction of the RTM algorithm, a modified RTL algorithm[J]. Earth, Planets and Space, 2011, 63(3): 315-324. doi: 10.5047/eps.2010.12.007
    [22] Nanjo K Z. Earthquake forecasts for the CSEP Japan experiment based on the RI algorithm[J]. Earth, Planets and Space, 2011a, 63(3): 261-274. doi: 10.5047/eps.2011.01.001
    [23] Nanjo K Z, Holliday J R, Chen C-C, et al. Application of a modified pattern informatics method to forecasting the locations of future large earthquakes in the central Japan[J]. Tectonophysics, 2006, 424: 351-366. doi: 10.1016/j.tecto.2006.03.043
    [24] Nanjo K Z, Tsuruoka H, Hirata N, et al. Overview of the first earthquake forecast testing experiment in Japan[J]. Earth, Planets and Space, 2011b, 63: 159-169. doi: 10.5047/eps.2010.10.003
    [25] Ogata Y. Space-time model for regional seismicity and detection of crustal stress changes[J]. Journal of Geophysical Research, 2004, 109: B03308.
    [26] Ogata Y. Space-Time point-process models for earthquake occurrences[J]. Annals of the Institute of Statistical Mathematics, 1998, 50(2): 379-402. doi: 10.1023/A:1003403601725
    [27] Peresan A, Kossobokov V, Romashkova L, Panza G F. Intermediate-term middle-range earthquake predictions in Italy—a review[J]. Earth-Science Reviews, 2005, 69: 97-132. doi: 10.1016/j.earscirev.2004.07.005
    [28] Petersen M D, Mueller C S, Moschetti M P, et al. 2016 One-year seismic hazard forecast for the central and eastern United States from induced and natural earthquakes[R]. U.S. Geological Survey data release, 2016.
    [29] Petersen M D, Mueller C S, Moschetti M P, et al. 2017 One-year seismic hazard forecast for the cntral and eastern United States from induced and natural earthquakes[R]. U.S. Geological Survey data release, 2017.
    [30] Petersen M D, Mueller C S, Moschetti M P, et al. 2018 one-year seismic hazard forecast for the central and eastern United States from induced and natural earthquakes[J]. Seismological Research Letters, 2018, 89(3): 1049-1061. doi: 10.1785/0220180005
    [31] Rhoades D A. Application of a long-range forecasting model to earthquakes in the Japan mainland testing region[J]. Earth, Planets and Space, 2011, 63(3): 197-206. doi: 10.5047/eps.2010.08.002
    [32] Rhoades D A. Mixture models for improved earthquake forecasting at short-to-medium time horizons[J]. Bulletin of the Seismological Society of America, 2013, 103(4): 2203-2215. doi: 10.1785/0120120233
    [33] Rhoades D A, Evison F F. Long-range earthquake forecasting with every earthquake a precursor according to scale[J]. Pure and Applied Geophysics, 2004, 161: 47-72. doi: 10.1007/s00024-003-2434-9
    [34] Rundle J B, Tiampo K F, Klein W, et al. Self-organization in leaky threshold systems: The influence of near mean field dynamics and its implications for earthquakes, neurobiology, and forecasting[J]. Proceedings of the National Academy of Science of the United States of America, 2002, 99: 2514-2521. doi: 10.1073/pnas.012581899
    [35] Rundle J B, Turcotte D L, Shcherbakov R, et al. Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems[J]. Reviews of Geophysics, 2003, 41(4): 1019. doi: 10.1029/2003RG000135
    [36] Schorlemmer D, Gerstenberger M, Wiemer S, et al. Earthquake likelihood model testing[J]. Seismological Research Letters, 2007, 78(1): 17-29. doi: 10.1785/gssrl.78.1.17
    [37] Schorlemmer D, Werner M J, Marzocchi W, et al. The collaboratory for the study of earthquake predictability: Achievements and priorities[J]. Seismological Research Letters, 2018, 89(4): 1305-1313. doi: 10.1785/0220180053
    [38] Schorlemmer D, Wiemer S, Wyss M. Variations in earthquake-size distribution across different stress regimes[J]. Nature, 2005, 437: 539-542. doi: 10.1038/nature04094
    [39] Smyth C, Mori J. Statistical models for temporal variations of seismicity parameters to forecast seismicity rates in Japan[J]. Earth, Planets and Space, 2011, 63(3): 231-238. doi: 10.5047/eps.2010.10.001
    [40] Sobolev G A, Tyupkin Y S. Low-seismicity precursors of large earthquakes in Kamchatka[J]. Journal of Volcanology and Seismology, 1997, 18: 433-446.
    [41] Sobolev G A, Tyupkin Y S. Precursory phases, seismicity precursors, and earthquake prediction in Kamchatka[J]. Journal of Volcanology and Seismology, 1999, 20(6): 615-627.
    [42] Steacy S, Gerstenberger M, Williams C, et al. A new hybrid Coulomb/statistical model for forecasting aftershock rates[J]. Geophysical Journal International, 2014, 196: 918-923. doi: 10.1093/gji/ggt404
    [43] Tiampo K F, Rundle J B, Mcginnis S, et al. Mean-field threshold systems and phase dynamics: An application to earthquake fault systems[J]. Europhysics Letters, 2002, 60(3): 481-487. doi: 10.1209/epl/i2002-00289-y
    [44] Todas S, Bogdan E. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast[J]. Earth, Planets and Space, 2011, 63(3): 171-185. doi: 10.5047/eps.2011.01.004
    [45] Tsuruoka H, Hirata N, Schorlemmer D, et al. CSEP Testing Center and the first results of the earthquake forecast testing experiment in Japan[J]. Earth, Planets and Space, 2012, 64: 661-671. doi: 10.5047/eps.2012.06.007
    [46] Wiemer S, Schorlemmer D. ALM: An asperity-based likelihood model for California[J]. Seismological Research Letters, 2007, 78(1): 134-140. doi: 10.1785/gssrl.78.1.134
    [47] Wiemer S, Wyss M. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?[J]. Journal of Geophysical Research, 1997, 102: 15115-15128. doi: 10.1029/97JB00726
    [48] Wu Z L, Liu J, Zhu C Z, et al. Annual consultation on the likelihood of earthquakes in continental China: Its scientific and practical merits[J]. Earthquake Research in China, 2007, 21(4): 365-371.
    [49] Zechar J D, Jordan T H. Simple smoothed seismicity earthquake forecasts for Italy[J]. Annals of Geophysics, 2010, 53(3): 99-105.
    [50] Zhao Y, Wu Z, Jiang C, et al. Reverse tracing of precursors applied to the annual earthquake forecast: Retrospective test of the annual consultation in the Sichuan-Yunnan region of southwest China[J]. Pure and Applied Geophysics, 2010, 167(6): 783-800.
    [51] Zhuang J C, Ogata Y, Vere-Jones D. Stochastic declustering of space-time earthquake occurrences[J]. Journal of the American Statistical Association, 2002, 97: 369-380. doi: 10.1198/016214502760046925
  • 加载中
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  504
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 录用日期:  2020-07-01
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回