• ISSN 2097-1893
  • CN 10-1855/P

地震动持时的研究进展

张美玲 唐丽华 卢建旗

引用本文: 张美玲,唐丽华,卢建旗. 地震动持时的研究进展. 地球与行星物理论评,2021,52(1):106-114
Zhang M L, Tang L H, Lu J Q. A review on the development on the duration of ground motion. Reviews of Geophysics and Planetary Physics, 2021, 52(1):106-114

地震动持时的研究进展

doi: 10.19975/j.dqyxx.2020-001
详细信息
    通讯作者:

    张美玲(1987-),女,在职博士研究生,主要从事地震应急、信息网络、地震监测等工作. E-mail:366579193@qq.com

  • 中图分类号: P315.63

A review on the development on the duration of ground motion

  • 摘要: 地震动持时作为表征地震动的三要素之一,其对震害的影响逐渐被人们所认识. 然而,在地震动持时的定义方面,目前没有统一且明确的概念,文中给出了广义的地震动总持时和强震持时的定义,研究者们根据各自领域的研究特点选择更适合的持时. 持时大致可以分为两个大类:一是绝对持时,即基于加速度绝对值阈值的括号持时;二是相对持时,也就是反映地震动过程强度或能量变化趋势的持时,比如能量控制的相对持时等. 持时的定义有很多种,文章简单地回顾了地震动持时的五种定义,同时,细致地分析了五种持时定义所表现的特点,并介绍了持时预测模型的研究成果,最后针对目前应用持时存在的问题提出了几点认识.

     

  • 图  1  北棕榈泉机场场地强震动记录的括号持时(加速度最小值0.05 g)(修改自Kempton and Jonathan, 2006

    Figure  1.  Bracketed duration of strong vibration record in North Palm Springs Airport site (minimum acceleration is 0.05 g)(modified from Kempton and Jonathan, 2006

    图  2  给定加速度记录的不同持时定义(主频0.37 Hz滤波)(修改自Lee, 2002

    Figure  2.  Different definitions of duration for a given acceleration record (filtering: dominant frequency is 0.37 Hz)(modified from Lee, 2002

    图  3  典型地震动记录的显著持时(修改自Shoji et al., 2005

    Figure  3.  Significant duration of typical seismic records(modified from Shoji et al., 2005

    图  4  两种定义的显著持时$ {D}_{5-75} $$ {D}_{5-95} $(利用北棕榈泉机场场地的记录)(修改自Kempton and Jonathan, 2006

    Figure  4.  Significant duration of two definitions $ {D}_{5-75} $ and $ {D}_{5-95} $ (Access to the records in North Palm Springs Airport site)(modified from Kempton and Jonathan, 2006

    图  5  滤波后的加速度持时定义(滤波频率0.37 Hz)(修改自Lee,2002). (a)滤波后的加速度时程(图中阴影部分为强震动部分);(b) $ {\int }_{0}^{t}{f}^{2}\left(t\right)\mathrm{d}\mathrm{t} $;(c) $ {f}^{2}\left(t\right) $积分平滑化

    Figure  5.  Definition of acceleration duration after filtering (frequency filtering is 0.37 Hz)(modified from Lee, 2002). (a) Acceleration time history after filtering (the shaded part of the image is strongly vibrated); (b) $ {\int }_{0}^{t}{f}^{2}\left(t\right)\mathrm{d}\mathrm{t} $; (c) $ {f}^{2}\left(t\right) $ integral smoothing

    图  6  某地震加速度记录计算所得强度包络函数曲线图形(张美玲等,2020

    Figure  6.  The curve of the strength envelope function calculated by a seismic acceleration record(Zhang et al., 2020

  • [1] Arjun C R, Kumar A. Neural network estimation of duration of strong ground motion using Japanese earthquake record[J]. Soil Dynamics and Earthquake Engineering, 2011, 31: 866-872. doi: 10.1016/j.soildyn.2011.01.001
    [2] 白玉柱, 徐锡伟. 由强震动数据分析庐山地震地面运动持时及周期特征[J]. 地震地质, 2017, 39(1): 92-103. doi: 10.3969/j.issn.0253-4967.2017.01.007

    Bai Y Z, Xu XW. Analysis on the characteristics of duration and period of ground motion of the Lushan earthquake based on the station records[J]. Seismology and Geology, 2017, 39(1): 92-103. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.01.007
    [3] Bolt B A. Duration of strong ground motion[C]// Proceedings of the 5th World Conference on Earthquake Engineering. Rome, 1973: 1304-1313.
    [4] Bommer J J, Martínez-Pereira A. The effective duration of earthquake strong motion[J]. Journal of Earthquake Engineering. 1999, 3:127-172.
    [5] Bommer J J, Stafford P J, Alarcon J E. Empirical equations for the prediction of the significant, bracketed and uniform duration of earthquake ground motion[J]. Bulletin of the Seismological Society of America, 2009, 99(6): 3192-201. doi: 10.1785/0120090058
    [6] Boore D M. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America, 1983, 73:1865-1894.
    [7] Borcherdt R D. Estimates of site-dependent response spectra for design (methodology and justification)[J], Earthquake Spectra, 1994, 10 (4): 617-653. doi: 10.1193/1.1585791
    [8] Brune J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J], Journal of Geophysical Research, 1970, 75(26): 4997-5009. doi: 10.1029/JB075i026p04997
    [9] Choi Y, Stewart J P. Nonlinear site amplification as function of 30m shear wave velocity[J], Earthquake Spectra, 2005, 21 (1):1-30. doi: 10.1193/1.1856535
    [10] Dobry R, Borcherdt R D, Crouse C B, et al. New site coefficients and site classification system used in recent building seismic code provisions[J], Earthquake Spectra, 2000, 16(1): 41-67.
    [11] Douglas J. Consistency of ground-motion predictions from the past four decades[J]. Bulletin of Earthquake Engineering, 2010, 8:1515-1526. doi: 10.1007/s10518-010-9195-5
    [12] 高玉峰, 刘汉龙, 朱伟. 基于地震危险性分析的场地地震动持时特性研究[J]. 世界地震工程, 2000, 16(4): 109-112. doi: 10.3969/j.issn.1007-6069.2000.04.021

    Gao Y F, Liu H L, Zhu W. Study on seismic duration characteristics based on the seismic risk analysis[J].World Information on Earthquake Engineering, 2000, 16(4): 109-112.(in Chinese) doi: 10.3969/j.issn.1007-6069.2000.04.021
    [13] GicevV, Trifunac M D. Transient and permanent shear strains in a building excited by strong earthquake pulses[J].Soil Dynamics and Earthquake Engineering, 2009, 29(10):1358-1366. doi: 10.1016/j.soildyn.2009.05.003
    [14] Gicev V, Trifunac M D. Amplification of linear strain in a layer excited by a shear-wave earthquake pulse[J].Soil Dynamics and Earthquake Engineering, 2010, 30(10):1073-1081. doi: 10.1016/j.soildyn.2010.04.018
    [15] Green R A, Terri G A. Number of equivalent cycles concept for liquefaction evaluations-revisited[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 477-488. doi: 10.1061/(ASCE)1090-024(2005)131:4(477)
    [16] Hancock J, Bommer J J. The effective number of cycles of earthquake ground motion[J].  Earthquake Engineering & Structural Dynamics, 2005, 34(6): 637-664.
    [17] Hanks T C, McGuire R K. The character of high frequency strong ground motion[J]. Bulletin of the Seismological Society of America, 1981, 71: 2071-2095.
    [18] Housner G. Intensity of earthquake ground shaking near the causative fault[C]// Conference on Earthquake E ngineering, 1975, 25-33.
    [19] Housner G W, Jennings P C. Generation of artificial earthquakes[J]. Journal of the Engineering Mechanics Division, 1964, 90(1):113-152.
    [20] 胡聿贤. 地震工程学[M]. 北京: 地震出版:(第二版), 2006: 91-104.

    Hu Y X. Earthquake engineering [M]. Beijing: Scismdogical Press, 2006, 91-104 (in Chinese).
    [21] 霍俊荣. 近场强地面运动衰减规律的研究[D]. 黑龙江: 国家地震局工程力学研究所, 1989.

    Huo J R. Study on the attenuation laws of strong earthquake ground motion near the source[D]. Institute of Engineering Mechanics, China Earthquake Administration, 1989. (in Chinese)
    [22] Kanai K, Sakai Y. Some studies on the correlation between strong motions of SMAC′s records at Kushiro distinct meterological observatory and damages of structures in Kushiro city by the Hiroooki earthquake[C]// Proceedings of the third Japan Earthquake Engineering Symposium, 1970, 771-778.
    [23] Kawashima K, Aizawa K. Bracketed and normalized durations of earthquake ground acceleration[J]. Earthquake Engineering & Structural Dynamics, 1989. 18: 1041-1051.
    [24] Kempton J J, Jonathan P S. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects[J]. Earthquake Spectra, 2006. 22(4): 985-1013. doi: 10.1193/1.2358175
    [25] Lee V W. Empirical scaling of strong earthquake ground motion: Part Ⅱ: Duration of strong motion[J]. Journal of Earthquake Technology, 2002, 39(4): 255-271.
    [26] Lee V W, Trifunac M D. Torsional accelerogram[J]. International Journal of Soil Dynamics and Earthquake Engineering, 1985, 4(3):132-139. doi: 10.1016/0261-7277(85)90007-5
    [27] Lee V W, Trifunac M D. Rocking strong earthquake accelerations[J]. International Journal of Soil Dynamics and Earthquake Engineering, 1987, 6:75-89. doi: 10.1016/0267-7261(87)90017-0
    [28] Liu A, Stewart J P, Abrahamson N et al. Equivalent number of uniform stress cycles for liquefaction analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(12): 1017-1026. doi: 10.1061/(ASCE)1090-0241(2001)127:12(1017)
    [29] 鹿林. 强震持时在结构破坏中的作用及工程应用方法[D]. 黑龙江: 国家地震局工程力学研究所, 1984.

    Lu L. The function and engineering application methods on duration of strong ground motion in structural damage[D]. Heilongjiang: Institute of Engineering Mechanics, China Earthquake Administration, 1984 (in Chinese).
    [30] 刘创坤, 蔡宇, 何承华. 论地震地面运动中的持续时间[J]. 山西建筑, 2012, 38(3):32. doi: 10.3969/j.issn.1009-6825.2012.03.019

    Liu C K, Cai Y, He C H. Discussion on duration of earthquake ground motion, Shanxi Architecture, 2012, 38(3):32. (in Chinese) doi: 10.3969/j.issn.1009-6825.2012.03.019
    [31] McCann M W, Shah H C. Determining strong-motion duration of earthquakes[J]. Bulletin of the Seismological Society of America, 1979, 69:1253-1265.
    [32] Mohraz B, Peng M M. Use of a low-pass filter in determining the duration of strong ground motion[J].Pressure Vessels and Piping Division, ASME, 1989:197-200.
    [33] Novikova E I, Trifunac M D. Duration of strong ground motion: physical basis and empirical equations[J]. Department of Civil Engineering, 1993a: 93-102.
    [34] Novikova E I, Trifunac M D. Frequency dependent duration of strong earthquake ground motion: updated empirical equations[J]. Department of Civil Engineering, 1995: 95-101.
    [35] Page R A, Boore D M, Joyner W B, et al. Ground motion values for use in the seismic design of the Trans-Alaska pipeline system[R]. U.S. Geological Survey, 1972, Circular 672.
    [36] Park Y J, Ang H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4): 722-739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
    [37] Shoji Y, Tanii K, Kamiyama M. A study on the duration and amplitude characteristics of earthquake ground motions[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7-10):505-512. doi: 10.1016/j.soildyn.2004.11.033
    [38] 孙小云, 韩建平, 陈剑波. 基于 SDOF 体系考虑地震动持时的强度指标分析[J]. 结构工程, 2019: 44–48.

    Sun X Y, Han J P, Chen J B. Analysis of intensity indices considering ground motion duration based on SDOF system [J], Structural Engineering, 2019: 44–48.(in Chinese)
    [39] Takizawa H, Jennings P C. Collapse of a model for Ductile Reinforced Concrete Frames under extreme earthquake motions[J]. Earthquake Engineering and Struetural Dynamics, 1980, 8(2):117-144. doi: 10.1002/eqe.4290080204
    [40] Todorovska M I, Trifunac M D. Distribution of pseudo spectral velocity during Northridge, California earthquake of 17 January 1994[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(3): 173-192. doi: 10.1016/S0267-7261(96)00045-0
    [41] Todorovska M I, Trifunac M D. Amplitudes, polarity and time of peaks of strong ground motion during the 1994 Northridge, California earthquake[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(4): 235-258. doi: 10.1016/S0267-7261(97)00002-X
    [42] Toflampas L M, Spyrakos C C, Koutromanos L A. A new definition of strong motion duration and related parameters affecting the response of medium–long period structures[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(4):752-763. doi: 10.1016/j.soildyn.2008.08.005
    [43] Trifunac M D. A method for synthesizing realistic strong ground motion[J]. Bulletin of the Seismological Society of America, 1971, 61(6):1739-1753.
    [44] Trifunac M D. Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(4):419-426.
    [45] Trifunac M D, Brady A G. A study on the duration of strong earthquake ground motion[J]. Bulletin of the Seismological Society of America, 1975, 65: 581–626.
    [46] Trifunac M D, Maria I T. Duration of strong ground motion during Northridge, California, earthquake of January 17, 1994[J]. Soil Dynamics and Earthquake Engineering, 2012, 38:119-127. doi: 10.1016/j.soildyn.2012.01.020
    [47] Trifunac M D, Todorovska M I. Northridge, California, earthquake of 17 January 1994: density of pipe breaks and surface strains[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(3):193-207. doi: 10.1016/S0267-7261(96)00042-5
    [48] Trifunac M D, Todorovska M I. Recording and interpreting earthquake response of full-scale structures[C]// Proceedings NATO Advanced Research Workshop on Strong-Motion Instrumentation for Civil Engineering Structures, 2001: 131-155.
    [49] Trifunac M D, Westermo B D. Duration of earthquake shaking[J]. Soil Dynamics and Earthquake Engineering, 1982, 1(3):117-121. doi: 10.1016/0261-7277(82)90002-X
    [50] Vanmarcke E H, Lai S P. Strong motion duration of RMS amplitude of earthquake records[J]. Bulletin of the Seismological Society of America, 1980, 8(1):1-11.
    [51] Wong H L, Trifunac M D. Generation of artificial strong motion accelerograms[J]. Earthquake Engineering and Structural Dynamics, 1979, 7:509-527. doi: 10.1002/eqe.4290070602
    [52] 肖亮. 水平向基岩强地面运动参数衰减关系研究[D]. 北京: 中国地震局地球物理研究所, 2011.

    Xiao L. Study on the attenuation relationships of horizontal ground motion parameters near the sourse of rock site[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2011 (in Chinese).
    [53] 谢礼立, 张晓志. 地震动记录持时与工程持时[J].地震工程与工程振动, 1988, 8(1):31-38.

    Xie L L, Zhang X Z. Accelerogram-based duration and engineering duration of ground motion[J], Earthquake Engineering and Engineering Vibration, 1988, 8(1):31-38.(in Chinese)
    [54] 谢礼立, 周雍年. 一个新的地震动持续时间定义[J].地震工程与工程振动, 1984, 4(2): 27-35.

    Xie L L, Zhou Y N. A new definition of strong ground motion duration[J]. Earthquake Engineering and Engineering Vibration, 1984, 4(2):27-35.(in Chinese)
    [55] 许成顺, 豆鹏飞, 高苗成. 地震动持时压缩比对可液化地基地震反应影响的振动台试验[J]. 岩土力学, 2019, 40(1): 147-155.

    Xu C X, Dou P F, Gao M C. Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation[J]. Rock and Soil Mechanics, 2019, 40(1): 147-155. (in Chinese)
    [56] 徐培彬, 温瑞智. 基于我国强震动数据的地震动持时预测方程[J]. 地震学报, 2018, 40(6): 809-819. doi: 10.11939/jass.20180008

    Xu P B, Wen R Z. The prediction equations for the significant duration of strong motion in Chinese mainland[J]. Acta Seismologica Sinica, 2018, 40(6): 809-819.(in Chinese) doi: 10.11939/jass.20180008
    [57] 徐熙, 蒲武川. 考虑地震动持时影响的非结构构件加速度响应预测[J]. 地震工程与工程振动, 2019, 39(3): 230-237.

    Xu X, Pu W H. Estimation of the acceleration of non-structural component considering the effect of duration of earthquake ground motion[J].Earthquake Engineering and Engineering Vibration, 2019, 39(3): 230-237.(in Chinese)
    [58] 尹保江, 黄宗明, 白绍良. 对地震地面运动持续时间定义的对比分析及改进建议[J].工程抗震, 1999: 43-46.

    Yin B J, Huang Z M, Bai S L. Comparative analysis and improvement recommendations on definition of duration of ground motion[J]. Seismic Resistance Engineering, 1999:43-46 (in Chinese).
    [59] 张美玲. 地震动强度包络函数相关参数确定[D]. 黑龙江: 中国地震局工程力学研究所, 2014.

    Zhang M L. Determination on related parameters for intensity envelope function of ground motion[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2014 (in Chinese).
    [60] 张美玲, 张天雷, 杜秋男. 中国东北地区及邻区地震动强度包络函数参数的确定及其衰减关系[J]. 地震地磁观测与研究, 2020. doi: 10.3969/j.issn.1003-3246.2020.04.002

    Zhang M L, Zhang T L, Du Q N. Determining the parameters and its attenuation relationships of time history envelop function with vertical recordingsfor northeast and its adjacent area in China, Seismological and Geomagnetic Observation and Research, 2020 (in Chinese). doi: 10.3969/j.issn.1003-3246.2020.04.002
    [61] 赵艳, 郭明珠, 季杨. 场地条件对地震动持时的影响[J]. 震灾防御技术, 2007, 2(4): 417-424. doi: 10.3969/j.issn.1673-5722.2007.04.011

    Zhao Y, Guo M Z, Ji Y. Site conditions’ influence on earthquake ground motion duration[J]. Technology for Earthquake Disaster Prevention, 2007, 2(4): 417-424. (in Chinese) doi: 10.3969/j.issn.1673-5722.2007.04.011
  • 加载中
图(6)
计量
  • 文章访问数:  1295
  • HTML全文浏览量:  574
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-10
  • 录用日期:  2020-07-01
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回