• ISSN 2097-1893
  • CN 10-1855/P

尼科亚半岛俯冲带强震破裂对震中位置的依赖性研究

H. F. Yang S. L. Yao B. He A. V. Newman 刘月 杨宏峰 姚素丽

引用本文: 刘月 译. 2020. 尼科亚半岛俯冲带强震破裂对震中位置的依赖性研究. 世界地震译丛. 51(1):63-74. doi:10.16738/j.cnki.issn.1003-3238.202001005
H. F. Yang, S. L. Yao, B. He, A. V. Newman. 2019. Earthquake rupture dependence on hypocentral location along the Nicoya Pe-ninsula subduction megathrust. Earth Planet. Sci. Lett., 520:10-17. doi:10.1016/j.epsl.2019.05.030

尼科亚半岛俯冲带强震破裂对震中位置的依赖性研究

doi: 10.16738/j.cnki.issn.1003-3238.202001005
基金项目: 

本译文由国家自然科学基金(41704093)和中国地震局地震预测研究所基本科研业务费(2018IES0403)资助

详细信息
    作者简介:

    刘月(1987-),女,中国科学院力学研究所固体力学专业理学博士毕业.中国地震局地震预测研究所副研究员,主要从事地震数值模拟研究.E-mail:liu-yue126liuyue@126.com.

Earthquake rupture dependence on hypocentral location along the Nicoya Pe-ninsula subduction megathrust

  • 摘要: 断层震间闭锁分布常被用来定性分析未来强震危险性,为了进一步评估地震和海啸灾害,定量分析地震破裂分布则是更有效的手段。本文基于哥斯达黎加尼科亚半岛的断层震间闭锁模型,通过地震动力学破裂数值模拟,研究了该地区的地震情景破裂。首先根据断层闭锁程度估算初始应力分布,然后在不同部位成核进行动力学自发破裂数值模拟,分析情景地震的震级和断层面滑动分布特征。本研究基于两种断层闭锁模型进行模拟,结果显示约40%的震中位置最终发展成MW>7.2的大地震,我们发现震中位置越深,断层浅部的滑动量越大,这表明俯冲带强震的发震位置越深,引发海啸的风险也越大。此外,模拟事件中没有检测到MW6~7的中等强度破裂,这与尼科亚地区的实际观测结果一致。本研究揭示了震中位置决定地震震级和破裂分布,继而影响海啸的发生能力,这对基于闭锁模型分析断层破裂特征提出了挑战,也强调了定量评估俯冲带地震灾害和海啸灾害的重要性。

     

  • [1] Aagaard,B.T.,Knepley,M.G.,Williams,C.A.,2013.A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation.J.Geophys.Res.118,3059-3079.
    [2] Audet,P.,Schwartz,S.Y.,2013.Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone.Nat.Geosci.6(10),852-855.
    [3] Bilek,S.L.,Schwartz,S.Y.,DeShon,H.R.,2003.Control of seafloor roughness on earthquake rupture behavior.Geology 31(5),455-458.https://doi.org/10.1130/0091-7613(2003)031.
    [4] Bizzarri,A.,2010.How to promote earthquake ruptures:different nucleation strategies in a dynamic model with slip-weakening friction.Bull.Seismol.Soc.Am.100,923-940.
    [5] Burgette,R.J.,Weldon,R.J.,Schmidt,D.A.,2009.Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone.J.Geophys.Res.114,B01408.
    [6] Chaves,E.J.,Schwartz,S.Y.,2016.Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.Sci.Adv.2,e1501289.
    [7] Chaves,E.J.,Duboeuf,L.,Schwartz,S.Y.,Lay,T.,Kintner,J.,2017.Aftershocks of the 2012 MW7.6 Nicoya,Costa Rica,earthquake and mecha-nics of the plate interface.Bull.Seismol.Soc.Am.107(3),1227-1239.https://doi.org/10.1785/0120160283.
    [8] DeMets,C.,Gordon,R.G.,Argus,D.F.,2010.Geologically current plate motions.Geophys.J.Int.181(1),1-80.
    [9] Dixon,T.H.,Jiang,Y.,Malservisi,R.,McCaffrey,R.,Voss,N.,Protti,M.,Gonzalez,V.,2014.Earthquake and tsunami forecasts:relation of slow slip events to subsequent earthquake rupture.Proc.Natl.Acad.Sci.USA111(48),17039-17044.
    [10] Feng,L.,Newman,A.V.,Protti,M.,Gonzalez,V.,Jiang,Y.,Dixon,T.H.,2012.Active deformation near the Nicoya Peninsula,northwestern Costa Rica,between 1996 and 2010:interseismic me-gathrust coupling.J.Geophys.Res.,Solid Earth 117,B06407.
    [11] Guendel,F.,1986.Seismotectonics of Costa Rica:An Analytical View of the Southern Terminus of the Middle America Trench.Ph.D.Thesis,Univ.of Calif.,Santa Cruz.157pp.
    [12] Hok,S.,Fukuyama,E.,Hashimoto,C.,2011.Dy-namic rupture scenarios of anticipated Nankai-Tonankai earthquakes,southwest Japan.J.Geophys.Res.116,B12319.
    [13] Hori,T.,Kato,N.,Hirahara,K.,Baba,T.,Kaneda,Y.,2004.A numerical simulation of earthquake cycles along the Nankai Trough in southwest Japan:lateral variation in frictional property due to the slab geometry controls the nucleation position.Earth Planet.Sci.Lett.228(3),215-226.
    [14] Ida,Y.,1972.Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific sur-face energy.J.Geophys.Res.77(20),3796-3805.
    [15] Kyriakopoulos,C.,Newman,A.V.,2016.Structural asperity focusing locking and earthquake slip along the Nicoya megathrust,Costa Rica.J.Geophys.Res.,Solid Earth 121(7),5461-5476.
    [16] Kyriakopoulos,C.,Newman,A.V.,Thomas,A.M.,Moore-Driskell,M.,Farmer,G.T.,2015.A new seismically constrained subduction interface model for Central America.J.Geophys.Res.120(8),5535-5548.
    [17] Lapusta,N.,Rice,J.R.,2003.Nucleation and early seismic propagation of small and large events in a crustal earthquake model.J.Geophys.Res.,Solid Earth 108(B4),B000793.
    [18] Li,S.,Wang,K.,Wang,Y.,Jiang,Y.,Dosso,S.E.,2018.Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic Earth model.J.Geophys.Res.,Solid Earth 123.https://doi.org/10.1029/2018JB015620.
    [19] McCaffrey,R.,King,R.W.,Payne,S.J.,Lancaster,M.,2013.Active tectonics of northwestern US inferred from GPS-derived surface velocities.J.Geophys.Res.,Solid Earth 118(2),709-723.
    [20] Moreno,M.,Rosenau,M.,Oncken,O.,2010.2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone.Nature 467(7312),198-202.
    [21] Pollitz,F.F.,Evans,E.L.,2017.Implications of the earthquake cycle for inferring fault locking on the Cascadia megathrust.Geophys.J.Int.209,167-185.https://doi.org/10.1093/gji/ggx009.
    [22] Protti,M.,2001.Significance of an earthquake early warning system for vulnerable essential facili-ties:the example of a potential implementation in Costa Rica.ISDR Inf.3,21-4.
    [23] Quintero,R.,Zahradník,J.,Sokos,E.,2014.Near-regional CMT and multiple-point source solution of the September 5,2012,Nicoya,Costa Rica MW7.6(GCMT)earthquake.J.South Am.Earth Sci.55,155-165.
    [24] Rice,J.R.,1992.Fault stress state,pore pressure distributions,and the weakness of San Andreas Fault.In:Fault Mechanics and Transport Pro-perties of Rocks.Academic Press,San Diego,CA,pp.475-503.
    [25] Ripperger,J.,Ampuero,J.-P.,Mai,P.M.,Giardini,D.,2007.Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress.J.Geo-phys.Res.112,B04311.
    [26] Saffer,D.M.,Tobin,H.J.,2011.Hydrogeology and mechanics of subduction forearcs:fluid flow and pore pressure.Annu.Rev.Earth Planet.Sci.39(1),157-186.
    [27] Schmalzle,G.M.,McCaffrey,R.,Creager,K.C.,2014.Central Cascadia subduction zone creep.Geochem.Geophys.Geosyst.15,1515-1532.https://doi.org/10.1002/2013GC005172.
    [28] Wang,K.,Bilek,S.L.,2014.Fault creep caused by subduction of rough seafloor relief.Tectonophysics 610,1-24.
    [29] Wang,K.,Hu,Y.,He,J.,2012.Deformation cycles of subduction earthquakes in a viscoelastic Ear-th.Nature 484(7394),327-332.
    [30] Weng,H.,Yang,H.,2017.Seismogenic width con-trols aspect ratios of earthquake ruptures.Geophys.Res.Lett.44(6),2725-2732.
    [31] Weng,H.,Yang,H.,2018.Constraining frictional properties on fault by dynamic rupture simulations and near-field observations.J.Geophys.Res.https://doi.org/10.1029/2017JB015414.
    [32] Weng,H.,Huang,J.,Yang,H.,2015.Barrier-induced supershear ruptures on a slip-weakening fault.Geophys.Res.Lett.42(12),4824-4832.
    [33] Williamson,A.L.,Newman,A.V.,2018.Limitations of the resolvability of finite-fault models using static land-based geodesy and open-ocean tsuna-mi waveforms.J.Geophys.Res.123.https://doi.org/10.1029/2018JB016091.
    [34] Xue,L.,Schwartz,S.,Liu,Z.,Feng,L.,2015.Interseismic megathrust coupling beneath Nicoya Peninsula,Costa Rica,from the joint inversion of InSAR and GPS data.J.Geophys.Res.120(5),3707-3722.
    [35] Yang,H.,Liu,Y.,Lin,J.,2012.Effects of subducted seamount on megathrust earthquake nucleation and rupture propagation.Geophys.Res.Lett.39,L24302.
    [36] Yang,H.,Liu,Y.,Lin,J.,2013.Geometrical effects of a subduction seamount on stopping mega-thrust rupture.Geophys.Res.Lett.40(10),2011-2016.
    [37] Yang,H.,Yao,S.,He,B.,Newman,A.,Weng,H.,2019.Deriving rupture scenarios from interseis-mic locking distributions along the subduction megathrust.J.Geo-phys.Res.doi.org/10.1029/2019JB017541.
    [38] Yao,S.,Yang,H.,2018.Determination of coseismic frictional properties on the megathrust during the 2012 M7.6 Nicoya earthquake.In:AGU Fall Meeting,T41H-0407.
    [39] Yin,J.,Yang,H.,Yao,H.,Weng,H.,2016.Coseis-mic radiation and stress drop during the 2015 MW8.3 Illapel,Chile megathrust earthquake.Geophys.Res.Lett.43,1520-1528.
    [40] Yin,J.,Yao,H.,Yang,H.,Liu,J.,Qin,W.,Zhang,H.,2017.Frequency-dependent rupture pro-cess,stress change,and seismogenic mechanismof the 25 April 2015 Nepal Gorkha MW7.8 earth-quake.Sci.China Earth Sci.60(4),796-808.
    [41] Yue,H.,Lay,T.,Schwartz,S.Y.,Rivera,L.,Protti,M.,Dixon,T.H.,Owen,S.,Newman,A.V.,2013. The 5 September 2012 Nicoya,Costa Rica MW7.6 earthquake rupture process from joint inversion of high-rate GPS,strong-motion,and teleseis-mic P wave data and its relationship to adjacent plate boundary interface properties.J.Geophys.Res.,Solid Earth 118(10),5453-5466.
  • 加载中
计量
  • 文章访问数:  712
  • HTML全文浏览量:  135
  • PDF下载量:  29
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回