• ISSN 2097-1893
  • CN 10-1855/P

固体地球科学中基于数据驱动发现的机器学习

K. J. Bergen P. A. Johnson M. V. de Hoop G. C. Beroza 张美玲 高东辉 张永刚 杜秋男 吕春来

引用本文: 张美玲, 高东辉, 张永刚, 杜秋男 译. 2020. 固体地球科学中基于数据驱动发现的机器学习. 世界地震译丛. 51(1):1-21. doi:10.16738/j.cnki.issn.1003-3238.202001001
K. J. Bergen, P. A. Johnson, M. V. de Hoop, G. C. Beroz. 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science 363, eaau0323. doi:10.1126/science.aau0323

固体地球科学中基于数据驱动发现的机器学习

doi: 10.16738/j.cnki.issn.1003-3238.202001001

Machine learning for data-driven discovery in solid Earth geoscience

  • [1] . P.Baldi,P.Sadowski,D.Whiteson,Searching for exotic particles in high-energy physics with deep learning.Nat.Commun.5,4308(2014).doi: 10.1038/ncomms5308;pmid:24986233
    [2] . A.A.Melnikov,H.P.Nautrup,M.Krenn,V.Dunjko,M.Tiersch,A.Zeilinger,H.J.Briegel,Active learning machine learns to create new quantum experiments.Proc.Natl.Acad.Sci.USA.115,1221-1226(2018).doi: 10.1073/pnas.1714936115
    [3] . C.J.Shallue,A.Vanderburg,Identifying Exoplanets with Deep Learning:A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90.Astron.J.155,94(2018).doi: 10.3847/1538-3881/aa9e09
    [4] . F.Ren,L.Ward,T.Williams,K.J.Laws,C.Wolverton,J.Hattrick-Simpers,A.Mehta,Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments.Sci.Adv.4,eaaq1566(2018).
    [5] . M.I.Jordan,T.M.Mitchell,Machine learning:Trends,perspectives,and prospects.Science349,255-260(2015).doi: 10.1126/science.aaa8415;pmid:26185243
    [6] . R.Kohavi,F.Provost,Glossary of terms.Machine Lear-ning-Special Issue on Applications of Machine Learning and the Knowledge Discovery Process.Mach.Learn.30,271-274(1998).doi: 10.1023/A:1017181826899
    [7] . J.McCarthy,E.Feigenbaum,In Memoriam.Arthur Samuel:Pioneer in Machine Learning.AI Mag.11,10(1990).doi.org/10.1609/aimag.v11i3.840
    [8] . I.Goodfellow,Y.Bengio,A.Courville,Deep Learning(MIT Press,2016).
    [9] . G.Litjens,T.Kooi,B.E.Bejnordi,A.A.A.Setio,F.Ciompi,M.Ghafoorian,J.A.van der Laak,B.van Ginneken,C.I.Sanchez,A survey on deep learning in medical image analysis.Med.Image Anal.42,60-88(2017).doi: 10.1016/j.media.2017.07.005;pmid:28778026
    [10] . Q.V.Le,Building high-level features using large-scale unsupervised learning,in 2013 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP)(IEEE,2013),pp.8595-8598.
    [11] . F.U.Dowla,S.R.Taylor,R.W.Anderson,Seismic discrimination with artificial neural networks:Preliminary results with regional spectral data.Bull.Seismol.Soc.Am.80,1346-1373(1990).
    [12] . P.S.Dysart,J.J.Pulli,Regional seismic event classification at the NORESS array:Seismological mea-surements and the use of trained neural networks.Bull.Seismol.Soc.Am.80,1910(1990).
    [13] . H.Dai,C.MacBeth,Automatic picking of seismic arrivals in local earthquake data using an artificial neural network.Geophys.J.Int.120,758-774(1995).doi: 10.1111/j.1365-246X.1995.tb01851.x
    [14] . O.Russakovsky et al.,ImageNet Large Scale Visual Recognition Challenge.Int.J.Comput.Vis.115,211-252(2015).doi: 10.1007/s11263-015-0816-y
    [15] . J.Bennett,S.Lanning,The Netflix Prize,in Proceedings of KDD cup and workshop(New York,2007),vol.2007,p.35.
    [16] . T.Perol,M.Gharbi,M.Denolle,Convolutional neural network for earthquake detection and location.Sci.Adv.4,e1700578(2018).doi: 10.1126/sciadv.1700578;pmid:29487899
    [17] . Q.Kong,R.M.Allen,L.Schreier,Y.-W.Kwon,MyShake:A smartphone seismic network for earthquake early warning and beyond.Sci.Adv.2,e1501055(2016).doi: 10.1126/sciadv.1501055;pmid:26933682
    [18] . R.Reddy,R.R.Nair,The efficacy of support vector machines(SVM)in robust determination of earthquake early warning magnitudes in central Japan.J.Earth Syst.Sci.122,1423-1434(2013).doi: 10.1007/s12040-013-0346-3
    [19] . L.H.Ochoa,L.F.Niño,C.A.Vargas,Fast magnitude determination using a single seismological station record implementing machine learning techniques.Geodesy Geodyn.9,34-41(2017).doi: 10.1016/j.geog.2017.03.010
    [20] . D.Shoji,R.Noguchi,S.Otsuki,H.Hino,Classification of volcanic ash particles using a convolutional neural network and probability.Sci.Rep.8,8111(2018).doi: 10.1038/s41598-018-26200-2;pmid:29802305
    [21] . D.T.Trugman,P.M.Shearer,Strong Correlation between Stress Drop and Peak Ground Acceleration for Recent M1-4 Earthquakes in the San Francisco Bay Area.Bull.Seismol.Soc.Am.108,929-945(2018).doi: 10.1785/0120170245
    [22] . B.Derras,P.Y.Bard,F.Cotton,Towards fully data driven ground-motion prediction models for Europe.Bull.Earthquake Eng.12,495-516(2014).doi: 10.1007/s10518-013-9481-0
    [23] . P.M.R.DeVries,T.B.Thompson,B.J.Meade,Enabling large-scale viscoelastic calculations via neural network acceleration.Geophys.Res.Lett.44,2662-2669(2017).doi: 10.1002/2017GL072716
    [24] . M.Valera,Z.Guo,P.Kelly,S.Matz,V.A.Cantu,A.G.Percus,J.D.Hyman,G.Srinivasan,H.S.Viswanathan,Machine learning for graph-based representations of three-dimensional discrete fracture networks.Computat.Geosci.22,695-710(2018).doi: 10.1007/s10596-018-9720-1
    [25] . P.Käufl,A.P.Valentine,J.Trampert,Probabilistic point source inversion of strong-motion data in 3-D media using pattern recognition:A case study for the 2008 MW5.4 Chino Hills earthquake.Geophys.Res.Lett.43,8492-8498(2016).doi: 10.1002/2016GL069887
    [26] . M.T.McCann,K.H.Jin,M.Unser,Convolutional Neural Networks for Inverse Problems in Imaging:A Review.IEEE Signal Process.Mag.34,85-95(2017).doi: 10.1109/MSP.2017.2739299
    [27] . B.K.Holtzman,A.Paté,J.Paisley,F.Waldhauser,D.Repetto,Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field.Sci.Adv.4,eaao2929(2018).doi: 10.1126/sciadv.aao2929;pmid:29806015
    [28] . B.Rouet-Leduc,C.Hulbert,N.Lubbers,K.Barros,C.J.Humphreys,P.A.Johnson,Machine Learning Predicts Laboratory Earthquakes.Geophys.Res.Lett.44,9276-9282(2017).doi:10.1002/2017GL 074677
    [29] . B.Rouet-Leduc,C.Hulbert,D.C.Bolton,C.X.Ren,J.Riviere,C.Marone,R.A.Guyer,P.A.Johnson,Estimating Fault Friction From Seismic Signals in the Laboratory.Geophys.Res.Lett.45,1321-1329(2018).doi: 10.1002/2017GL076708
    [30] . C.Hulbert,B.Rouet-Leduc,P.Johnson,C.X.Ren,J.Riviere,D.C.Bolton,C.Marone,Similarity of fast and slow earthquakes illuminated by machine learning.Nat.Geosci.12,69-74(2019).doi: 10.1038/s41561-018-0272-8
    [31] . B.Rouet-Leduc,C.Hulbert,P.A.Johnson,Continuous chatter of the Cascadia subduction zone revealed by machine learning.Nat.Geosci.12,75-79(2019).doi: 10.1038/s41561-018-0274-6
    [32] . A.P.Valentine,J.Trampert,Data space reduction,quality assessment and searching of seismograms:Autoencoder networks for waveform data.Geophys.J.Int.189,1183-1202(2012).doi: 10.1111/j.1365-246X.2012.05429.x
    [33] . C.C.Carneiro,S.J.Fraser,A.P.Crósta,A.M.Silva,C.E.M.Barros,Semiautomated geologic mapping using self-organizing maps and airborne geophysics in the Brazilian Amazon.Geophysics77,K17-K24(2012).doi: 10.1190/geo2011-0302.1
    [34] . X.Wu,D.Hale,3D seismic image processing for faults.Geophysics81,IM1-IM11(2016).doi: 10.1190/geo2015-0380.1
    [35] . S.Kuhn,M.J.Cracknell,A.M.Reading,Lithologic mapping using Random Forests applied to geophysical and remotesensing data:A demonstration study from the Eastern Goldfields of Australia.Geophysics83,B183-B193(2018).doi: 10.1190/geo2017-0590.1
    [36] . D.R.Cox,The Regression Analysis of Binary Sequences.J.R.Stat.Soc.B20,215-232(1958).doi: 10.1111/j.2517-6161.1958.tb00292.x
    [37] . A.Reynen,P.Audet,Supervised machine learning on a network scale:Application to seismic event classification and detection.Geophys.J.Int.210,1394-1409(2017).doi: 10.1093/gji/ggx238
    [38] . S.Pawley,R.Schultz,T.Playter,H.Corlett,T.Shipman,S.Lyster,T.Hauck,The Geological Susceptibility of Induced Earthquakes in the Duvernay Play.Geophys.Res.Lett.45,1786-1793(2018).doi: 10.1002/2017GL076100
    [39] . L.R.Rabiner,A tutorial on hidden Markov models and selected applications in speech recognition.Proc.IEEE77,257-286(1989).doi: 10.1109/5.18626
    [40] . F.Dammeier,J.R.Moore,C.Hammer,F.Haslinger,S.Loew,Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models.J.Geophys.Res.Earth Surf.121,351-371(2016).doi: 10.1002/2015JF003647
    [41] . M.Beyreuther,R.Carniel,J.Wassermann,Continuous Hidden Markov Models:Application to automatic earthquake detection and classification at Las Canãdas caldera,Tenerife.J.Volcanol.Geotherm.Res.176,513-518(2008).doi: 10.1016/j.jvolgeores.2008.04.021
    [42] . C.Hammer,M.Beyreuther,M.Ohrnberger,A Seismic-Event Spotting System for Volcano Fast-Response Systems.Bull.Seismol.Soc.Am.102,948-960(2012).doi: 10.1785/0120110167
    [43] . M.Beyreuther,J.Wassermann,Continuous earthquake detection and classification using discrete Hidden Mar-kov Models.Geophys.J.Int.175,1055-1066(2008).doi: 10.1111/j.1365-246X.2008.03921.x
    [44] . M.Beyreuther,C.Hammer,J.Wassermann,M.Ohrnberger,T.Megies,Constructing a Hidden Markov Model based earthquake detector:Application to induced seismicity.Geophys.J.Int.189,602-610(2012).doi: 10.1111/j.1365-246X.2012.05361.x
    [45] . C.Riggelsen,M.Ohrnberger,F.Scherbaum,Dynamic Bayesian networks for real-time classification of seismic signals,in Knowledge Discovery in Databases.PKDD 2007.Lecture Notes in Computer Science,vol.4702,J.N.Kok et al.,Eds.(Springer,2007),pp.565-572.doi: 10.1007/978-3-540-74976-9_59
    [46] . C.Riggelsen,M.Ohrnberger,A Machine Learning Approach for Improving the Detection Capabilities at 3C Seismic Stations.Pure Appl.Geophys.171,395-411(2014).doi: 10.1007/s00024-012-0592-3
    [47] . F.Janoos,H.Denli,N.Subrahmanya,Multi-scale graphical models for spatio-temporal processes.Adv.Neural Inf.Process.Syst.27,316-324(2014).
    [48] . S.Srinivasan,J.Hyman,S.Karra,D.O'Malley,H.Viswanathan,G.Srinivasan,Robust system size reduction of discrete fracture networks:A multi-fidelity method that preserves transport characteristics.Computat.Geosci.22,1515-1526(2018).doi: 10.1007/s10596-018-9770-4
    [49] . C.Cortes,V.Vapnik,Support-vector networks.Mach.Learn.20,273-297(1995).doi: 10.1023/A:1022627411411
    [50] . M.J.Cracknell,A.M.Reading,The upside of uncertainty:Identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines.Geophysics78,WB113-WB126(2013).doi: 10.1190/geo2012-0411.1
    [51] . M.H.Shahnas,D.A.Yuen,R.N.Pysklywec,Inverse Problems in Geodynamics Using Machine Learning Algorithms.J.Geophys.Res.Solid Earth123,296-310(2018).doi:10.1002/2017JB 014846
    [52] . J.Kortström,M.Uski,T.Tiira,Automatic classification of seismic events within a regional seismograph network.Comput.Geosci.87,22-30(2016).doi: 10.1016/j.cageo.2015.11.006
    [53] . A.E.Ruano,G.Madureira,O.Barros,H.R.Khosravani,M.G.Ruano,P.M.Ferreira,Seismic detection using support vector machines.Neurocomputing135,273-283(2014).doi: 10.1016/j.neucom.2013.12.020
    [54] . L.Breiman,Random Forests.Mach.Learn.45,5-32(2001).doi: 10.1023/A:1010933404324
    [55] . M.J.Cracknell,A.M.Reading,Geological mapping using remote sensing data:A comparison of five machine learning algorithms,their response to variations in the spatial distribution of training data and the use of explicit spatial information.Comput.Geosci.63,22-33(2014).doi: 10.1016/j.cageo.2013.10.008
    [56] . A.M.Reading,M.J.Cracknell,D.J.Bombardieri,T.Chalke,Combining Machine Learning and Geophysical Inversion for Applied Geophysics.ASEG Extended Abstracts 2015,1(2015).doi: 10.1071/ASEG2015ab070
    [57] . C.M.Bishop,Neural Networks for Pattern Recognition(Oxford Univ.Press,1995).
    [58] . A.P.Valentine,J.H.Woodhouse,Approaches to automated data selection for global seismic tomography.Geophys.J.Int.182,1001-1012(2010).doi: 10.1111/j.1365-246X.2010.04658.x
    [59] . M.van der Baan,C.Jutten,Neural networks in geophysical applications.Geophysics65,1032-1047(2000).doi: 10.1190/1.1444797
    [60] . M.M.Poulton,Neural networks as an intelligence amplification tool:A review of applications.Geophysics67,979-993(2002).doi: 10.1190/1.1484539
    [61] . R.W.L.de Wit,A.P.Valentine,J.Trampert,Bayesian inference of Earth's radial seismic structure from body-wave traveltimes using neural networks.Geophys.J.Int.195,408-422(2013).doi: 10.1093/gji/ggt220
    [62] . R.Paolucci,F.Gatti,M.Infantino,C.Smerzini,A.Guney Ozcebe,M.Stupazzini,Broadband ground motions from 3D physics-based numerical simulations using artificial neural networks.Bull.Seismol.Soc.Am.108,1272-1286(2018).
    [63] . P.Paitz,A.Gokhberg,A.Fichtner,A neural network for noise correlation classification.Geophys.J.Int.212,1468-1474(2018).doi: 10.1093/gji/ggx495
    [64] . S.M.Mousavi,S.P.Horton,C.A.Langston,B.Samei,Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression.Geophys.J.Int.207,29-46(2016).doi: 10.1093/gji/ggw258
    [65] . Y.LeCun,Y.Bengio,G.Hinton,Deep learning.Nature521,436-444(2015).doi: 10.1038/nature14539;pmid:26017442
    [66] . Z.E.Ross,M.-A.Meier,E.Hauksson,P Wave Arrival Picking and First-Motion Polarity Determination With Deep Learning.J.Geophys.Res.Solid Earth123,5120-5129(2018).doi: 10.1029/2017JB015251
    [67] . B.Moseley,A.Markham,T.Nissen-Meyer,Fast approximate simulation of seismic waves with deep learning.arXiv:1807.06873[physics.geo-ph](2018).
    [68] . Y.Wu,Y.Lin,Z.Zhou,D.C.Bolton,J.Liu,P.Johnson,Cascaded region-based densely connected network for event detection:A seismic application.arXiv:1709.07943[cs.LG](2017).
    [69] . Y.Wu,Y.Lin,Z.Zhou,A.Delorey,Seismic-Net:A deep densely connected neural network to detect seismic events.arXiv:1802.02241(eess.SP)(2018).
    [70] . W.Zhu,G.C.Beroza,PhaseNet:A deep-neural-networkbased seismic arrival time picking method.arXiv:1803.03211[physics.geo-ph](2018).
    [71] . M.Titos,A.Bueno,L.García,C.Benítez,A deep neural networks approach to automatic recognition systems for volcano-seismic events.IEEE J.Sel.Top.Appl.Earth Obs.Remote Sens.11,1533-1544(2018).doi: 10.1109/JSTARS.2018.2803198
    [72] . J.Wiszniowski,B.Plesiewicz,J.Trojanowski,Application of real time recurrent neural network for detection of small natural earthquakes in Poland.Acta Geophysica62,469-485(2014).doi: 10.2478/s11600-013-0140-2
    [73] . S.A.Magaña-Zook,S.D.Ruppert,Explosion monitoring with machine learning:A LSTM approach to seismic event discrimination.American Geophysical Union Fall Meeting,abstract S43A-0834(2017).
    [74] . S.Hochreiter,J.Schmidhuber,Long short-term memory.Neural Comput.9,1735-1780(1997).doi: 10.1162/neco.1997.9.8.1735;pmid:9377276
    [75] . M.Araya-Polo,J.Jennings,A.Adler,T.Dahlke,Deep-learning tomography.Leading Edge(Tulsa Okla.)37,58-66(2018).doi:10.1190/tle 37010058.1
    [76] . S.Mallat,Group Invariant Scattering.Commun.Pure Appl.Math.65,1331-1398(2012).doi: 10.1002/cpa.21413
    [77] . J.Bruna,S.Mallat,Invariant scattering convolution networks.IEEE Trans.Pattern Anal.Mach.Intell.35,1872-1886(2013).doi: 10.1109/TPAMI.2012.230;pmid:23787341
    [78] . J.Bruna,Scattering representations for recognition,Ph.D.thesis,Ecole Polytechnique X(2013).
    [79] . S.Gupta,K.Kothari,M.V.de Hoop,I.Dokmanic,Random mesh projectors for inverse problems.arXiv:1805.11718[cs.CV](2018).
    [80] . T.Kohonen,Essentials of the self-organizing map.Neural Netw.37,52-65(2013).doi: 10.1016/j.neunet.2012.09.018;pmid:23067803
    [81] . R.Roden,T.Smith,D.Sacrey,Geologic pattern recogni-tion from seismic attributes:Principal component analy-sis and self-organizing maps.Interpretation(Tulsa)3,SAE59-SAE83(2015).doi: 10.1190/INT-2015-0037.1
    [82] . T.Zhao,F.Li,K.J.Marfurt,Constraining self-organizing map facies analysis with stratigraphy:An approach to increase the credibility in automatic seismic facies classification.Interpretation(Tulsa)5,T163-T171(2017).doi: 10.1190/INT-2016-0132.1
    [83] . A.Köhler,M.Ohrnberger,C.Riggelsen,F.Scherbaum,Unsupervised feature selection for pattern search in seismic time series.Journal of Machine Learning Research,in Workshop and Conference Proceedings:New challenges for Feature Selection in Data Mining and Knowledge Discovery,vol.4,pp.106-121.
    [84] . A.Esposito,F.Giudicepietro,S.Scarpetta,L.D'Auria,M.Marinaro,M.Martini,Automatic Discrimination among Landslide,Explosion-Quake,and Microtremor Seismic Signals at Stromboli Volcano Using Neural Networks.Bull.Seismol.Soc.Am.96(4A),1230-1240(2006).doi: 10.1785/0120050097
    [85] . A.Esposito,F.Giudicepietro,L.D'Auria,S.Scarpetta,M.Martini,M.Coltelli,M.Marinaro,Unsupervised Neural Analysis of Very-Long-Period Events at Stromboli Volcano Using the Self-Organizing Maps.Bull.Seismol.Soc.Am.98,2449-2459(2008).doi: 10.1785/0120070110
    [86] . M.J.Cracknell,A.M.Reading,A.W.McNeill,Mapping geology and volcanic-hosted massive sulfide alteration in the Hellyer-Mt Charter region,Tasmania,using Rand-om ForestsTM and Self-Organising Maps.Aust.J.Earth Sci.61,287-304(2014).doi: 10.1080/08120099.2014.858081
    [87] . A.Köhler,M.Ohrnberger,F.Scherbaum,Unsupervised pattern recognition in continuous seismic wavefield records using Self-Organizing Maps.Geophys.J.Int.182,1619-1630(2010).doi: 10.1111/j.1365-246X.2010.04709.x
    [88] . B.Sick,M.Guggenmos,M.Joswig,Chances and limits of single-station seismic event clustering by unsupervised pattern recognition.Geophys.J.Int.201,1801-1813(2015).doi: 10.1093/gji/ggv126
    [89] . F.Qian et al.,Unsupervised seismic facies analysis via deep convolutional autoencoders.Geophysics83,A39-A43(2018).doi: 10.1190/geo2017-0524.1
    [90] . S.Beckouche,J.Ma,Simultaneous dictionary learning and denoising for seismic data.Geophysics79,A27-A31(2014).doi: 10.1190/geo2013-0382.1
    [91] . Y.Chen,J.Ma,S.Fomel,Double-sparsity dictionary for seismic noise attenuation.Geophysics81,V103-V116(2016).doi: 10.1190/geo2014-0525.1
    [92] . M.Bianco,P.Gerstoft,Travel time tomography with adaptive dictionaries.arXiv:1712.08655[physics.geo-ph](2017).
    [93] . I.Goodfellow et al.,Generative adversarial networks.Adv.Neural Inf.Process.Syst.27,2672-2680(2014).
    [94] . L.Mosser,O.Dubrule,M.J.Blunt,Reconstruction of three-dimensional porous media using generative adversarial neural networks.Phys.Rev.E96,043309(2017).doi: 10.1103/PhysRevE.96.043309;pmid:29347591
    [95] . A.B.Patel,M.T.Nguyen,R.Baraniuk,A probabilistic framework for deep learning.Adv.Neural Inf.Process.Syst.29,2558-2566(2016).
    [96] . D.P.Kingma,M.Welling,Auto-encoding variational Bayes.arXiv:1312.6114[stat.ML](2013).
    [97] . J.B.Tenenbaum,C.Kemp,T.L.Griffiths,N.D.Goodman,How to grow a mind:Statistics,structure,and abstraction.Science331,1279-1285(2011).doi: 10.1126/science.1192788;pmid:21393536
    [98] . L.Krischer,A.Fichtner,Generating seismograms with deep neural networks.AGU Fall Meeting Abstracts,abstract S41D-03(2017).
    [99] . L.Mosser,W.Kimman,J.Dramsch,S.Purves,A.De la Fuente,G.Ganssle,Rapid seismic domain transfer:Seismic velocity inversion and modeling using deep ge-nerative neural networks.arXiv:1805.08826[physics.geo-ph](2018).
    [100] . E.Dupont,T.Zhang,P.Tilke,L.Liang,W.Bailey,Ge-nerating realistic geology conditioned on physical mea-surements with generative adversarial networks.arXiv:1802.03065[stat.ML](2018).
    [101] . S.Chan,A.H.Elsheikh,Parametrization and generation of geological models with generative adversarial networks.arXiv:1708.01810[stat.ML](2017).
    [102] . A.Veillard,O.Morère,M.Grout,J.Gruffeille,Fast 3D seismic interpretation with unsupervised deep learning:Application to a potash network in the North Sea.80th EAGE Conference and Exhibition 2018(2018).doi: 10.3997/2214-4609.201800738
    [103] . T.J.Draelos,M.G.Peterson,H.A.Knox,B.J.Lawry,K.E.Phillips-Alonge,A.E.Ziegler,E.P.Chael,C.J.Young,A.Faust,Dynamic tuning of seismic signal detector trigger levels for local networks Bull.Seismol.Soc.Am.108,1346-1354(2018).doi.org/10.1785/0120170200
    [104] . J.Zhang,H.Zhang,E.Chen,Y.Zheng,W.Kuang,X.Zhang,Real-time earthquake monitoring using a search engine method.Nat.Commun.5,5664(2014).doi: 10.1038/ncomms6664;pmid:25472861
    [105] . L.Yin,J.Andrews,T.Heaton,Reducing process delays for real-time earthquake parameter estimation-An application of KD tree to large databases for Earthquake Early Warning.Comput.Geosci.114,22-29(2018).doi.10.1016/j.cageo.2018.01.001
    [106] . R.Tibi,C.Young,A.Gonzales,S.Ballard,A.Encarnacao,Rapid and robust cross-correlation-based seismic phase identification using an approximate nearest neighbor method.Bull.Seismol.Soc.Am.107,1954-1968(2017).doi: 10.1785/0120170011
    [107] . C.E.Yoon,O.O'Reilly,K.J.Bergen,G.C.Beroza,Earthquake detection through computationally efficient similarity search.Sci.Adv.1,e1501057(2015).doi: 10.1126/sciadv.1501057;pmid:26665176
    [108] . K.J.Bergen,G.C.Beroza,Detecting earthquakes over a seismic network using single-station similarity mea-sures.Geophys.J.Int.213,1984-1998(2018).doi: 10.1093/gji/ggy100
    [109] . K.Rong,C.E.Yoon,K.J.Bergen,H.Elezabi,P.Bailis,P.Levis,G.C.Beroza,Locality-sensitive hashing for earthquake detection:A case study scaling data-driven science.Proceedings of the International Conference on Very Large Data Bases(PVLDB)11,1674(2018).doi: 10.14778/3236187.3236214
    [110] . N.Riahi,P.Gerstoft,Using graph clustering to locate sources within a dense sensor array.Signal Processing132,110-120(2017).doi: 10.1016/j.sigpro.2016.10.001
    [111] . A.C.Aguiar,G.C.Beroza,PageRank for Earthquakes.Seismol.Res.Lett.85,344-350(2014).doi: 10.1785/0220130162
    [112] . M.Campbell,A.J.Hoane Jr.,F.-H.Hsu,Deep Blue.Artif.Intell.134,57-83(2002).doi: 10.1016/S0004-3702(01)00129-1
    [113] . D.Ferrucci,A.Levas,S.Bagchi,D.Gondek,E.T.Mueller,Watson:Beyond Jeopardy! Artif.Intell.199-200,93-105(2013).doi: 10.1016/j.artint.2012.06.009
    [114] . D.Silver et al.,Mastering the game of Go with deep neural networks and tree search.Nature529,484-489(2016).doi:10.1038/nature 16961;pmid:26819042
    [115] . M.Moravčík et al.,DeepStack:Expert-level artificial intelligence in heads-up no-limit poker.Science356,508-513(2017).doi: 10.1126/science.aam6960;pmid:28254783
    [116] . A.Krizhevsky,I.Sutskever,G.E.Hinton,ImageNet classification with deep convolutional neural networks.Adv.Neural Inf.Process.Syst.25,1097-1105(2012).
    [117] . Y.LeCun,L.Bottou,Y.Bengio,P.Haffner,Gradient-based learning applied to document recognition.Proc.IEEE86,2278-2324(1998).doi: 10.1109/5.726791
    [118] . J.Deng,W.Dong,R.Socher,L.-J.Li,K.Li,L.Fei-Fei,Imagenet:A large-scale hierarchical image database,in Computer Vision and Pattern Recognition,2009.CVPR2009.IEEE Conference on(IEEE,2009),pp.248-255.doi: 10.1109/CVPR.2009.5206848
    [119] . Aftershock detection contest,https://tianchi.aliyun.com/competition/introduction.htm?raceId=231606;accessed:7 September 2018.
    [120] . L.Fang,Z.Wu,K.Song,SeismOlympics.Seismol.Res.Lett.88,1429-1430(2017).doi: 10.1785/0220170134
    [121] . D.Sculley,J.Snoek,A.Wiltschko,A.Rahimi,Winner's curse?on pace,progress,and empirical rigor,in International Conference on Learning Representations(ICLR)2018 Workshop.(2018);https://openreview.net/forum?id=rJWF0Fywf.
    [122] . Y.Gil et al.,Toward the Geoscience Paper of the Future:Best practices for documenting and sharing research from data to software to provenance.EarthSpace Sci.3,388-415(2016).doi: 10.1002/2015EA000136
    [123] . GitHub,https://github.com.
    [124] . GitLab,https://about.gitlab.com.
    [125] . M.Beyreuther et al.,ObsPy:A Python Toolbox for Seismology.Seismol.Res.Lett.81,530-533(2010).doi: 10.1785/gssrl.81.3.530
    [126] . L.Krischer et al.,ObsPy:A bridge for seismology into the scientific Python ecosystem.Comput.Sci.Discov.8,014003(2015).doi: 10.1088/1749-4699/8/1/014003
    [127] . S.Heimann,et al.,Pyrocko-An open-source seismology toolbox and library.V.0.3.GFZ Data Services.(2017).doi: 10.5880/GFZ.2.1.2017.001
    [128] . F.Pedregosa et al.,Scikit-learn:Machine Learning in Python.J.Mach.Learn.Res.12,2825-2830(2011).
    [129] . arXiv e-Print archive,https://arxiv.org.
    [130] . EarthArXiv Preprints,https://eartharxiv.org.
    [131] . Earth and Space Science Open Archive,https://essoar.org.
    [132] . J.Kaiser,The preprint dilemma.Science357,1344-1349(2017).doi: 10.1126/science.357.6358.1344;pmid:28963238
    [133] . C.Sutton,L.Gong,Popularity of arXiv.org within computer science.arXiv:1710.05225[cs.DL](2017).
    [134] . A.J.Riquelme,A.Abellán,R.Tomás,M.Jaboyedoff,A new approach for semi-automatic rock mass joints re-cognition from 3D point clouds.Comput.Geosci.68,38-52(2014).doi: 10.1016/j.cageo.2014.03.014
    [135] . N.J.Lindsey et al.,Fiber-Optic Network Observations of Earthquake Wavefields.Geophys.Res.Lett.44,11,792-11,799(2017).doi: 10.1002/2017GL075722
    [136] . E.R.Martin et al.,A Seismic Shift in Scalable Acquisition Demands New Processing:Fiber-Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning for Coherent Noise Removal.IEEE Signal Process.Mag.35,31-40(2018).doi: 10.1109/MSP.2017.2783381
    [137] . G.Marra et al.,Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables.Science361,486-490(2018).doi: 10.1126/science.aat4458
    [138] . T.Sakaki,M.Okazaki,Y.Matsuo,Earthquake shakes Twitter users:Real-time event detection by social sensors,in Proceedings of the 19th International Confe-rence on World Wide Web(ACM,2010),pp.851-860.doi: 10.1145/1772690.1772777
    [139] . P.S.Earle,D.C.Bowden,M.Guy,Twitter earthquake detection:Earthquake monitoring in a social world.Ann.Geophys.54,708-715(2012).doi: 10.4401/ag-5364
    [140] . R.Bossu,G.Mazet-Roux,V.Douet,S.Rives,S.Marin,M.Aupetit,Internet Users as Seismic Sensors for Improved Earthquake Response.Eos89,225-226(2008).doi:10.1029/2008EO 250001
    [141] . E.S.Cochran,J.F.Lawrence,C.Christensen,R.S.Jakka,The Quake-Catcher Network:Citizen Science Expan-ding Seismic Horizons.Seismol.Res.Lett.80,26-30(2009).doi: 10.1785/gssrl.80.1.26
    [142] . A.Karpatne,I.Ebert-Uphoff,S.Ravela,H.A.Babaie,V.Kumar,Machine learning for the geosciences:Challen-ges and opportunities.arXiv:1711.04708[cs.LG](2017).
    [143] . A.Karpatne et al.,Theory-Guided Data Science:A New Paradigm for Scientific Discovery from Data.IEEE Trans.Knowl.Data Eng.29,2318-2331(2017).doi: 10.1109/TKDE.2017.2720168
    [144] . J.-Y.Zhu,T.Park,P.Isola,A.A.Efros,Unpaired image-to-image translation using cycle-consistent adversarial networks.arXiv:1703.10593[cs.CV](2017).
    [145] . I.Ebert-Uphoff,Y.Deng,Three steps to successful collaboration with data scientists.Eos98,(2017).doi: 10.1029/2017EO079977
  • 加载中
计量
  • 文章访问数:  647
  • HTML全文浏览量:  236
  • PDF下载量:  81
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回