[1]
|
Agnew, D.C., 1986. Strainmeters and tiltmeters. Rev. Geophys.24 (3), 579-624.
|
[2]
|
Anderson, O.L., Isaak, D.G., 1995. Elastic constants of mantle minerals at high temperature. In:Ahrens, T.J. (Ed.), Mineral Physics and Crystallography:A Handbook of Physical Constants. American Geophysical Union, Washington, DC, pp.64-97.
|
[3]
|
Barberio, M.D., Barbieri, M., Billi, A., Doglioni, C., Petitta, M., 2017. Hydrogeochemical chan-ges before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Sci. Rep.7, 11735. https://doi.org/10.1038/s41598-017-11990-8.
|
[4]
|
Barchi, M., 2002. Lithological and structural con-trols on the seismogenesis of the Umbria region:observations from seismic reflection profiles. Boll. Soc. Geol. Ital.121, 855-864.
|
[5]
|
Bouchon, M., Karabulut, H., Aktar, M., Özalay-bey, S., Schmittbuhl, J., Bouin, M-P., 2011. Extended nucleation of the 1999 MW7.6 Izmit earthquake. Science 331, 877-880.
|
[6]
|
Burke, L., 2011. Carbon Dioxide Fluid-Flow Mode-ling and Injectivity Calculations. U.S. Geol. Surv. Sci. Investig. Rep. 2011-5083, 16pp.
|
[7]
|
Byerlee, J., 1978. Friction of rocks. Pure Appl. Geophys.116, 615-626.
|
[8]
|
Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and perme-ability structure. Geo-logy 24, 1025. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2.
|
[9]
|
Campillo, M., Favreau, P., Ionescu, I.R., Voisin, C., 2001. On the effective friction law of a hete-rogeneous fault. J. Geophys. Res.106, 16307. https://doi.org/10.1029/2000JB900467.
|
[10]
|
Cappa, F., Rutqvist, J., 2012. Seismic rupture and ground accelerations induced by CO2 injection in the shallow crust. Geophys. J. Int.190, 1784-1789. https://doi.org/10.1111/j.1365-246X.2012.05606.x.
|
[11]
|
Cappa, F., Rutqvist, J., 2011. Impact of CO2 geo-logical sequestration on the nucleation of earthquakes. Geophys. Res. Lett.38, 2-7. https://doi.org/10.1029/2011GL048487.
|
[12]
|
Cappa, F., Rutqvist, J., Yamamoto, K., 2009. Mode-ling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro earthquake swarm in Japan. J. Geophys. Res.114, B10304. https://doi.org/10.1029/2009JB006398.
|
[13]
|
Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the complexity of an active normal fault system:the 1997 Colfiorito (central Italy) case study. J. Geophys. Res.108, 2294. https://doi.org/10.1029/2002JB002166.
|
[14]
|
Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geo-phys. Res. Lett.31. n/a, https://doi.org/10.1029/2004GL019480.
|
[15]
|
Collettini, C., Cardellini, C., Chiodini, G., De Paola, N., Holdsworth, R.E., Smith, S.A.F., 2008. Fault weakening due to CO2 degassing in the Northern Apennines:short-and long-term proces-ses. Geol. Soc. (Lond.) Spec. Publ.299, 175-194. https://doi.org/10.1144/SP299.11.
|
[16]
|
Collettini, C., De Paola, N., Faulkner, D.R., 2009. Insights on the geometry and mechanics of the Umbria-Marche earthquakes (Central Italy) from the integration of field and laboratory data. Tectonophysics 476, 99-109. https://doi.org/10.1016/j.tecto.2008.08.013.
|
[17]
|
Cox,S.F., 2010. The application of failure mode dia-grams for exploring the roles of fluid pressure and stress states in controlling styles of frac-ture-controlled permeability enhancement in faults and shear zones. Geofluids 10, 217-233. https://doi.org/10.1111/j.1468-8123.2010.00281.x.
|
[18]
|
De Paola, N., Collettini, C., Faulkner, D.R., Trippetta, F., 2008. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics 27, 1-21. https://doi.org/10.1029/2007TC002230.
|
[19]
|
De Paola, N., Faulkner, D.R., Collettini, C., 2009. Brittle versus ductile deformation as the main control on the transport properties of low-porosity anhydrite rocks. J.Geophys. Res., SolidEarth 114. https://doi.org/10.1029/2008JB005967.
|
[20]
|
Detournay, E., Cheng, A.H.-D.A., 1993. Fundamentals of Poroelasticity. Compr. Rock Eng. Princ. Pract. Proj. II, pp.113-171.
|
[21]
|
Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., Cinti, F.R., 2010. Normal faults and thrusts reactivated by deep fluids:the 6 April 2009 MW6.3 L'Aquila earthquake, central Italy. J. Geophys. Res.115, B06315. https://doi.org/10.1029/2009JB007190.
|
[22]
|
Ellsworth, W.L., 2013. Injection-induced earthquakes. Science 80, 341.
|
[23]
|
Evans, J.P., Forster, C.B., Goddard, J.V., 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J. Struct. Geol.19, 1393-1404. https://doi.org/10.1016/S0191-8141(97)00057-6.
|
[24]
|
Guglielmi, Y., Cappa, F., Avouac, J., Henry, P., Elsworth, D., 2015. Seismicity triggered by fluid injection-induced aseismic slip. Science 80(348), 1224-1227. https://doi.org/10.1126/science.aab0476.
|
[25]
|
Kaneko, Y., Carpenter, B.M., Nielsen, S.B., 2017. Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data. Geophys. Res. Lett.44, 162-173. https://doi.org/10.1002/2016GL071569.
|
[26]
|
Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., Hirata, N., 2012. Propagation of slow slip leading up to the 2011 MW9.0 Tohoku-Oki earthquake. Source Sci. New Ser.335,705-708. https://doi.org/10.1126/science.1213778.
|
[27]
|
Leclère, H., Cappa, F., Faulkner, D., Fabbri, O., Armitage, P., Blake, O., 2015. Development and maintenance of fluid overpressures in crustal fault zones by elastic compaction and implications for earthquake swarms. J. Geo-phys. Res., Solid Earth 120, 4450-4473. https://doi.org/10.1002/2014JB011759.
|
[28]
|
Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci.26, 643-696. https://doi.org/10.1146/annurev.earth.26.1.643.
|
[29]
|
Mavrommatis, A.P., Segall, P., Johnson, K.M., 2014. A decadal-scale deformation transient prior to the 2011 MW9.0 Tohoku-oki earth-quake. Geophys. Res. Lett.41, 4486-4494. https://doi.org/10.1002/2014GL060139.
|
[30]
|
McGarr, A., Bekins, B., Burkardt, N., Dewey, J., Earle, P., Ellsworth, W., Ge, S., Hick-man, S., Holland, A., Majer, E., Rubinstein, J., Sheehan, A., 2015. Coping with earth-quakes induced by fluid injection. Science 80 (347), 830-831. https://doi.org/10.1126/science.aaa0494.
|
[31]
|
Miller, S.a., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P., 2004. Aftershocks driven by a high-pressure CO2 source at depth. Nature 427, 724-727. https://doi.org/10.1038/nature02251.
|
[32]
|
Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E., Ciaccio, M.G., 2008. Insights on the seismogenic layer thickness from the upper crust structure of the Umbria-Marche Apennines (central Italy). Tectonics 27, 1-15. https://doi.org/10.1029/2007TC002134.
|
[33]
|
Mitchell, T.M., Faulkner, D.R., 2008. Experimentalmeasurements of permeability evolution during tria-xial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. J. Geophys. Res., Solid Earth 113, 1-16. https://doi.org/10.1029/2008JB005588.
|
[34]
|
Paterson, M.S., Wong, T.-F., 2005. Experimental Rock Deformation-the Brittle Field, 2nd ed. Springer, Berlin. ISBN3-540-24023-3.348pp.
|
[35]
|
Peach, C.J., Spiers, C.J., 1996. Influence of crystal plastic deformation on dilatancy and permea-bility development in synthetic salt rock. Tectonophysics 256, 101-128. https://doi.org/10.1016/0040-1951(95)00170-0.
|
[36]
|
Pluymakers, A.M.H., Spiers, C.J., 2015. Compaction creep of simulated anhydrite fault gouge by pressure solution:theory v. experiments andimplications for fault sealing. Geol. Soc. (Lond.) Spec. Publ.409 (1), 107-124.
|
[37]
|
Pluymakers, A.M.H., Niemeijer, A.R., Spiers, C.J., 2016. Frictional properties of simulated anhydrite-dolomite fault gouge and implications for seismogenic potential. J. Struct. Geol.84, 31-46.
|
[38]
|
Rinaldi, A.P., Jeanne, P., Rutqvist, J., Cappa, F., Guglielmi, Y., 2014. Effects of fault-zone architecture on earthquake magnitude and gas leakage related to CO2 injection in a multi-layered sedimentary system. Greenh. Gases Sci. Technol.4, 99-120. https://doi.org/10.1002/ghg.1403.
|
[39]
|
Ruiz, S., Aden-Antoniow, F., Baez, J.C., Otarola, C., Potin, B., del Campo, F., Poli, P., Flores, C., Satriano, C., Leyton, F., Mada-riaga, R., Bernard, P., 2017. Nucleation phase and dynamic inversion of the MW6.9 Valparaíso 2017 earthquake in Central Chile. Geophys. Res. Lett.44, 10,290-10,297. https://doi.org/10.1002/2017GL075675.
|
[40]
|
Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F., 2007. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomecha-nical fault-slip analysis. Energy Convers. Manag.48, 1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021.
|
[41]
|
Rutqvist, J., Cappa, F., Mazzoldi, A., Rinaldi, A., 2013. Geomechanical modeling of fault responses and the potential for notable seismicevents during underground CO2 injection. Energy Proc.37, 4774-4784. https://doi.org/10.1016/j.egypro.2013.06.387.
|
[42]
|
Rutqvist, J., Rinaldi, A.P., Cappa, F.F., Moridis, G.J., 2015. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng.127, 377-386. https://doi.org/10.1016/j.petrol.2015.01.019.
|
[43]
|
Scholz, C.H., 1998. Earthquakes and friction laws.Nature 391, 37-42. https://doi.org/10.1038/34097.
|
[44]
|
Scuderi, M.M., Collettini, C., Marone, C., 2017. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault. Earth Planet. Sci. Lett.477, 84-96.
|
[45]
|
Scuderi, M.M., Collettini, C., 2016. The role of fluid pressure in induced vs. triggered seismi-city:insights from rock deformation experi-ments on carbonates. Sci. Rep.6, 24852.
|
[46]
|
Scuderi, M.M., Niemeijer, A.R., Collettini, C., Marone, C., 2013. Frictional properties and slip stability of active faults within carbonate-evaporite sequences:the role of dolomite and anhydrite. Earth Planet. Sci. Lett.369-370, 220-232. https://doi.org/10.1016/j.epsl.2013.03.024.
|
[47]
|
Sibson, R.H., 2000. Fluid involvement in normal faulting. J. Geodyn.29, 469-499.
|
[48]
|
Sibson, R.H.H., 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211, 283-293. https://doi.org/10.1016/0040-1951(92)90065-E.
|
[49]
|
Socquet, A., Valdes, J.P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., Norabuena, E., 2017. An 8 month slow slip event triggers pro-gressive nucleation of the 2014 Chile mega-thrust. Geophys. Res. Lett.44, 4046-4053. https://doi.org/10.1002/2017GL073023.
|
[50]
|
Trippetta, F., Collettini, C., Barchi, M.R., Lupattelli, A., Mirabella, F., 2013. A multi-disciplinary study of a natural example of a CO2 geological reservoir in central Italy. Int. J. Greenh. Gas Control 12, 72-83. https://doi.org/10.1016/J.IJGGC.2012.11.010.
|
[51]
|
Uenishi, K., Rice, J.R., 2003. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. J. Geophys. Res.B, Solid Earth 108. https://doi.org/10.1029/2001JB001681.
|
[52]
|
Wibberley, C.A.J., Shimamoto, T., 2002. Internal structure and permeability of major strike-slip fault zones:the median tectonic line in Mie prefecture, southwest Japan. J. Struct. Geol.25, 59-78. https://doi.org/10.1016/S0191-8141(02)00014-7.
|
[53]
|
Wong, T., Zhu, W., Wong, T., 1997. The transition from brittle faulting to cataclastic flow:permeability evolution. J. Geophys. Res., Solid Earth 102, 3027-3041. https://doi.org/10.1029/96JB03282.
|
[54]
|
Zoback, M.D., Byerlee, J.D., 1975. The effect of microcrack dilatancy on the permeability of westerly gra-nite. J. Geophys. Res.80, 752-755. https://doi.org/10.1029/JB080i005p00752.
|