• ISSN 2097-1893
  • CN 10-1855/P

复杂天然断裂带流体流动数值模拟:对天然及人工诱发地震起始的意义

T. Snell N. De Paola J. van Hunen S. Nielsen C. Collettini 张伟 高翔 刘海浩 兰晓雯

引用本文: 张伟, 高翔, 刘海浩.复杂天然断裂带流体流动数值模拟:对天然及人工诱发地震起始的意义.世界地震译丛.51(6):670-689. doi:10.16738/j.cnki.issn.1003-3238.202006003

复杂天然断裂带流体流动数值模拟:对天然及人工诱发地震起始的意义

  • 摘要: 活动断层系统中的孔隙流体超压会驱动流体流动,并最终导致断层强度降低和地震活动。由不同破裂模式(例如,脆性与韧性)引起的变形会影响断层带的渗透率,从而影响流体流动和孔隙流体压力分布。当前的数值模拟技术主要针对流体流动对断层再活化以及相关地震活动的控制作用。然而在地震起始阶段,对于孔隙流体压力是否影响从慢速无震断层滑动到快速地震断层滑动过渡的过程,仍然知之甚少。本文中,我们对天然断层中的超压状态下超临界CO2流体的流动进行模拟,断层中的流体流动、流体压力和岩体变形之间复杂的非线性关系控制着地震起始的长度和地震间隔周期的持续时间。我们的模型基于意大利北部亚平宁山脉最近的地震活动(Colfiorito)MW6.0地震和2016年诺尔恰MW6.5地震]进行设置。我们对达西(Darcy)流体流动模拟的结果表明,在将实际复杂断层带构造、孔隙压力和岩石变形相关渗透率三个因素同时考虑在内时,起始阶段的持续时间可以减少几个数量级。特别地,起始阶段的持续时间可以从10年以上减少到几天,甚至是几分钟,而地震矩可减少6倍。值得注意的是,在本研究中,通过地震起始模拟获得的无震滑移地震矩(M0=109N·m),与使用应变计进行局部应变测量的检测极限数量级相同。这些发现对于地震早期预警系统具有重要意义,因为地震起始阶段的持续时间和力矩将影响地震前兆信号探测的可能性。有趣的是,在最近的一些大地震之前的几个月,已经测量到了无震滑移,尽管这些地震的构造背景与本文所构建的模型有所不同,但这也重新引起了我们对地震起始的兴趣。此外,我们的结果对于短期和长期地震预报也具有重要意义,因为在地震间隔期间地壳流体的迁移可能会控制断层强度和地震重现期。

     

  • [1] Agnew, D.C., 1986. Strainmeters and tiltmeters. Rev. Geophys.24 (3), 579-624.
    [2] Anderson, O.L., Isaak, D.G., 1995. Elastic constants of mantle minerals at high temperature. In:Ahrens, T.J. (Ed.), Mineral Physics and Crystallography:A Handbook of Physical Constants. American Geophysical Union, Washington, DC, pp.64-97.
    [3] Barberio, M.D., Barbieri, M., Billi, A., Doglioni, C., Petitta, M., 2017. Hydrogeochemical chan-ges before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Sci. Rep.7, 11735. https://doi.org/10.1038/s41598-017-11990-8.
    [4] Barchi, M., 2002. Lithological and structural con-trols on the seismogenesis of the Umbria region:observations from seismic reflection profiles. Boll. Soc. Geol. Ital.121, 855-864.
    [5] Bouchon, M., Karabulut, H., Aktar, M., Özalay-bey, S., Schmittbuhl, J., Bouin, M-P., 2011. Extended nucleation of the 1999 MW7.6 Izmit earthquake. Science 331, 877-880.
    [6] Burke, L., 2011. Carbon Dioxide Fluid-Flow Mode-ling and Injectivity Calculations. U.S. Geol. Surv. Sci. Investig. Rep. 2011-5083, 16pp.
    [7] Byerlee, J., 1978. Friction of rocks. Pure Appl. Geophys.116, 615-626.
    [8] Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and perme-ability structure. Geo-logy 24, 1025. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2.
    [9] Campillo, M., Favreau, P., Ionescu, I.R., Voisin, C., 2001. On the effective friction law of a hete-rogeneous fault. J. Geophys. Res.106, 16307. https://doi.org/10.1029/2000JB900467.
    [10] Cappa, F., Rutqvist, J., 2012. Seismic rupture and ground accelerations induced by CO2 injection in the shallow crust. Geophys. J. Int.190, 1784-1789. https://doi.org/10.1111/j.1365-246X.2012.05606.x.
    [11] Cappa, F., Rutqvist, J., 2011. Impact of CO2 geo-logical sequestration on the nucleation of earthquakes. Geophys. Res. Lett.38, 2-7. https://doi.org/10.1029/2011GL048487.
    [12] Cappa, F., Rutqvist, J., Yamamoto, K., 2009. Mode-ling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro earthquake swarm in Japan. J. Geophys. Res.114, B10304. https://doi.org/10.1029/2009JB006398.
    [13] Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the complexity of an active normal fault system:the 1997 Colfiorito (central Italy) case study. J. Geophys. Res.108, 2294. https://doi.org/10.1029/2002JB002166.
    [14] Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geo-phys. Res. Lett.31. n/a, https://doi.org/10.1029/2004GL019480.
    [15] Collettini, C., Cardellini, C., Chiodini, G., De Paola, N., Holdsworth, R.E., Smith, S.A.F., 2008. Fault weakening due to CO2 degassing in the Northern Apennines:short-and long-term proces-ses. Geol. Soc. (Lond.) Spec. Publ.299, 175-194. https://doi.org/10.1144/SP299.11.
    [16] Collettini, C., De Paola, N., Faulkner, D.R., 2009. Insights on the geometry and mechanics of the Umbria-Marche earthquakes (Central Italy) from the integration of field and laboratory data. Tectonophysics 476, 99-109. https://doi.org/10.1016/j.tecto.2008.08.013.
    [17] Cox,S.F., 2010. The application of failure mode dia-grams for exploring the roles of fluid pressure and stress states in controlling styles of frac-ture-controlled permeability enhancement in faults and shear zones. Geofluids 10, 217-233. https://doi.org/10.1111/j.1468-8123.2010.00281.x.
    [18] De Paola, N., Collettini, C., Faulkner, D.R., Trippetta, F., 2008. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust. Tectonics 27, 1-21. https://doi.org/10.1029/2007TC002230.
    [19] De Paola, N., Faulkner, D.R., Collettini, C., 2009. Brittle versus ductile deformation as the main control on the transport properties of low-porosity anhydrite rocks. J.Geophys. Res., SolidEarth 114. https://doi.org/10.1029/2008JB005967.
    [20] Detournay, E., Cheng, A.H.-D.A., 1993. Fundamentals of Poroelasticity. Compr. Rock Eng. Princ. Pract. Proj. II, pp.113-171.
    [21] Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., Cinti, F.R., 2010. Normal faults and thrusts reactivated by deep fluids:the 6 April 2009 MW6.3 L'Aquila earthquake, central Italy. J. Geophys. Res.115, B06315. https://doi.org/10.1029/2009JB007190.
    [22] Ellsworth, W.L., 2013. Injection-induced earthquakes. Science 80, 341.
    [23] Evans, J.P., Forster, C.B., Goddard, J.V., 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J. Struct. Geol.19, 1393-1404. https://doi.org/10.1016/S0191-8141(97)00057-6.
    [24] Guglielmi, Y., Cappa, F., Avouac, J., Henry, P., Elsworth, D., 2015. Seismicity triggered by fluid injection-induced aseismic slip. Science 80(348), 1224-1227. https://doi.org/10.1126/science.aab0476.
    [25] Kaneko, Y., Carpenter, B.M., Nielsen, S.B., 2017. Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data. Geophys. Res. Lett.44, 162-173. https://doi.org/10.1002/2016GL071569.
    [26] Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., Hirata, N., 2012. Propagation of slow slip leading up to the 2011 MW9.0 Tohoku-Oki earthquake. Source Sci. New Ser.335,705-708. https://doi.org/10.1126/science.1213778.
    [27] Leclère, H., Cappa, F., Faulkner, D., Fabbri, O., Armitage, P., Blake, O., 2015. Development and maintenance of fluid overpressures in crustal fault zones by elastic compaction and implications for earthquake swarms. J. Geo-phys. Res., Solid Earth 120, 4450-4473. https://doi.org/10.1002/2014JB011759.
    [28] Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci.26, 643-696. https://doi.org/10.1146/annurev.earth.26.1.643.
    [29] Mavrommatis, A.P., Segall, P., Johnson, K.M., 2014. A decadal-scale deformation transient prior to the 2011 MW9.0 Tohoku-oki earth-quake. Geophys. Res. Lett.41, 4486-4494. https://doi.org/10.1002/2014GL060139.
    [30] McGarr, A., Bekins, B., Burkardt, N., Dewey, J., Earle, P., Ellsworth, W., Ge, S., Hick-man, S., Holland, A., Majer, E., Rubinstein, J., Sheehan, A., 2015. Coping with earth-quakes induced by fluid injection. Science 80 (347), 830-831. https://doi.org/10.1126/science.aaa0494.
    [31] Miller, S.a., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P., 2004. Aftershocks driven by a high-pressure CO2 source at depth. Nature 427, 724-727. https://doi.org/10.1038/nature02251.
    [32] Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E., Ciaccio, M.G., 2008. Insights on the seismogenic layer thickness from the upper crust structure of the Umbria-Marche Apennines (central Italy). Tectonics 27, 1-15. https://doi.org/10.1029/2007TC002134.
    [33] Mitchell, T.M., Faulkner, D.R., 2008. Experimentalmeasurements of permeability evolution during tria-xial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. J. Geophys. Res., Solid Earth 113, 1-16. https://doi.org/10.1029/2008JB005588.
    [34] Paterson, M.S., Wong, T.-F., 2005. Experimental Rock Deformation-the Brittle Field, 2nd ed. Springer, Berlin. ISBN3-540-24023-3.348pp.
    [35] Peach, C.J., Spiers, C.J., 1996. Influence of crystal plastic deformation on dilatancy and permea-bility development in synthetic salt rock. Tectonophysics 256, 101-128. https://doi.org/10.1016/0040-1951(95)00170-0.
    [36] Pluymakers, A.M.H., Spiers, C.J., 2015. Compaction creep of simulated anhydrite fault gouge by pressure solution:theory v. experiments andimplications for fault sealing. Geol. Soc. (Lond.) Spec. Publ.409 (1), 107-124.
    [37] Pluymakers, A.M.H., Niemeijer, A.R., Spiers, C.J., 2016. Frictional properties of simulated anhydrite-dolomite fault gouge and implications for seismogenic potential. J. Struct. Geol.84, 31-46.
    [38] Rinaldi, A.P., Jeanne, P., Rutqvist, J., Cappa, F., Guglielmi, Y., 2014. Effects of fault-zone architecture on earthquake magnitude and gas leakage related to CO2 injection in a multi-layered sedimentary system. Greenh. Gases Sci. Technol.4, 99-120. https://doi.org/10.1002/ghg.1403.
    [39] Ruiz, S., Aden-Antoniow, F., Baez, J.C., Otarola, C., Potin, B., del Campo, F., Poli, P., Flores, C., Satriano, C., Leyton, F., Mada-riaga, R., Bernard, P., 2017. Nucleation phase and dynamic inversion of the MW6.9 Valparaíso 2017 earthquake in Central Chile. Geophys. Res. Lett.44, 10,290-10,297. https://doi.org/10.1002/2017GL075675.
    [40] Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.F., 2007. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomecha-nical fault-slip analysis. Energy Convers. Manag.48, 1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021.
    [41] Rutqvist, J., Cappa, F., Mazzoldi, A., Rinaldi, A., 2013. Geomechanical modeling of fault responses and the potential for notable seismicevents during underground CO2 injection. Energy Proc.37, 4774-4784. https://doi.org/10.1016/j.egypro.2013.06.387.
    [42] Rutqvist, J., Rinaldi, A.P., Cappa, F.F., Moridis, G.J., 2015. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng.127, 377-386. https://doi.org/10.1016/j.petrol.2015.01.019.
    [43] Scholz, C.H., 1998. Earthquakes and friction laws.Nature 391, 37-42. https://doi.org/10.1038/34097.
    [44] Scuderi, M.M., Collettini, C., Marone, C., 2017. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault. Earth Planet. Sci. Lett.477, 84-96.
    [45] Scuderi, M.M., Collettini, C., 2016. The role of fluid pressure in induced vs. triggered seismi-city:insights from rock deformation experi-ments on carbonates. Sci. Rep.6, 24852.
    [46] Scuderi, M.M., Niemeijer, A.R., Collettini, C., Marone, C., 2013. Frictional properties and slip stability of active faults within carbonate-evaporite sequences:the role of dolomite and anhydrite. Earth Planet. Sci. Lett.369-370, 220-232. https://doi.org/10.1016/j.epsl.2013.03.024.
    [47] Sibson, R.H., 2000. Fluid involvement in normal faulting. J. Geodyn.29, 469-499.
    [48] Sibson, R.H.H., 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211, 283-293. https://doi.org/10.1016/0040-1951(92)90065-E.
    [49] Socquet, A., Valdes, J.P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., Norabuena, E., 2017. An 8 month slow slip event triggers pro-gressive nucleation of the 2014 Chile mega-thrust. Geophys. Res. Lett.44, 4046-4053. https://doi.org/10.1002/2017GL073023.
    [50] Trippetta, F., Collettini, C., Barchi, M.R., Lupattelli, A., Mirabella, F., 2013. A multi-disciplinary study of a natural example of a CO2 geological reservoir in central Italy. Int. J. Greenh. Gas Control 12, 72-83. https://doi.org/10.1016/J.IJGGC.2012.11.010.
    [51] Uenishi, K., Rice, J.R., 2003. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. J. Geophys. Res.B, Solid Earth 108. https://doi.org/10.1029/2001JB001681.
    [52] Wibberley, C.A.J., Shimamoto, T., 2002. Internal structure and permeability of major strike-slip fault zones:the median tectonic line in Mie prefecture, southwest Japan. J. Struct. Geol.25, 59-78. https://doi.org/10.1016/S0191-8141(02)00014-7.
    [53] Wong, T., Zhu, W., Wong, T., 1997. The transition from brittle faulting to cataclastic flow:permeability evolution. J. Geophys. Res., Solid Earth 102, 3027-3041. https://doi.org/10.1029/96JB03282.
    [54] Zoback, M.D., Byerlee, J.D., 1975. The effect of microcrack dilatancy on the permeability of westerly gra-nite. J. Geophys. Res.80, 752-755. https://doi.org/10.1029/JB080i005p00752.
  • 加载中
计量
  • 文章访问数:  423
  • HTML全文浏览量:  86
  • PDF下载量:  45
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回