• ISSN 2097-1893
  • CN 10-1855/P

页岩中水力压裂扩展的微震机理研究

B. H. Zhang X. P. Tian B. X. Ji J. Z. Zhao Z. M. Zhu S. D. Yin 白永福 高翔 李华玥 赵仲和

引用本文: 白永福, 高翔, 李华玥 译.2020.页岩中水力压裂扩展的微震机理研究.世界地震译丛.51(6):716-730. doi:10.16738/j.cnki.issn.1003-3238.202006006

页岩中水力压裂扩展的微震机理研究

  • 摘要: 微震监测技术被广泛应用于衡量水力压裂作用。由于微震释放机制的复杂性,很难获得对其统一的理论认识。基于地震学原理,本文采用物理模拟实验和数值分析方法对页岩水力压裂扩展造成微震的机制进行研究。理论上,岩石破裂过程取决于水力裂纹尖端的应力分布。通过反演得到矩张量的特征方程及其特征值,从而确定震源点的破裂机制。通过真三轴水力压裂物理试验和声发射实验获得岩石破裂过程的基本规律。利用声发射信号的主频特性和初始运动来确定震源处的拉剪损伤比。震源点微震地震波采用水平井压裂数值模拟方法进行研究,得到不同位置、不同平面、不同方向上的微震波的频率和能量特性。通过数值分析验证了微地震波的分布,并揭示了在水力压裂作用下释放的震源机制。研究成果对页岩特性、页岩气储层评价和重构、优化压裂参数、提高采收率等方面具有重要的现实意义。

     

  • [1] Aminzadeh, F., Tafti, T.A., Maity, D., 2013. An integrated methodology for sub-surface fracture characterization using microseismic data:a case study at the NW Geysers.Comput. Geosci. 54 (54), 39-49.
    [2] Abdulaziz, A.M., 2013. Microseismic imaging of hydraulically induced-fractures in gas reser-voirs:a case study in Barnett shale gas reservoir, Texas, USA. Open J. Geol. 03 (5), 361-369.
    [3] Aki, K., Richards, P.G., 1980. Quantitative Seismology, second ed. University Science Books.2002.
    [4] Backus, G., Mulcahy, M., 1976. Moment tensors and other phenomenological descriptions of seis-micsources-I. Continuous displacements. Geo-phys. J. Int. 46 (2), 341-361.
    [5] Baig, A., Urbancic, T., 2010. Microseismic mo-ment tensors:a path to understanding frac growth[J]. Lead. Edge 29 (3), 320-324.
    [6] Busetti, S., Jiao, W., Reches, Z., 2014a. Geomechanics of hydraulic fracturing microseismicity:Part 1. Shear, hybrid, and tensile events. AAPG (Am. Assoc. Pet. Geol.) Bull. 98 (11), 2439-2457.
    [7] Busetti, S., Jiao, W., Reches, Z., 2014b. Geomechanics of hydraulic fracturing microseismicity:Part 2. Stress state determination. AAPG (Am. Assoc. Pet. Geol.) Bull. 98(11), 2459-2476.
    [8] Dando Ben, D.E., Chambers, K., Velasco, R., 2014. A robust method for determining moment tensors from surface microseismic data. In:SEG Annual Meeting, SEG Technical ProgramExpanded Abstracts. 2014. SEG, pp. 2261-2266.
    [9] Das, I., Zoback, M.D., 2011. Long period, long duration seismic events during hydraulic frac-ture stimulation of a shale gas reservoir. Lead. Edge 30 (7), 778-786.
    [10] Das, I., Zoback, M.D., 2013. Long-period long-duration seismic events during hydraulic stimula-tion of shale and tight-gas reservoirs-Part 2:location and mechanisms.Geophysics 78 (6), KS97-KS105.
    [11] Eaton, D.W., Baan, M.V.D., Birkelo, B., et al., 2014. Scaling relations and spectral characteristics of tensile microseisms:evidence for ope-ning/closing cracks during hydraulic,fracturing. Geophys. J. Int. 196 (3), 1844-1857.
    [12] Eisner, L., Thornton, M., Griffin, J., 2011. Challenges for microseismic monitoring. SEG Tech. Progr. Expand. Abstr. 30 (1), 1519-1523.
    [13] Fischer, T., Hainzl, S., Jechumtalova, Z., et al., 2008. Microseismic signatures of hydraulic fracture propagation in sediment formations. In:Thirty-Third Workshop on Geothermal Reser-voir Engineering. Stanford University, Stanford.
    [14] Ghartid, H.N., Oye, V., Kühn, D., et al., 1949. Simultaneous Microearthquake Location and Moment-Tensor Estimation Using Time-rever-sal Imaging. SEG Technical Program Expan-ded, pp. 1632-1637.
    [15] Gilbert, F., 1971. Excitation of the normal modes of the earth by earthquake sources[J].Geophys. J. R. Astron. Soc. 22 (2), 223-226.
    [16] Guest, A., Settari, T., 2010. Numerical model of microseismicity in hydrofracturing:our prediction for seismic moment tensors. In:Geo Canada 2010-Working with the Earth,Canada.
    [17] Hardebeck, J.L., Shearer, P.M., 2002. Using S/P amplitude ratios to improve earthquake focal mechanisms:two examples from southern California. Am. Geophysic. Union,Fall Meeting Suppl. 83 (47) abstract S72E-01.
    [18] Hardebeck, J.L., Shearer, P.M., 2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull. Seismol. Soc. Am. 93 (6), 2434-2444.
    [19] Kendall, M., Maxwell, S., Foulger, G., et al., 2011. Microseismicity:beyond dots in a box-Introduction. Geophysics 76 (6), WC1-WC3.
    [20] Li, L.R., 2017. Dominat Frequency Characteristics of Acoustic Emissions and Mechanical Mechanism of Rock Failure. Sichuan University, Chengdu (In Chinese).
    [21] Manthei, G., Eisenblätter, J., Dahm, T., 2001. Moment tensor evaluation of acoustic emission sources in salt rock. Constr. Build. Mater. 15 (5), 297-309.
    [22] Nur, A., 1972. Dilatancy, pore fluids, and premo-nitory variations of ts/tp travel times.Bull. Seismol. Soc. Am. 62 (5), 1-20.
    [23] Ohtsu, M., 1991. Simplified moment tensor analysis and unified decomposition of acoustic emission source:application to in situ hydrofracturing test. J. Geophysic.Res. Solid Earth 96 (1), 6211-6221.
    [24] Ohtsu, M., 1995. Acoustic emission theory for moment tensor analysis. Res. Nondestr.Eval. 6 (3), 169-184.
    [25] Phllips,W.S., Rutledge, J.T., House, L.S., et al., 2002. Induced micro-earthquake patterns in hydrocarbon and geothermal reservoirs:six case studies. Pure Appl. Geophys.(159), 345-369.
    [26] Reid, H.F., 1991. The elastic-rebound theory of earthquakes. Bull. Dept. Geol. Univ. Calif (6), 412-444.
    [27] Rutledge, J.T., Phillips, W.S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas.Geophysics 68 (2), 441-452.
    [28] Song, F., Warpinski, N.R., Toksöz, M.N., 2013. Full-waveform based microseismic source me-chanism studies in the Barnett Shale:linking microseismicity to reservoir geomechanics.Geophysics 79 (2), B109-B126.
    [29] Walker, R.N., 1997. Cotton Valley hydraulic fracture imaging project. In:SPE Annual Technical Conference and Exhibition, San Antonio.
    [30] Yan, Y.K., 2000. Temporal correlations of earthquake focal mechanisms. Geophys. J. Int.143 (3), 881-897.
    [31] Yu, X., Rutledge, J., Leaney, S., et al., 2014. Discrete fracture network generation from microseismic data using moment-tensor constrai-ned hough transforms. In:SPE Hydraulic Fracturing Technology Conference. Texas.
    [32] Zang, A., Christian Wagner, F., Stanchits, S., et al., 1998. Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads.Geophys. J. Int. 135 (3), 1113-1130.
    [33] Zhang, B.H., Deng, J.H., 2016. Microseismic Mechanism of Engineering Rock Mass and its Application. Science Press, Beijing (In Chinese).
    [34] Zhang, B.H., Ji, B.X., Liu, W.F., 2018. The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation. Geomechanics Geophys.Geo-Energy Geo-Res. 4 (2), 119-127.
  • 加载中
计量
  • 文章访问数:  336
  • HTML全文浏览量:  90
  • PDF下载量:  54
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回