• ISSN 2097-1893
    • CN 10-1855/P

    类地行星空间环境全球模拟方法及特性对比研究

    Comparative study of global simulation methods and characteristics of the space environments of terrestrial planets

    • 摘要: 无内源磁场类地行星在太阳风长期侵蚀下的大气演化与离子逃逸,是理解其宜居性差异、水逃逸机制及演化过程的核心科学问题. 金星与火星虽均缺乏全球偶极磁场,但其电离层结构、地表磁场分布及化学组成存在显著差异,使其在太阳风驱动下形成了不同类型的诱导磁层与离子加速环境. 尽管已有大量观测与模拟研究,但两者在空间电磁结构、离子动力学行为以及逃逸通量差异背后的物理机制仍缺乏系统的模型描述. 为此,本文构建并使用统一的三维多流体磁流体动力学(magnetohydrodynamics, MHD)模型,综合比较金星与火星在太阳风作用下的全球空间结构、电场组成、重离子分布及逃逸特性,并进一步对火星的四组分单流体、四组分多流体和十组分多流体模型的模拟能力进行比较. 研究结果显示,金星与火星的离子逃逸过程均受到太阳风动压、霍尔电场以及电离层-磁层耦合的多参数控制. 金星因其厚重电离层与强光化学过程,形成明显的磁堆积区、较高的重离子密度与近似对称的电磁结构. 而火星则因存在显著空间变化的地壳剩磁与更强的霍尔效应,在磁堆积边界、日侧羽流区与磁尾区域表现出更为复杂的离子尺度结构及加速过程. 霍尔电场在火星总电场中的相对贡献显著高于金星,在羽流源区和磁尾等离子体片中甚至主导局地电场方向,表明在相同上游条件下火星具有更强的电磁驱动能力. 数值结果与观测数据对比表明,十组分多流体模型能够更精确再现弓激波与磁堆积边界位置、电离层密度分布、局地电场强度以及整体逃逸通量(约1.4×1025 s1). 模型揭示了火星离子逃逸的显著质量依赖性,即轻离子(如 O+)易被加速至磁尾形成高通量尾向逃逸,而重离子(如\mathrmO_2^+ \mathrmCO_2^+ )主要沿日侧羽流区逸出,反映了多组分耦合、霍尔效应与局地剩磁共同作用下的复杂动力学过程. 本研究表明霍尔电场、多离子耦合与局地磁场结构是决定无内源磁场类地行星电磁结构、离子动力学过程及长期大气损失效率的关键控制因子. 研究结果不仅深化了对金星-火星差异性的物理理解,也为构建类地行星大气演化模型及评估行星宜居性提供了新的理论依据.

       

      Abstract: The long-term atmospheric evolution and ion escape of unmagnetized terrestrial planets under continuous solar wind erosion are fundamental to understanding their habitability, water loss mechanisms, and evolutionary pathways. Although Venus and Mars both lack a global intrinsic magnetic field, their ionospheric structures, surface magnetic field distributions, and atmospheric compositions differ significantly, leading to distinct types of induced magnetospheres and ion acceleration environments. Despite extensive observational and modeling efforts, the physical mechanisms governing the differences in their electromagnetic structures, ion dynamics, and escape fluxes remain insufficiently constrained. To address this issue, we develop and employ a unified three-dimensional multi-fluid magnetohydrodynamic (MHD) model to systematically compare the global plasma structures, electric field systems, heavy ion distributions, and escape characteristics of Venus and Mars under solar wind interaction, and further evaluate the performance of Mars four-species single-fluid, four-species multi-fluid, and ten-species multi-fluid models. Our results show that the ion escape processes of both planets are jointly regulated by the solar wind dynamic pressure, Hall electric field, and ionosphere–magnetosphere coupling. Owing to its dense ionosphere and strong photochemical processes, Venus exhibits a pronounced magnetic pileup region, elevated heavy-ion densities, and a nearly symmetric electromagnetic structure. In contrast, Mars is strongly influenced by spatially variable crustal magnetic fields and more prominent Hall effects, which produce complex ion-scale structures and acceleration pathways at the magnetic pileup boundary, dayside plume region, and magnetotail. The Hall electric field contributes a substantially larger fraction of the total electric field at Mars than at Venus, even dominating the local electric field direction in plume source regions and plasma sheet locations, indicating a stronger electromagnetic acceleration capability under comparable upstream conditions. Comparisons between simulations and observations show that the ten-species multi-fluid model most accurately reproduces the bow shock and magnetic pileup positions, ionospheric density profiles, local electric field strengths, and overall ion escape rate (~1.4 × 1025 s1). The model also reveals a pronounced mass dependence in Martian ion escape: light ions (e.g., O+) are preferentially accelerated into the magnetotail and dominate tailward escape, whereas heavy ions (e.g., \mathrmO_2^+ , \mathrmCO_2^+ ) primarily escape through dayside plume structures. These patterns reflect the combined effects of multi-species coupling, Hall physics, and crustal magnetic field geometry. In summary, Hall electric fields, multi-ion coupling, and localized magnetic field structures are identified as key controlling factors that shape the electromagnetic configuration, ion transport pathways, and long-term atmospheric loss of unmagnetized terrestrial planets. The findings deepen our understanding of the physical divergence between Venus and Mars and provide new theoretical constraints for modeling atmospheric evolution and assessing planetary habitability.

       

    /

    返回文章
    返回