• ISSN 2097-1893
    • CN 10-1855/P

    气态巨行星大气涡旋研究进展

    Progress in research on atmospheric vortices of gas giant planets

    • 摘要: 气态巨行星的大气中存在多尺度的涡旋结构,这些涡旋不仅是行星天气系统的重要组成部分,也是理解其内部动力学和热力学过程的重要窗口. 本文综述了近年来气态巨行星大气涡旋研究的主要进展,涵盖涡旋的形成机制、演化过程、空间分布、寿命特征及其与背景风场的相互作用,重点关注木星的大红斑和极地涡旋、土星的六边形风暴等典型现象,并探讨理论分析、数值模拟和遥感观测在揭示涡旋动力学中的作用. 在理论方面,本文重点讨论巨行星大气涡旋的对流形成机制,包括天气层湿对流和深层热对流两种模式. 天气层湿对流主要通过太阳辐射加热引起的大气潜热释放作为热源,扰动气流在科氏力作用下旋转并合并形成大尺度涡旋. 深层热对流则由行星内部热能加热驱动,在对流层形成涡管,随后合并成大尺度涡旋. 两种机制的共同点是均通过对流形成涡旋,差异在于热源深度不同,导致涡旋可延伸的垂直深度存在差异. 考虑到木星大气的复杂性,这两种机制可能共同作用于涡旋形成. 在数值模拟方面,本文结合流体力学中旋转对流的模拟结果,探讨涡旋形成的可能原因,包括浅水波模型、不可压缩流体模型和可压缩流体模型. 浅水波模型主要研究平流层中随机扰动在旋转效应下的演化;不可压缩和可压缩流体模型则分别模拟薄层和厚层对流中涡元的演化. 模拟结果显示,这些模型均能生成大尺度涡旋,提示它们可能是巨行星大气涡旋形成的重要机制. 气态巨行星大气涡旋的具体形成机制仍需理论、模拟与观测的进一步结合研究. 本文旨在为深入理解气态巨行星复杂的天气系统提供参考与启示.

       

      Abstract: The atmospheres of gas giant planets contain multi-scale vortex structures, which are not only key components of planetary weather systems but also important windows for understanding their internal dynamics and thermodynamic processes. This paper reviews recent advances in the study of atmospheric vortices on gas giants, covering their formation mechanisms, evolution, spatial distribution, lifetime characteristics, and interactions with background wind fields. It focuses on typical phenomena such as Jupiter’s Great Red Spot and polar vortices, Saturn’s hexagonal storm, and discusses the roles of theoretical analysis, numerical simulations, and remote sensing observations in revealing vortex dynamics. From a theoretical perspective, this paper emphasizes the convective formation mechanisms of gas giant vortices, including two scenarios: moist convection in the weather layer and deep thermal convection. Moist convection in the weather layer is primarily driven by latent heat release associated with solar heating, where disturbed airflows rotate and merge under the influence of the Coriolis force to form large-scale vortices. Deep thermal convection, on the other hand, is driven by internal heat at the base of the convective layer, forming vortex tubes that subsequently merge into large-scale vortices. Both mechanisms involve vortex formation through convection, but differ in heat source depth, resulting in variations in the vertical extent of vortices. Considering the complexity of Jupiter’s atmosphere, these two mechanisms may act together in vortex formation. In terms of numerical simulations, this paper explores possible causes of vortex formation based on rotating convection simulations in fluid dynamics, including shallow-water wave models, incompressible fluid models, and compressible fluid models. The shallow-water wave model primarily investigates the evolution of random disturbances in the stratosphere under rotational effects, while incompressible and compressible fluid models simulate the evolution of vortical elements in thin-layer and thick-layer convection, respectively. Simulation results show that all these models can generate large-scale vortices, suggesting they may represent important mechanisms for vortex formation in gas giant atmospheres. The specific formation mechanisms of atmospheric vortices on gas giants still require further integrated research combining theory, simulation, and observation. This paper aims to provide insights and references for a deeper understanding of the complex weather systems of gas giant planets.

       

    /

    返回文章
    返回