• ISSN 2097-1893
    • CN 10-1855/P

    测月雷达数据驱动的嫦娥四号着陆区研究综述

    A review of lunar penetrating radar data-driven research in the Chang'e-4 landing area

    • 摘要: 嫦娥四号测月雷达首次实现了月球背面浅表层结构的原位精细探测,填补了人类对月背地下结构认知的空白. 本文基于玉兔二号巡视器获取的高频(500 MHz)与低频(60 MHz)双通道雷达数据,结合多源遥感信息,针对南极—艾特肯盆地内冯·卡门撞击坑区域的月壤层序结构、介电特性分布及成因演化机制相关研究,对前人研究进行了系统梳理与综合分析. 在浅表层结构(0~40 m)方面,本文整合高频雷达探测结果,归纳出五层典型结构:顶部0~12 m为细粒风化月壤层(相对介电常数εr=2.35±0.20,密度1.31±0.20 g/cm3),其下三层为芬森撞击形成的粗粒溅射物层(εr=3.2~4.8),底部为破碎玄武岩层. 研究还指出,特别在10~25 m深度发现直径150~270 m的埋藏撞击坑及5套厚度2~3 m的熔岩流薄层,证实了多期撞击-喷发事件的叠加效应. 在深层结构(>50 m)探测方面,研究表明该区域存在四期玄武岩熔流单元(单层厚12~100 m),夹有两层古月壤(20 m/5 m),最深处(>280 m)发现火山碎屑岩,为月球背面晚期火山活动提供了证据. 介电特性反演显示显著垂向分异:表层介电常数2.4~3.2随深度增至5.0,损耗角正切0.00410.0104,FeO+TiO2含量最高达17.5 wt%. 相关研究建立了具有普适性的“介电常数-深度”函数模型,其反演精度较传统模型提升35%. 成因分析揭示三类主导机制:早期(~3.5 Ga)玄武岩喷发奠定物质基底;中期(~3.2—3.1 Ga)芬森等撞击事件带来溅射物堆积;后期空间风化导致表层细粒化. 已有成果构建了目前相对完整的嫦娥四号着陆区雷达剖面模型,提出了“撞击溅射-火山沉积-风化改造”三阶段演化理论,为月球地质年代学研究和深空探测任务选址提供了重要科学依据. 相关研究成果凸显了双频雷达在行星地下结构探测中的独特优势,对发展下一代行星探测技术具有重要指导意义.

       

      Abstract: The Chang'e-4 Lunar Penetrating Radar (LPR) has achieved the first in-situ high-resolution detection of the shallow subsurface structure on the far side of the Moon, filling a critical gap in our understanding of the lunar far side's subsurface architecture. This paper systematically reviews and synthesizes previous studies on the stratigraphic structure, dielectric property distribution, and genetic evolution mechanisms within the Von Kármán crater located in the South Pole–Aitken Basin. The analysis is based on dual-channel high-frequency (500 MHz) and low-frequency (60 MHz) radar data acquired by the Yutu-2 rover, integrated with multi-source remote sensing information. Regarding the shallow structure (0–40 m), this study consolidates high-frequency radar results and summarizes a five-layer stratigraphy: the top layer (0–12 m) consists of fine-grained regolith (εr=2.35 ± 0.20, density=1.31 ± 0.20 g/cm3), underlain by three layers of coarse-grained ejecta from the Finsen impact (εr=3.2–4.8), with fragmented basaltic rock at the base. It is particularly noted that buried craters 150–270 m in diameter and five thin lava flow sequences, each 2–3 m thick, were identified at depths of 10–25 m, confirming the superposition of multiple impact and eruption events. For the deeper structure (>50 m), findings reveal four basalt flow units (individual thickness: 12–100 m) interlaid with two paleo-regolith layers (20 m/5 m). Volcaniclastic rocks detected beyond 280 m depth provide evidence of late-stage volcanic activity on the lunar far side. Dielectric property inversion demonstrates significant vertical heterogeneity: the relative permittivity increases from 2.4–3.2 at the surface to 5.0 at depth, with a loss tangent ranging between 0.00410.0104, and FeO+TiO2 content reaching up to 17.5 wt%. A generalized "permittivity–depth" function model has been established, improving inversion accuracy by 35% compared to conventional models. Genetic analysis identifies three dominant mechanisms: early (~3.5 Ga) basaltic eruptions forming the material foundation; mid-stage (~3.2–3.1 Ga) impact events (e.g., Finsen) depositing ejecta; and later space weathering leading to surface fining. Existing research has established a relatively complete radar profile model for the Chang'e-4 landing site and put forward a three-stage evolution theory of "impact ejecta–volcanic deposition–weathering modification", thereby providing a critical scientific basis for lunar geochronology and landing site selection for deep space exploration. The relevant achievements underscore the unique value of dual-frequency radar in planetary subsurface sounding, which holds significant implications for guiding the development of next-generation planetary detection technologies.

       

    /

    返回文章
    返回